15-150 Fall 2024

Dilsun Kaynar

LECTURE 15

Regular Expressions (using combinators as staging)

Representing regular expressions

a | 0 | 1 | $r_1 r_2$ | $r_1 + r_2$ | r^*

datatype regexp = Char **of** char | Zero | One | Times **of** regexp * regexp | Plus **of** regexp * regexp | Star **of** regexp

Review

accept and match

```
(* accept : regexp \rightarrow string \rightarrow bool
    REQUIRES: true
   ENSURES: (accept r s) \cong true, if s \in L(r);
                 (accept r s) \cong false, otherwise.*)
(* match : regexp \rightarrow char list \rightarrow (char list \rightarrow bool) \rightarrow bool
   REQUIRES: k is total.
  ENSURES: (match r cs k) \approx true,
                             if cs can be split as cs \approx p\omega s,
                             with p representing a string in L(r) and k(s) evaluating to true;
                (match r cs k) \approx false, otherwise.
```
*)

fun accept r s = match r (String.explode s) List.null

 $L(a) = {a}$ $L(0) = \{\}$ $L(1) = \{\varepsilon\}$ $L(r_1 r_2) = \{s_1 s_2 \mid s_1 \in L(r_1) \text{ and } s_2 \in L(r_2)\}\$ $L(r_1 + r_2) = \{s \mid s \in L(r_1) \text{ or } s \in L(r_2)\}\$ L(r^{*}) = {s₁ ... s_n | n ≥ 0 with s_i ∈ L(r) for 0 ≤ i ≤ n} Alternatively, L(r^{*}) = { ϵ } ∪ {S₁S₂ | S₁∈ L(r) and S₂ ∈ L(r^{*})}

fun match (Char(a)) cs $k =$ (case cs of

 $|$ $|$ = > false $|$ (c::cs') =>(a=c) **andalso** k(cs'))

| match (Zero) $=$ $=$ false

| match (One) cs $k = k(cs)$

| match (Times (r1,r2)) cs k = match r1 cs (**fn** cs' => match r2 cs' k)

| match (Plus (r1,r2)) cs k = match r1 cs k **orelse** match r2 cs k

| match (Star(r)) cs k = k(cs) **orelse** match r cs (**fn** cs' => match Star(r) cs' k)

may lead to an infinite loop

Example: match(Star(One)) ["#a"] List.null

List.null ["#a"] is false and match One cs k' will pass cs to k'

Two ways to fix the problem

- Change code
- Change specification to require that the input regular expression be in *standard form*
	- If Star(r) appears in the regular expression then ε is not in the language of r.

fun match (Char(a)) cs $k =$ (case cs of $|$ $|$ = > false $|$ (c::cs') =>(a=c) **andalso** k(cs')) | match (Zero) $_{-\; -}$ = false | match (Star (r)) cs k = k(cs) **orelse** match r cs | match (Plus (r1,r2)) cs k = match r1 cs k **orelse** match r2 cs k $(fn cs' => not (cs = cs')$ **andalso** match Star(r) cs' k) | match (One) cs $k = k(cs)$ | match (Times $(r1,r2)$) cs $k =$ match r1 cs (fn cs' => match r2 cs' k)

Or we could check cs' gets smaller

 $|$ $|$ = > false $|$ (c::cs') =>(a=c) **andalso** k(cs')) | match (Star (r)) cs k = k(cs) **orelse** match r cs (**fn** cs' => match Star(r) cs' k) **fun** match (Char(a)) cs $k =$ (case cs of | match (Zero) $_{-\; -}$ = false | match (Plus (r1,r2)) cs k = match r1 cs k **orelse** match r2 cs k | match (One) cs $k = k(cs)$ | match (Times $(r1,r2)$) cs $k =$ match r1 cs (fn cs' => match r2 cs' k)

Or we could require that r be in standard form

A regular expression r is in *standard form* if and only if for any subexpression Star(r') of r, L(r') does not contain the empty string.

 $L(r^*) = L(1 + r^*)$

Sketch of a Proof of Correctness

- **Prove termination:** show that (match r cs k) returns a value for all arguments r, cs, k satisfying REQUIRES (We will assume this).
- **Prove soundness and completeness:** (We will do this assuming termination and write out one case).

Soundness and Completenes (assuming termination)

ENSURES: (match r cs k) \approx true, if cs \approx p@s, with $p \in L(r)$ and $k(s) \cong true$; (match r cs k) \approx false, otherwise

Given termination, we can rephrase the spec as follows:

ENSURES: (match r cs k) \approx true if and only if there exist p, s such that $cs \cong p@s, p \in L(r)$ and $k(s) \cong true$

Theorem: For all values r: regexp, cs: char list, k: char list \rightarrow bool, with k total (match r cs k) \approx true if and only if there exist **p**, **s** such that $cs \cong p(0s, p \in L(r))$ and $k(s) \cong true$

We are assuming termination as a lemma.

