
Sorting trees — work and span revisited

15-150
Lecture 8: September 19, 2024

Stephanie Balzer
Carnegie Mellon University

1

Midterm I: room update

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• MM 103 (Sections A—D), PH 100 (Sections E—L).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk:
• Writing utensils, we provide paper, something to drink/eat, tissues.
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset.
• No cell phones, laptops, or any other smart devices.

2

Midterm I: room update

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• MM 103 (Sections A—D), PH 100 (Sections E—L).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk:
• Writing utensils, we provide paper, something to drink/eat, tissues.
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset.
• No cell phones, laptops, or any other smart devices.

2

We got a second room!

Mergesort: divide and conquer

3

Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

recursively divide in
equal sub-lists

Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

recursively divide in
equal sub-lists

Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive
calls on sub-lists

Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive
calls on sub-lists

Let’s determine the span of mergesort!

Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive
calls on sub-lists

Let’s determine the span of mergesort!

Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let val (A, B) = split L
 in
 merge(msort A, msort B)
 end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive
calls on sub-lists

Let’s determine the span of mergesort!

Determined by depth of computation tree.

Span for mergesort for lists

5

Span for mergesort for lists

5

Recall work: Wmsort(n) with n the list length.

Span for mergesort for lists

5

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Span for mergesort for lists

5

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Span for mergesort for lists

5

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

c n + c’ n = (c + c’) n = c3 n

Span for mergesort for lists

6

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

c n + c’ n = (c + c’) n = c3 n

Span for mergesort for lists

6

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

c n + c’ n = (c + c’) n = c3 n

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

Span for mergesort for lists

7

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

Span for mergesort for lists

7

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

Span for mergesort for lists

7

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-lists

Span for mergesort for lists

7

Recall work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span for mergesort for lists

8

Span: Smsort(n) with n the list length.
Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na) + Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span for mergesort for lists

9

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na) + Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

9

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na) + Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

10

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na) + Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Smsort(n) c2 + c3 n + Smsort(n/2)
Smsort(n) c4 n + Smsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Span for mergesort for lists

10

Equations:
Smsort(0) = c0
Smsort(1) = c1
Smsort(n) = c2 + Ssplit(n) + max(Smsort(na) + Smsort(nb))
 + Smerge(na,nb), for n = na + nb and n 2≥

Smsort(n) c2 + c3 n + Smsort(n/2)
Smsort(n) c4 n + Smsort(n/2)

≤
≤

parallelize recursive
calls on sub-listsmax!

Span: Smsort(n) with n the list length.

Let’s look at the tree method to find a closed form.

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

Span for mergesort for lists

11

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

12

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

12

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤

Span for mergesort for lists

12

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n
 n (log2 n)≤

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

 c4 n (1 + 1/2 + 1/4 +…)≤
c4 n/22

 2 c4 n≤ Can we do better?

Span for mergesort for lists

13

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Can we do better?

Span for mergesort for lists

13

Wmsort(n) c4 n + Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work:

c4 n

c4 n

c4 n

c4 n

Consequently: Wmsort(n) is O(n log n) and Smsort(n) is O(n).

span:

c4 n

c4 n/2

c4 n/22

c4 n/22

Can we do better?

What if we were given a tree, rather than a list?

Mergesort for int trees

14

Mergesort for int trees

14

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree

Mergesort for int trees

14

Recall order datatype:

datatype order = LESS | EQUAL | GREATER

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree

Mergesort for int trees

14

Recall order datatype:

datatype order = LESS | EQUAL | GREATER

with:
Int.compare : int * int -> order

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree

Mergesort for int trees

15

Mergesort for int trees

15

We define int trees to be sorted by:

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

• r is sorted and for every z:int in r, Int.compare(z,x) returns
either GREATER or EQUAL.

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

• r is sorted and for every z:int in r, Int.compare(z,x) returns
either GREATER or EQUAL.

