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Regular Expressions



Motivating examples

www.<either cs or ece>.<either cmu or pitt>.edu

Validate URL:

grep "[A-Za-z ]*"

Find each line that contains only letters and single spaces:

filename



Today
• Regular expressions


• Regular languages


• Matcher


• Correctness


• Proof-directed debugging


• Termination


• Soundness and completeness



Hierarchy of Computer 
Languages

Class of Languages Recognizer Applications

Unrestricted Turing machines General computational 
questions 

Context-sensitive Linear-bounded automata Some simple type-checking

Context-free Non-deterministic automata 
with one stack Syntax checking

Regular Finite automata Tokenization
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Excursions from my office
"c"means  going to the coffee machine and coming back

"p" means  going to the printer and coming back

 "m" means  going to a meeting and coming back

{cpmc, cccc, mcmmm, …}

Succinct way to describe my excursions in a given day?

c*
(c+p)* m

Arbitrary number of trips to coffee machine
Arbitrary number of trips to coffee machine or printer, 

followed by a meeting



A finite automaton

final

b

b

a a

a, b

This automaton accepts all strings over the alphabet {a,b} that contain 
at least two consecutive “a”s.

start



Notation and Definitions
Σ is an alphabet of characters.

Example: Σ = {a,b}

(In SML, #"a" : char) 

Σ* means the set of all finite-length strings 
over alphabet Σ.

Example:  aabba in {a,b}*

(In SML, "aabba": string) 

ε is the empty string, containing no characters.
(In SML, "": string)



Notation and Definitions

A language over Σ is a subset of Σ*.

Σ is an alphabet of characters.



Regular expressions
A regular expression over an alphabet Σ is one of the following:

a  |  0  |  1  |  r1 r2  | r1 + r2 | r*
letter in Σ special symbols concatenation alternation  Kleene star 

We use parantheses without regarding them as a part of the language.



L(r) : Language of a regular expression

L(a) = {a}


L(0) = {}


L(1) = {𝛆}


L(r1r2) = {s1s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}


L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}


L(r*) = {s1 … sn | n ≥ 0 with  si ∈ L(r) for 0 ≤ i ≤ n}


A language L is regular if L = L(r) for some regular expression r.

includes 𝛆 for n = 0 
Alternatively, 

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}



L(a) = 

L(aa) = 

L((a+b)*) =

L((a+b)*aa(a+b)*) =

L((a+1)(b+ba)*) =

Examples
Assume Σ = {a,b}


What is the language for each of the following regular expressions?
a

aa

(a+b)*

(a+b)*aa(a+b)*

(a+1)(b+ba)* 

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with  si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

set of strings with at least two consecutive “a”s.
set of strings without two consecutive “a”s.

Σ* (set of all strings over Σ)
{aa}

{a}




Examples
Assume Σ = {a,b}


All of the regular expressions below generate 

the same language: 

L(ab+b*ab)

L((1+b*)ab

L((1+bb*)ab)

L(b*ab)

L(b*ab+0)

All strings Σ* consisting of 0 or more “b”s 

followed by ab (and nothing thereafter)



datatype regexp = Char of char
                             | Zero
                             | One
                             | Times of regexp * regexp
                             | Plus of regexp * regexp
                             | Star of regexp

Representing regular expressions

a  |  0  |  1  |  r1 r2  | r1 + r2 | r*



(* accept : regexp -> string -> bool

   REQUIRES:  true
   ENSURES:   (accept r s)  returns true, if s ∈ L(r);
                    (accept r s)  returns false, otherwise.
*)

accept and match



Consider regular expression r = (a + ab) (a + b) 


(* accept : regexp -> string -> bool

   REQUIRES:  true
   ENSURES:   (accept r s)  ≅ true, if s ∈ L(r);
                    (accept r s)  ≅ false, otherwise.
*)

What does accept return when we apply it to r and "aba" ?

What is the language of r, i.e., what is L(r)? {aa,ab,aba,abb} 

How do we split "aba"?



..

.+ .+

...a

.a

.a .b

.b

(a + ab) (a + b)aba

need to backtrack



..

.+ .+

...a

.a

.a .b

.b

(a + ab) (a + b)aba



(* accept : regexp -> string -> bool

   REQUIRES:  true
   ENSURES:   (accept r s)  ≅ true, if s ∈ L(r);
                    (accept r s)  ≅ false, otherwise.
*)

(* match : regexp -> char list -> (char list -> bool) -> bool

   REQUIRES: k is total.
   ENSURES:  (match r cs k)  ≅ true,
                                    if cs can be split as cs ≅ p@s,
                                    with p representing a string in L(r)
                                    and k(s) evaluating to true;
                    (match r cs k)  ≅ false, otherwise.
*)

accept and match

fun accept r s = match r (String.explode s) List.null



fun match (Char(a)) cs k = (case cs of

 [ ] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k =  k(cs)

| match (Zero) _ _ =  false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

(match r cs k)  ≅ true,  if cs can be split as cs ≅ p@s
with p representing a string in L(r) and k(s) evaluating to true

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with  si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

match : regexp -> char list -> 
                        (char list -> bool) -> bool



Termination

 
For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.   

Theorem : 

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Think about structural induction on r and the case 



Termination

 
For all values r, cs, k (of the correct type), with k total, match r cs k reduces to a value.   

