
15-150

Fall 2024

Dilsun Kaynar

LECTURE 15

Regular Expressions

(using combinators as staging)

datatype regexp = Char of char
 | Zero
 | One
 | Times of regexp * regexp
 | Plus of regexp * regexp
 | Star of regexp

Representing regular expressions

a | 0 | 1 | r1 r2 | r1 + r2 | r*

Review

(* accept : regexp -> string -> bool

 REQUIRES: true
 ENSURES: (accept r s) ≅ true, if s ∈ L(r);
 (accept r s) ≅ false, otherwise.
*)

(* match : regexp -> char list -> (char list -> bool) -> bool

 REQUIRES: k is total.
 ENSURES: (match r cs k) ≅ true,
 if cs can be split as cs ≅ p@s,
 with p representing a string in L(r)
 and k(s) evaluating to true;
 (match r cs k) ≅ false, otherwise.
*)

accept and match

fun accept r s = match r (String.explode s) List.null

fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (One) cs k = k(cs)

| match (Zero) _ _ = false

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

L(a) = {a}

L(0) = {}

L(1) = {𝛆}

L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(r*) = {s1 … sn | n ≥ 0 with si ∈ L(r) for 0 ≤ i ≤ n}

Alternatively,

L(r*) = {𝛆} ∪ {s1s2 | s1∈ L(r) and s2 ∈ L(r*)}

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'

Two ways to fix the problem

• Change code

• Change specification to require that the input regular
expression be in standard form

• If Star(r) appears in the regular expression then 𝛆 is not
in the language of r.

fun match (Char(a)) cs k = (case cs of

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (Zero) _ _ =

| match (Star (r)) cs k =

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

k(cs) orelse match r cs
 (fn cs’ => not (cs = cs’)
 andalso match Star(r) cs’ k)

Or we could check cs’ gets smaller

| match (One) cs k = k(cs)

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

 false

 [] => false
| (c::cs') =>(a=c) andalso k(cs'))

| match (Star (r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

Or we could require that r be in standard form

A regular expression r is in standard form if and only if for any

subexpression Star(r') of r, L(r') does not contain the empty string.

fun match (Char(a)) cs k = (case cs of

| match (Zero) _ _ =

| match (Plus (r1,r2)) cs k = match r1 cs k orelse match r2 cs k

| match (One) cs k = k(cs)

| match (Times (r1,r2)) cs k = match r1 cs (fn cs' => match r2 cs' k)

 false

L(r*) = L(1 + r r*)

Sketch of a Proof of
Correctness

• Prove termination: show that (match r cs k) returns a
value for all arguments r, cs, k satisfying REQUIRES (We
will assume this).

• Prove soundness and completeness: (We will do this
assuming termination and write out one case).

Soundness and Completenes
(assuming termination)

 ENSURES: (match r cs k) ≅ true, if cs ≅ p@s,
 with p ∈ L(r) and k(s) ≅ true;
 (match r cs k) ≅ false, otherwise

Given termination, we can rephrase the spec as follows:

 ENSURES: (match r cs k) ≅ true if and only if there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r1, r2), Times (r1,r2), Star (r)

We are assuming termination as a lemma.

Theorem:

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k) ≅ true
if and only if

 there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

Inductive case: r = Plus (r1, r2) for some r1 and r2
IH: For i = 1,2, for all values cs: char list, k: char list -> bool, with

k total, (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

We are assuming termination as a lemma.

NTS: For all values cs: char list, k: char list -> bool, with k total,
(match (Plus (r1, r2)) cs k) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

Theorem:

For all values r: regexp, cs: char list, k: char list -> bool, with k total

(match r cs k) ≅ true
if and only if

 there exist p, s such that
 cs ≅ p@s, p ∈ L(r) and k(s) ≅ true

IH:

NTS:

(Part 1): Suppose (match (Plus (r1, r2)) cs k) ≅ true
NTS: There exist p, s such that
 such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.
true ≅ (match (Plus (r1, r2)) cs k)

≅ (match r1 cs k) orelse (match r2 cs k) [Plus]
One or both arguments to orelse must be true. Let’s suppose the first one.
By IH for r1 there exist p, s such that cs ≅ p@s, p ∈ L(r1) and k(s) ≅ true.

p ∈ L(Plus (r1, r2)) by language definition for Plus.