Eg, sorted tree:

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

• r is sorted and for every z:int in r, Int.compare(z,x) returns
either GREATER or EQUAL.

42

14 81

3 42 57 99

Eg, sorted tree:

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

• r is sorted and for every z:int in r, Int.compare(z,x) returns
either GREATER or EQUAL.

42

14 81

3 42 57 99

Eg, sorted tree: Eg, unsorted tree:

Mergesort for int trees

15

We define int trees to be sorted by:
• Empty is sorted;
• Node(l,x,r) is sorted iff

• l is sorted and for every y:int in l, Int.compare(y,x) returns
either LESS or EQUAL, and

• r is sorted and for every z:int in r, Int.compare(z,x) returns
either GREATER or EQUAL.

42

42 81

3 14 57 99

42

14 81

3 42 57 99

Eg, sorted tree: Eg, unsorted tree:

Mergesort for int trees

16

Mergesort for int trees

16

Divide and conquer for sorting int trees:

Mergesort for int trees

16

Divide and conquer for sorting int trees:
• Split the tree into sub-trees;

Mergesort for int trees

16

Divide and conquer for sorting int trees:
• Split the tree into sub-trees;
• Sort the sub-trees;

Mergesort for int trees

16

Divide and conquer for sorting int trees:
• Split the tree into sub-trees;
• Sort the sub-trees;
• Merge the results.

Let’s implement the mergesort function!

17

Let’s implement the mergesort function!

17

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s implement the mergesort function!

18

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s implement the mergesort function!

19

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s implement the mergesort function!

20

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s implement the mergesort function!

21

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s implement the mergesort function!

21

(* Msort : tree -> tree
 REQUIRES: true
 ENSURES: Msort(t) evaluates to a sorted tree containing
 exactly the elements of t (incl duplicates).
*)

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Note: no splitting to create the “computation tree” necessary
anymore as with int list! We are already provided with a tree.

Let’s implement the insert function!

22

Let’s implement the insert function!

22

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

23

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

24

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

25

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

26

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

27

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

28

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

29

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the insert function!

30

(* Ins : int * tree -> tree
 REQUIRES: t is a sorted tree.
 ENSURES: Ins(x,t) returns a sorted tree containing x
 along with the elements of t (incl duplicates).
*)

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty)
 | Ins (x, Node(l, y, r)) =
 (case Int.compare(x,y) of
 GREATER => Node(l, y, Ins(x, r))
 | _ => Node(Ins(x, l), y, r))

Let’s implement the merge function!

31

Let’s implement the merge function!

31

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

Let’s implement the merge function!

31

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

Let’s implement the merge function!

31

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

merge must
maintain sortedness!

Let’s implement the merge function!

32

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

Let’s implement the merge function!

32

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

Consider:

Let’s implement the merge function!

32

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l2 r2

elements in l2 ≤ y and r2 ≥ y,
l2 and r2 are sorted

Consider:

Let’s implement the merge function!

33

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l2 r2

elements in l2 ≤ y and r2 ≥ y,
l2 and r2 are sorted

assume x ≤ yConsider:

Let’s implement the merge function!

33

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l2 r2

elements in l2 ≤ y and r2 ≥ y,
l2 and r2 are sorted

assume x ≤ yConsider:

x

?

Let’s implement the merge function!

34

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l2 r2

elements in l2 ≤ y and r2 ≥ y,
l2 and r2 are sorted

assume x ≤ yConsider:

x

?

split at x!

Let’s implement the merge function!

35

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

assume x ≤ yConsider:

r3

x
split at x!

Let’s implement the merge function!

36

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

Let’s implement the merge function!

36

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

Let’s implement the merge function!

36

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

Let’s implement the merge function!

37

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3

Let’s implement the merge function!

38

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3

Let’s implement the merge function!

38

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3

Let’s implement the merge function!

39

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3
merge r1 with r3, y, r2

(for x ≤ y)

Let’s implement the merge function!