Proof: By structural induction on r

Base cases: Zero, One, Char (a) for every a: char

Inductive cases: Plus (r₁, r₂), Times (r₁, r₂), Star (r)

Theorem: For all values r: regexp, cs: char list, k: char list \rightarrow bool, with k total (match r cs k) \approx true if and only if there exist **p**, **s** such that $cs \cong p\omega s$, $p \in L(r)$ and $k(s) \cong true$

We are assuming termination as a lemma.

Inductive case: $r =$ Plus (r_1, r_2) for some r_1 and r_2

- **IH:** For $i = 1,2$, for all values cs: char list, k: char list \rightarrow bool, with k total, (match r_i cs k) \approx true if and only if there exist p, s such that $cs \cong p\omega s$, $p \in L(r_i)$ and $k(s) \cong true$
- **NTS:** For all values cs: char list, k: char list \rightarrow bool, with k total, (match (Plus (r_1, r_2)) cs k) \approx true if and only if there exist p, s such that $cs \cong p(0s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

Soundness

Inductive case: $r =$ Plus (r_1, r_2) for some r_1 and r_2

- **IH:** For i = 1,2, for all values cs: char list, k: char list -> bool, with k total (match r_i cs k) \approx true if and only if there exist p, s such that $cs \cong p\omega s$, $p \in L(r_i)$ and $k(s) \cong true$
- **NTS:** For all values cs: char list, k: char list -> bool, with k total (match (Plus (r_1, r_2)) cs k)) \approx true if and only if there exist p, s such that $cs \cong p(0s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.
	- **(Part 1):** Suppose (match (Plus (r_1, r_2)) cs k) \approx true
		- **NTS:** There exist p, s such that such that $cs \cong p(0s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

 $true \cong (match (Plus (r₁, r₂)) cs k)$ [Assumption]

 ϵ (match r₁ cs k) **orelse** (match r₂ cs k) [Plus]

One or both arguments to **orelse** must be true. Let's suppose the first one. By IH for r_1 there exist p, s such that $cs \cong p@s$, $p \in L(r_1)$ and $k(s) \cong true$. $p \in L(Plus (r_1, r_2))$ by language definition for Plus.

Completeness

Inductive case: $r =$ Plus (r_1, r_2) for some r_1 and r_2

- **IH:** For i = 1,2, for all values cs: char list, k: char list -> bool, with k total (match r_i cs k) \approx true if and only if there exist p, s such that $cs \cong p\omega s$, $p \in L(r_i)$ and $k(s) \cong true$
- **NTS:** For all values cs: char list, k: char list -> bool, with k total (match (Plus (r_1, r_2)) cs k) \approx true if and only if there exist p, s such that $cs \cong p(0s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.
- **(Part 2):** Suppose $cs \cong p@s, p \in L(Plus (r_1, r_2))$ and $k(s) \cong true$.

NTS: (match (Plus (r_1, r_2)) cs k) \approx true

(match (Plus (r_1, r_2)) cs k)

 ϵ (match r₁ cs k) **orelse** (match r₂ cs k) [Plus]

By supposition, there exist p, s such that $cs \cong p@s, p \in L(Plus (r_1, r_2))$ and k(s) \cong true. By language definition for Plus, $p \in L(r_1)$ and/or $p \in L(r_2)$. If $p \in L(r_1)$, then (match r₁ cs k) \approx true, by IH for r₁. Otherwise, $p \in L(r_2)$, (match r₁ cs k) \cong false by termination, and (match r_2 cs k) \approx true by IH for r_2 .

Using combinators

match : regexp \rightarrow char list \rightarrow (char list \rightarrow bool) \rightarrow bool

Space of functions that return booleans

Idea: interpret the syntax of regular expressions as operations on matchers.

Code design

- match will take a regular expression and return a function (matcher) of type char list \rightarrow (char list \rightarrow bool) \rightarrow bool
- Combine functions of this type using combinators
	- Stage 1: Deconstructing regular expressions by pattern matching
	- Stage 2: Deal with the input string

type matcher $=$ char list \rightarrow (char list \rightarrow bool) \rightarrow bool

match: regexp \rightarrow char list \rightarrow (char list \rightarrow bool) \rightarrow bool

Recall the staging example

```
fun f(x:int): int \rightarrow int = let
            val z: int = horrible(x) in
            fn y = > z + y end
                                       value of horrible(x) is 
                                        bound to z in the 
                                        environment of the 
                                        returned function
```
Recall the staging example

fun accept (r) = **let** val m = match (r) **in** fn s: string \Rightarrow m **end**

Build a matcher from a regexp

match : regexp -> char list -> (char list -> bool) -> bool

Using a combinator library with functions of this type

fun match (Char a) = CHECK_FOR a | match Zero = REJECT | match One = ACCEPT | match (Times $(r1, r2)$) = (match $r1$) THEN (match $r2$) | match (Plus $(r1, r2)$) = (match $r1$) ORELSE (match $r2$) | match (Star r) = REPEAT (match r)

One can produce a matcher for a regular expression without ever seeing any input or continuations

type matcher = char list \rightarrow (char list \rightarrow bool) \rightarrow bool

Continuation base cases

val REJECT : matcher = **fn** cs => **fn** k => false

val ACCEPT : matcher = fn cs => fn k => k (cs)

type matcher = char list \rightarrow (char list \rightarrow bool) \rightarrow bool

Continuation base cases

val REJECT : matcher = **fn** cs => **fn** k => false

val ACCEPT : matcher = fn cs => fn k => k (cs)

Suppose we had written REJECT without type annotations. What would its type be? $'a \rightarrow b \rightarrow b$

Suppose we had written ACCEPT without type annotations. What would its type be?

