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Midterm I: room update

When and where: 
• Thursday, September 26, 11:00am—12:20pm. 
• MM 103 (Sections A—D), PH 100 (Sections E—L). 

Scope: 
• Lectures: 1—8. 
• Labs: 1—4 and midterm review section of Lab 5. 
• Assignments: Basics, Induction, and Datatypes. 

What you may have on your desk: 
• Writing utensils, we provide paper, something to drink/eat, tissues. 
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset. 
• No cell phones, laptops, or any other smart devices.
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We got a second room!



Mergesort: divide and conquer

3



Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end



Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

recursively divide in 
equal sub-lists



Mergesort: divide and conquer

3

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

recursively divide in 
equal sub-lists



Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]



Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive 
calls on sub-lists



Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive 
calls on sub-lists

Let’s determine the span of mergesort!



Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive 
calls on sub-lists

Let’s determine the span of mergesort!



Mergesort: divide and conquer

4

fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

parallelize recursive 
calls on sub-lists

Let’s determine the span of mergesort!

Determined by depth of computation tree.
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Let’s look at the tree method to find a closed form.
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Can we do better?

What if we were given a tree, rather than a list?



Mergesort for int trees

14



Mergesort for int trees

14

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree



Mergesort for int trees

14

Recall order datatype:

datatype order = LESS | EQUAL | GREATER

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree



Mergesort for int trees

14

Recall order datatype:

datatype order = LESS | EQUAL | GREATER

with:
Int.compare : int * int -> order

Recall int tree datatype:
datatype tree = Empty | Node of tree * int * tree
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Divide and conquer for sorting int trees:
• Split the tree into sub-trees;
• Sort the sub-trees;
• Merge the results.
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  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))
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(* Msort : tree -> tree 
   REQUIRES: true 
   ENSURES: Msort(t) evaluates to a sorted tree containing 
            exactly the elements of t (incl duplicates). 
*) 

fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Note: no splitting to create the “computation tree” necessary 
anymore as with int list!  We are already provided with a tree.
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(* Ins : int * tree -> tree 
   REQUIRES: t is a sorted tree. 
   ENSURES: Ins(x,t) returns a sorted tree containing x 
            along with the elements of t (incl duplicates). 
*) 

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty) 
  | Ins (x, Node(l, y, r)) =  
     (case Int.compare(x,y) of 
          GREATER   => Node(l, y, Ins(x, r)) 
        | _         => Node(Ins(x, l), y, r))
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   REQUIRES: t is a sorted tree. 
   ENSURES: Ins(x,t) returns a sorted tree containing x 
            along with the elements of t (incl duplicates). 
*) 

fun Ins (x: int, Empty: tree) : tree = Node(Empty, x, Empty) 
  | Ins (x, Node(l, y, r)) =  
     (case Int.compare(x,y) of 
          GREATER   => Node(l, y, Ins(x, r)) 
        | _         => Node(Ins(x, l), y, r))



Let’s implement the merge function!

31



Let’s implement the merge function!

31

(* Merge : tree * tree -> tree 
   REQUIRES: t1 and t2 are sorted. 
   ENSURES: Merge(t1,t2) returns a sorted tree containing 
            exactly the elements of t1 and t2 (incl dupls). 
*)



Let’s implement the merge function!

31

(* Merge : tree * tree -> tree 
   REQUIRES: t1 and t2 are sorted. 
   ENSURES: Merge(t1,t2) returns a sorted tree containing 
            exactly the elements of t1 and t2 (incl dupls). 
*)



Let’s implement the merge function!

31

(* Merge : tree * tree -> tree 
   REQUIRES: t1 and t2 are sorted. 
   ENSURES: Merge(t1,t2) returns a sorted tree containing 
            exactly the elements of t1 and t2 (incl dupls). 
*)

merge must 
maintain sortedness!
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x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y, 
elements in l3 ≤ x and r3 ≥ x, 

l3, r3 and r2 are sorted

assume x ≤ yConsider:

r3

x
split at x!
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x
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(* Merge : tree * tree -> tree 
   REQUIRES: t1 and t2 are sorted. 
   ENSURES: Merge(t1,t2) returns a sorted tree containing 
            exactly the elements of t1 and t2 (incl dupls). 
*)
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l1 and r1 are sorted

x

l1 r1

y

l3 r2

elements in l3, r3 ≤ y and r2 ≥ y, 
elements in l3 ≤ x and r3 ≥ x, 

l3, r3 and r2 are sorted

Consider:

r3

x

merge l1 with l3 
merge r1 with r3, y, r2 

(for x ≤ y)

root of merged 
pairs of trees
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(* Merge : tree * tree -> tree 
   REQUIRES: t1 and t2 are sorted. 
   ENSURES: Merge(t1,t2) returns a sorted tree containing 
            exactly the elements of t1 and t2 (incl dupls). 
*) 

fun Merge (Empty : tree, t2 : tree) : tree = t2 
  | Merge (Node(l1,x,r1), t2) = 
      let  
        val (l2, r2) = SplitAt(x, t2)  
      in  
        Node(Merge(l1, l2), x, Merge(r1, r2))  
      end
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The depth of Merge(t1,t2) can be the sum of the depths of t1, t2!