40

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

elements in l1 ≤ x and r1 ≥ x,
l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y,
elements in l3 ≤ x and r3 ≥ x,

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3
merge r1 with r3, y, r2

(for x ≤ y)

root of merged
pairs of trees

Let’s implement the merge function!

41

Let’s implement the merge function!

41

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

fun Merge (Empty : tree, t2 : tree) : tree = t2
 | Merge (Node(l1,x,r1), t2) =
 let
 val (l2, r2) = SplitAt(x, t2)
 in
 Node(Merge(l1, l2), x, Merge(r1, r2))
 end

Let’s implement the merge function!

42

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

fun Merge (Empty : tree, t2 : tree) : tree = t2
 | Merge (Node(l1,x,r1), t2) =
 let
 val (l2, r2) = SplitAt(x, t2)
 in
 Node(Merge(l1, l2), x, Merge(r1, r2))
 end

Let’s implement the merge function!

43

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

fun Merge (Empty : tree, t2 : tree) : tree = t2
 | Merge (Node(l1,x,r1), t2) =
 let
 val (l2, r2) = SplitAt(x, t2)
 in
 Node(Merge(l1, l2), x, Merge(r1, r2))
 end

Let’s implement the merge function!

43

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

fun Merge (Empty : tree, t2 : tree) : tree = t2
 | Merge (Node(l1,x,r1), t2) =
 let
 val (l2, r2) = SplitAt(x, t2)
 in
 Node(Merge(l1, l2), x, Merge(r1, r2))
 end

Let’s implement the merge function!

44

(* Merge : tree * tree -> tree
 REQUIRES: t1 and t2 are sorted.
 ENSURES: Merge(t1,t2) returns a sorted tree containing
 exactly the elements of t1 and t2 (incl dupls).
*)

fun Merge (Empty : tree, t2 : tree) : tree = t2
 | Merge (Node(l1,x,r1), t2) =
 let
 val (l2, r2) = SplitAt(x, t2)
 in
 Node(Merge(l1, l2), x, Merge(r1, r2))
 end

Merge may not return a balanced tree!

45

Merge may not return a balanced tree!

45

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Merge may not return a balanced tree!

45

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Eg:

Merge may not return a balanced tree!

45

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Eg:

1
2

3

8
7

6

Merge(

,

)

Merge may not return a balanced tree!

45

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Eg:

1
2

3

8
7

6

Merge(

,

) Yields:

Merge may not return a balanced tree!

45

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Eg:

1
2

3

8
7

6

Merge(

,

) Yields: 1
2

3
8

7
6

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

What we will do is assume that tree are balanced.

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

What we will do is assume that tree are balanced.

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 rebalance (Ins (x, Merge(Msort left, Msort right)))

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

What we will do is assume that tree are balanced.

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 rebalance (Ins (x, Merge(Msort left, Msort right)))

Merge may not return a balanced tree!

46

The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

What we will do is assume that tree are balanced.

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 rebalance (Ins (x, Merge(Msort left, Msort right)))

assume rebalnce
is called here

Let’s write the function split!

47

Let’s write the function split!

47

(* SplitAt : int * tree -> tree * tree
 REQUIRES: t is sorted.
 ENSURES: SplitAt(x,t) returns a pair (t1,t2) of sorted
 trees such that:
 (a) t1 and t2 contain exactly the elements of t;
 (b) the elements of t1 are LESS or EQUAL to x;
 (c) the elements of t2 are GREATER or EQUAL to x.
*)

Let’s write the function split!

48

fun SplitAt(x: int, Empty: tree): tree * tree =

Let’s write the function split!

49

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)

Let’s write the function split!

50

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)
 | SplitAt(x, Node(left, y, right)) =

 case compare(x, y) of

Let’s write the function split!