Soundness
Inductive case: r = Plus (r1, r2) for some r1 and r2

For i = 1,2, for all values cs: char list, k: char list -> bool, with
k total (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total
(match (Plus (r1, r2)) cs k)) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

[Assumption]

IH:

NTS:

(Part 2): Suppose cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.
NTS:

By supposition, there exist p, s such that cs ≅ p@s, p ∈ L(Plus (r1, r2))

 and k(s) ≅ true. By language definition for Plus, p ∈ L(r1) and/or p ∈ L(r2).

Completeness
Inductive case: r = Plus (r1, r2) for some r1 and r2

For i = 1,2, for all values cs: char list, k: char list -> bool, with
k total (match ri cs k) ≅ true if and only if there exist p, s such
that cs ≅ p@s, p ∈ L(ri) and k(s) ≅ true

For all values cs: char list, k: char list -> bool, with k total
(match (Plus (r1, r2)) cs k) ≅ true if and only if there exist p, s
such that cs ≅ p@s, p ∈ L(Plus (r1, r2)) and k(s) ≅ true.

(match (Plus (r1, r2)) cs k) ≅ true

(match (Plus (r1, r2)) cs k)
≅ (match r1 cs k) orelse (match r2 cs k) [Plus]

If p ∈ L(r1), then (match r1 cs k) ≅ true, by IH for r1.

Otherwise, p ∈ L(r2), (match r1 cs k) ≅ false by termination,
and (match r2 cs k) ≅ true by IH for r2.

Using combinators

true false
andalso

orelse
Space of booleans

m1 m2
Space of functions

that return booleans
THEN

 ORELSE

match : regexp -> char list -> (char list -> bool) -> bool

Idea: interpret the syntax of regular expressions as operations on matchers.

Code design
• match will take a regular expression and return a function

(matcher) of type char list -> (char list -> bool) -> bool

• Combine functions of this type using combinators

• Stage 1: Deconstructing regular expressions by pattern
matching

• Stage 2: Deal with the input string

type matcher = char list -> (char list -> bool) -> bool

match: regexp -> char list -> (char list -> bool) -> bool

Recall the staging example

fun f (x:int) : int -> int =
 let
 val z: int = horrible(x)
 in
 fn y => z + y
 end

value of horrible(x) is

bound to z in the

environment of the
returned function

Recall the staging example

fun accept (r) =
 let
 val m = match (r)
 in
 fn s: string => m ….
 end

Build a matcher from a
regexp

fun match (Char a) =
 | match Zero =
 | match One =
 | match (Times (r1, r2)) =
 | match (Plus (r1, r2)) =
 | match (Star r) =

CHECK_FOR a
 REJECT
ACCEPT

(match r1) THEN (match r2)
(match r1) ORELSE (match r2)

REPEAT (match r)

match : regexp -> char list -> (char list -> bool) -> bool

Using a combinator library with functions of this type

One can produce a matcher for a regular expression without ever seeing any input or
continuations

Continuation base cases

val REJECT : matcher =

val ACCEPT : matcher =

instantly fail

call the continuation

type matcher = char list -> (char list -> bool) -> bool

fn cs => fn k => false

fn cs => fn k => k (cs)

Continuation base cases

val REJECT : matcher =

val ACCEPT : matcher =

type matcher = char list -> (char list -> bool) -> bool

fn cs => fn k => false

fn cs => fn k => k (cs)

Suppose we had written REJECT without type annotations. What would its type be?

Suppose we had written ACCEPT without type annotations. What would its type be?

'a -> 'b -> bool

'a -> ('a -> 'b) -> 'b

Build a matcher from a
regexp

fun match (Char a) =
 | match Zero =
 | match One =
 | match (Times (r1, r2)) =
 | match (Plus (r1, r2)) =
 | match (Star r) =

CHECK_FOR a
 REJECT
ACCEPT

(match r1) THEN (match r2)
(match r1) ORELSE (match r2)

REPEAT (match r)

match : regexp -> char list -> (char list -> bool) -> bool

Using a combinator library with functions of this type

Input related

fun CHECK_FOR (a : char) : matcher =
 fn cs => fn k => (case cs of
 [] => false
 | (c::cs') => (a=c) andalso k(cs’))

(* Alternatively, using REJECT and ACCEPT *)

fun CHECK_FOR (a : char) : matcher =
 fn [] =>________
 | c::cs => if a=c then _________
 else _________

fun CHECK_FOR (a : char) : matcher =
 fn cs => fn k => (case cs of
 [] => false
 | (c::cs') => (a=c) andalso k(cs’))

val REJECT : matcher = fn cs => fn k => false

val ACCEPT : matcher = fn cs => fn k => k (cs)

(* Alternatively, using REJECT and ACCEPT *)

fun CHECK_FOR (a : char) : matcher =
 fn [] =>________
 | c::cs => if a=c then _________
 else _________

fun CHECK_FOR (a : char) : matcher =
 fn cs => fn k => (case cs of
 [] => false
 | (c::cs') => (a=c) andalso k(cs’))

REJECT []
ACCEPT cs

REJECT (c::cs)

val REJECT : matcher = fn cs => fn k => false

val ACCEPT : matcher = fn cs => fn k => k (cs)

..