To obtain fast code, we must rebalance.

One can do so without affecting asymptotic cost.

You learn more about this in 15-210.

What we will do is assume that tree are balanced.

fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      rebalance (Ins (x, Merge(Msort left, Msort right)))

assume rebalnce 
is called here
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(* SplitAt : int * tree -> tree * tree 
   REQUIRES: t is sorted. 
   ENSURES: SplitAt(x,t) returns a pair (t1,t2) of sorted 
            trees such that: 
            (a) t1 and t2 contain exactly the elements of t; 
            (b) the elements of t1 are LESS or EQUAL to x; 
            (c) the elements of t2 are GREATER or EQUAL to x. 
*) 
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fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty) 
  | SplitAt(x, Node(left, y, right)) = 
  
     case compare(x, y) of 
           LESS => let  
                      val (t1, t2) = SplitAt(x, left)  
                   in  
                       
                   end
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fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty) 
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                      val (t1, t2) = SplitAt(x, left)  
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                      (t1, Node(t2, y, right))  
                   end
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fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty) 
  | SplitAt(x, Node(left, y, right)) = 
  
     case compare(x, y) of 
           LESS => let  
                      val (t1, t2) = SplitAt(x, left)  
                   in  
                      (t1, Node(t2, y, right))  
                   end 
          |  _  => let  
                      val (t1, t2) = SplitAt(x, right)  
                   in  
                      
                   end
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fun SplitAt(x: int, Empty: tree): tree * tree = (Empty, Empty) 
  | SplitAt(x, Node(left, y, right)) = 
  
     case compare(x, y) of 
           LESS => let  
                      val (t1, t2) = SplitAt(x, left)  
                   in  
                      (t1, Node(t2, y, right))  
                   end 
          |  _  => let  
                      val (t1, t2) = SplitAt(x, right)  
                   in  
                      (Node(left, y, t1), t2)  
                   end
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We are going to assume balanced trees (ie call of rebalance).

We are going to focus on the depth of a tree.

Depth is log2 of the number of nodes in a balanced tree.

Both Merge and Msort affort parallelism.

We will focus on Msort, refer to lecture notes otherwise.

We have: SIns(d) is O(d).

SSplitAt(d) is O(d).

SMerge(d) is O(d1d2).
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fun Msort (Empty : tree) : tree = Empty 
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Let’s determine the span of mergesort!

58

fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
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fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)
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fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)
Here:
d’ ≤ d-1. 
d1,d2 depths of the trees returned by recursive calls to Msort. 
d3 depth of the tree returned by Merge.
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Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
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unbalanced!
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fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)
Here:
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fun Msort (Empty : tree) : tree = Empty 
  | Msort (Node(left, x, right)) = 
      Ins (x, Merge(Msort left, Msort right))

Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)
Here:

If we rebalance as a final step in Msort, then: 
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

d’ ≤ d-1. 
d1,d2 depths of the trees returned by recursive calls to Msort. 
d3 depth of the tree returned by Merge.
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Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then: 
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.
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Span: SMsort(d) with d the depth of the tree.
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Span: SMsort(d) with d the depth of the tree.
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Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then: 
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d) 
                 ≤ c + SMsort(d-1) + c’ d2 + c’’ d 
                 ≤ k d2 + SMsort(d-1)
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Span: SMsort(d) with d the depth of the tree.
Equations:
SMsort(d) = c + max(SMsort(d-1), SMsort(d’)) 
           + SMerge(d1,d2) + SIns(d3)

If we rebalance as a final step in Msort, then: 
d1 ≤ d, d2 ≤ d, and d3 ≤ 2d.

Thus:
SMsort(d) ≤ c + SMsort(d-1) + SMerge(d,d) + SIns(2d) 
                 ≤ c + SMsort(d-1) + c’ d2 + c’’ d 
                 ≤ k d2 + SMsort(d-1)

Consequently: SMsort(d) is O(d3), ie O((log n)3).
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Work:

Span:

list isort list msort tree msort

O((log n)3)

O(n2)

O(n2)

O(n log n)

O(n)

O(n log n)
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Work:

Span:

list isort list msort tree msort

O((log n)3)

O(n2)

O(n2)

O(n log n)

O(n)

O(n log n)

In 15-210, span of tree msort can be reduced to O((log n)3)!