51

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)
 | SplitAt(x, Node(left, y, right)) =

 case compare(x, y) of
 LESS => let
 val (t1, t2) = SplitAt(x, left)
 in

 end

Let’s write the function split!

52

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)
 | SplitAt(x, Node(left, y, right)) =

 case compare(x, y) of
 LESS => let
 val (t1, t2) = SplitAt(x, left)
 in
 (t1, Node(t2, y, right))
 end

Let’s write the function split!

53

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)
 | SplitAt(x, Node(left, y, right)) =

 case compare(x, y) of
 LESS => let
 val (t1, t2) = SplitAt(x, left)
 in
 (t1, Node(t2, y, right))
 end
 | _ => let
 val (t1, t2) = SplitAt(x, right)
 in

 end

Let’s write the function split!

54

fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty)
 | SplitAt(x, Node(left, y, right)) =

 case compare(x, y) of
 LESS => let
 val (t1, t2) = SplitAt(x, left)
 in
 (t1, Node(t2, y, right))
 end
 | _ => let
 val (t1, t2) = SplitAt(x, right)
 in
 (Node(left, y, t1), t2)
 end

Let’s determine the span of mergesort!

55

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Depth is log2 of the number of nodes in a balanced tree.

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Depth is log2 of the number of nodes in a balanced tree.

Both Merge and Msort affort parallelism.

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Depth is log2 of the number of nodes in a balanced tree.

Both Merge and Msort affort parallelism.

We will focus on Msort, refer to lecture notes otherwise.

Let’s determine the span of mergesort!

55

We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Depth is log2 of the number of nodes in a balanced tree.

Both Merge and Msort affort parallelism.

We will focus on Msort, refer to lecture notes otherwise.

We have: SIns(d) is O(d).

SSplitAt(d) is O(d).

SMerge(d) is O(d1d2).

Let’s determine the span of mergesort!

56

Let’s determine the span of mergesort!

56

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Let’s determine the span of mergesort!

56

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.

Let’s determine the span of mergesort!

56

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:

Let’s determine the span of mergesort!

57

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) =

Let’s determine the span of mergesort!

58

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))

Let’s determine the span of mergesort!

59

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

Let’s determine the span of mergesort!

60

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

Let’s determine the span of mergesort!

60

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

Let’s determine the span of mergesort!

60

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

rebalanced!

Let’s determine the span of mergesort!

60

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

rebalanced!

Let’s determine the span of mergesort!

60

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

rebalanced!

possibly
unbalanced!

Let’s determine the span of mergesort!

61

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

Let’s determine the span of mergesort!

62

fun Msort (Empty : tree) : tree = Empty
 | Msort (Node(left, x, right)) =
 Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)
Here:

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

d’ ≤ d-1.
d1,d2 depths of the trees returned by recursive calls to Msort.
d3 depth of the tree returned by Merge.

Let’s determine the span of mergesort!

63

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Let’s determine the span of mergesort!

64

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d)

Let’s determine the span of mergesort!

65

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d)
 ≤ c + SMsort(d-1) + c’ d2 + c’’ d

Let’s determine the span of mergesort!

66

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d)
 ≤ c + SMsort(d-1) + c’ d2 + c’’ d
 ≤ k d2 + SMsort(d-1)

Let’s determine the span of mergesort!

67

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’))
 + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then:
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d)
 ≤ c + SMsort(d-1) + c’ d2 + c’’ d
 ≤ k d2 + SMsort(d-1)

Consequently: SMsort(d) is O(d3), ie O((log n)3).

Sorting overview

68

Sorting overview

68

Work:

Span:

list isort list msort tree msort

O((log n)3)

O(n2)

O(n2)

O(n log n)

O(n)

O(n log n)

Sorting overview

68

Work:

Span:

list isort list msort tree msort

O((log n)3)

O(n2)

O(n2)

O(n log n)

O(n)

O(n log n)

In 15-210, span of tree msort can be reduced to O((log n)3)!