Theorem : 

match (Star(r)) cs k = k(cs) orelse match r cs (fn cs’ => match Star(r) cs' k)

In IH, we may assume match r cs (fn cs' => match Star(r) cs' k) reduces to 
a value when  (fn cs' => match Star(r) cs' k)  is total. But do we know that it 
is total?

Circular argument!

Think about structural induction on r and the case 



fun match (Char(a)) cs k = (case cs of

 [ ] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k =  k(cs)

| match (Zero) _ _ =  false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with  si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'



Two ways to fix the problem

• Change code


• Change specification to require that the input regular 
expression be in standard form 

• If Star(r) appears in the regular expression then 𝛆 is not 
in the language of r.




match function
fun match (Char(a)) cs k = (case cs of

 [ ] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k = k(cs)
| match (Zero) _ k =  false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs  (fn cs' => match Star(r) cs' k)

Or we could require that r be in standard form

A regular expression r is in standard form if and only if for any 

subexpression Star(r') of r, L(r') does not contain the empty string.



Sketch of a Proof of 
Correctness

• Prove termination: show that (match r cs k) returns a 
value for all arguments r, cs, k satisfying REQUIRES (We 
will assume this).


• Prove soundness and completeness (We will do this 
assuming termination and write out one case).



Soundness and Completenes 
(assuming termination)

 ENSURES:  (match r cs k)  ≅ true, if cs ≅ p@s,
                                                        with p ∈ L(r)  and k(s) ≅ true;                    
                 (match r cs k)  ≅ false, otherwise

Given termination, we can rephrase the spec as follows: 

 ENSURES:  (match r cs k)  ≅ true if and only if there exist p, s such that 
  cs ≅  p@s, p ∈ L(r)  and k(s) ≅ true



Proof: By structural induction on r

Base cases:  Zero, One, Char (a) for every a: char

Inductive cases:  Plus (r1, r2), Times (r1,r2), Star (r)

We are assuming termination as a lemma.

Theorem:  

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k)  ≅ true 
if and only if 


 there exist p, s such that 
  cs ≅  p@s, p ∈ L(r)  and k(s) ≅ true



Inductive case:  r = Plus (r1, r2)
IH:  For i = 1,2, for all values cs: char list, k: char list -> bool, with 

k total (match ri cs k)  ≅ true if and only if there exist p, s such 
that  cs ≅  p@s, p ∈ L(ri)  and k(s) ≅ true

for some r1 and r2 
We are assuming termination as a lemma.

NTS:  For all values cs: char list, k: char list -> bool, with k total 
(match (Plus (r1, r2)) cs k)  ≅ true if and only if there exist p, s 
such that  cs ≅  p@s, p ∈ L(Plus (r1, r2))  and k(s) ≅ true.

Theorem:  

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k)  ≅ true 
if and only if 


 there exist p, s such that 
  cs ≅  p@s, p ∈ L(r)  and k(s) ≅ true



IH:  

NTS:  

(Part 1):  Suppose (match (Plus (r1, r2)) cs k)  ≅ true 
NTS:  There exist p, s such that  
          such that  cs ≅  p@s, p ∈ L(Plus (r1, r2))  and k(s) ≅ true.
true ≅ (match (Plus (r1, r2)) cs k) 

≅ (match r1 cs k) orelse (match r2 cs k) [Plus]
One or both arguments to orelse must be true. Let’s suppose the first one.
By IH for r1 there exist p, s such that  cs ≅  p@s, p ∈ L(r1)  and k(s) ≅ true.

p ∈ L(Plus (r1, r2))  by language definition for Plus.

Soundness
Inductive case:  r = Plus (r1, r2) for some r1 and r2 

For i = 1,2, for all values cs: char list, k: char list -> bool, with 
k total (match ri cs k)  ≅ true if and only if there exist p, s such 
that  cs ≅  p@s, p ∈ L(ri)  and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total 
(match (Plus (r1, r2)) cs k))  ≅ true if and only if there exist p, s 
such that  cs ≅  p@s, p ∈ L(Plus (r1, r2))  and k(s) ≅ true.

[Assumption]



IH:  

NTS:  

(Part 2):  Suppose cs ≅  p@s, p ∈ L(Plus (r1, r2))  and k(s) ≅ true. 
NTS: 

By supposition, there exist p, s such that  cs ≅  p@s, p ∈ L(Plus (r1, r2))   

  and k(s) ≅ true. By language definition for Plus, p ∈ L(r1) and/or p ∈ L(r2).


Completeness
Inductive case:  r = Plus (r1, r2) for some r1 and r2 

For i = 1,2, for all values cs: char list, k: char list -> bool, with 
k total (match ri cs k)  ≅ true if and only if there exist p, s such 
that  cs ≅  p@s, p ∈ L(ri)  and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total 
(match (Plus (r1, r2)) cs k)  ≅ true if and only if there exist p, s 
such that  cs ≅  p@s, p ∈ L(Plus (r1, r2))  and k(s) ≅ true.

(match (Plus (r1, r2)) cs k)  ≅ true

(match (Plus (r1, r2)) cs k) 
≅ (match r1 cs k) orelse (match r2 cs k) [Plus]

If p ∈ L(r1), then (match r1 cs k) ≅ true, by IH for r1. 

Otherwise, (match r1 cs k) ≅ false by termination,  p ∈ L(r2), 
and (match r2 cs k) ≅ true by IH for r2.