.+ .*

.b.a .c

(a+b) c*

CHECK_FOR a CHECK_FOR b CHECK_FOR c

ORELSE and THEN
infixr 8 ORELSE
infixr 9 THEN

fun (m1 : matcher) ORELSE (m2 : matcher) : matcher =

fun (m1 : matcher) THEN (m2 : matcher) : matcher =

 fn cs => fn k => m1 cs k orelse m2 cs k

type matcher = char list -> (char list -> bool) -> bool

 fn cs => fn k => m1 cs (fn cs' => m2 cs' k)

Recall the match (Star (r))
fun match (Char(a)) cs k = (case cs of

| match (Star(r)) cs k = k(cs) orelse match r cs (fn cs' => match Star(r) cs' k)

| …………………………

| match (Star(r)) cs k =

(* Alternatively, … *)

let
 fun mstar cs' = k cs' orelse match r cs' mstar
in
 mstar cs
end

It avoids packing and unpacking r with Star

REPEAT
Assuming that regular expressions are in standard form

fun REPEAT (m : matcher) : matcher = fn cs => fn k =>
 let
 fun mstar cs' = __________________________
 in
 mstar cs
 end

fun match (Char a) =
 | match Zero =
 | match One =
 | match (Times (r1, r2)) =
 | match (Plus (r1, r2)) =
 | match (Star r) =

CHECK_FOR a
 REJECT
ACCEPT

(match r1) THEN (match r2)
(match r1) ORELSE (match r2)

REPEAT (match r)

REPEAT
Assuming that regular expressions are in standard form

fun REPEAT (m : matcher) : matcher = fn cs => fn k =>
 let
 fun mstar cs' = k cs' orelse m cs' mstar
 in
 mstar cs
 end

Exercise
Write evaluation steps for accept (Plus(Char(a), Char(b))

Exercise
accept (Plus(Char(a),Char(b)) “ab”

==> match (Char(a)) ORELSE match (Char(b)) [a,b] List.null

==> (CHECK_FOR a) ORELSE (CHECK_FOR b) [a,b] List.null

==> (fn cs1 => …) ORELSE (fn cs2 => …) [a,b] List.null

==> (fn cs => fn k => ((fn cs1 => …) cs k) orelse ((fn cs1 => …) cs k)) [a,b] List.null
==>….

==> ((fn cs1 => fn k => (case cs of [] => false

 | (c::cs') => (a=c) andalso k(cs’)) [a,b] List.null)
 orelse
 ((fn cs1=>fn k =>(case cs of [] => false
 | (c::cs') => (b=c) andalso k(cs’)) [a,b] List.null)

==> false

fun match (Char a) = CHECK_FOR a
 | match Zero = REJECT
 | match One = ACCEPT
 | match (Times (r1, r2)) = (match r1) THEN (match r2)
 | match (Plus (r1, r2)) = (match r1) ORELSE (match r2)
 | match (Star r) = REPEAT (match r)

Build a matcher from a
regexp

fun match (Char a) =
 | match One =
 | match Zero =
 | match (Times (r1, r2)) =
 | match (Plus (r1, r2)) =
 | match (Star r) =

CHECK_FOR a
 ACCEPT
REJECT

(match r1) THEN (match r2)
(match r1) ORELSE (match r2)

REPEAT (match r)

..

.+ .*

.b.a .c

(a+b) c*

CHECK_FOR a CHECK_FOR b CHECK_FOR c

ORELSE REPEAT

THEN

Staged matcher
fun accept (r : regexp) : string -> bool =

(* Unstaged *)

fun accept r s = match r (String.explode s) List.null

let

 val m = match r

in

 fn s => m (String.explode s) List.null

end

fun match (Char a) =
 | match Zero =
 | match One =
 | match (Times (r1, r2)) =
 | match (Plus (r1, r2)) =
 | match (Star r) =

CHECK_FOR a
 REJECT
ACCEPT

(match r1) THEN (match r2)
(match r1) ORELSE (match r2)

REPEAT (match r)