 $'a$ -> $('a -> 'b) -> 'b$

Build a matcher from a regexp

match : regexp -> char list -> (char list -> bool) -> bool

Using a combinator library with functions of this type

fun match (Char a) = CHECK_FOR a | match Zero = REJECT | match One = ACCEPT | match (Times $(r1, r2)$) = (match $r1$) THEN (match $r2$) | match (Plus $(r1, r2)$) = (match $r1$) ORELSE (match $r2$) | match (Star r) = REPEAT (match r)

Input related

fun CHECK_FOR (a : char) : matcher = **fn** $cs \Rightarrow$ **fn** $k \Rightarrow$ (case cs of $[] = >$ false $|$ (c::cs') => (a=c) **andalso** k(cs')) **val** REJECT : matcher = fn cs => fn k => $false$

val ACCEPT : matcher = f_n cs => f_n k => k (cs)

fun CHECK_FOR (a : char) : matcher =

\nfn cs => fn k => (case cs of

\n
$$
\begin{aligned}\n &| &| => false \\
 &| & (c::cs') => (a=c) \text{ and also } k(cs'))\n \end{aligned}
$$

(* Alternatively, using REJECT and ACCEPT *)

```
fun CHECK_FOR (a : char) : matcher =
    fn [ ] =>________
     | c::cs = > if a=c then \_\_ else _________
```
val REJECT : matcher = $\mathbf{f} \mathbf{n}$ cs => $\mathbf{f} \mathbf{n}$ k => \mathbf{f} alse

val ACCEPT : matcher = $\mathbf{f} \mathbf{n}$ cs => $\mathbf{f} \mathbf{n}$ k => k (cs)

fun CHECK_FOR (a : char) : matcher =

\nfn cs => fn k => (case cs of

\n
$$
\begin{aligned}\n| &= > false \\
| &= < (c::cs') => (a=c) \text{ and also } k(cs'))\n\end{aligned}
$$

(* Alternatively, using REJECT and ACCEPT *)

```
fun CHECK_FOR (a : char) : matcher =
fn [ ] = > REJECT [ ]| c::cs \Rightarrow if a=c then ACCEPT cs
else REJECT (c::cs)
```


type matcher = char list \rightarrow (char list \rightarrow bool) \rightarrow bool

ORELSE and THEN

infixr 8 ORELSE **infixr** 9 THEN

fun (m1 : matcher) ORELSE (m2 : matcher) : matcher = **fn** cs => **fn** k => m1 cs k **orelse** m2 cs k

fun (m1 : matcher) THEN (m2 : matcher) : matcher =

fn cs => **fn** k => m1 cs (**fn** cs' => m2 cs' k)

Recall the match (Star (r))

fun match (Char(a)) cs $k =$ (case cs of

| …………………………

| match (Star(r)) cs k = k(cs) **orelse** match r cs (**fn** cs' => match Star(r) cs' k)

```
\vert match (Star(r)) cs k = let
(* Alternatively, … *)
                                fun mstar cs' = k cs' orelse match r cs' mstar 
                          in
                                mstar cs
                          end
```
It avoids packing and unpacking r with Star

REPEAT

Assuming that regular expressions are in standard form

fun REPEAT (m : matcher) : matcher = **fn** cs => **fn** k => **let fun** mstar cs' = __________________________ **in** mstar cs **end**

```
fun match (Char a) = 
CHECK_FOR a
 | match Zero =
 REJECT
 | match One = 
ACCEPT
| match (Times (r1, r2)) = (match r1) THEN (match r2)
| match (Plus (r1, r2)) = (match r1) ORELSE (match r2)
 | match (Star r) =
REPEAT (match r)
```
REPEAT

Assuming that regular expressions are in standard form

fun REPEAT (m : matcher) : matcher = **fn** cs => **fn** k => **let fun** mstar cs' = k cs' **orelse** m cs' mstar **in** mstar cs **end**

Exercise

Write evaluation steps for accept (Plus(Char(a), Char(b))

Exercise

fun match (Char a) = CHECK_FOR a $match$ Zero = REJECT | match One = ACCEPT match (Times $(r1, r2)$) = (match r1) THEN (match r2) match (Plus $(r1, r2)$) = (match r1) ORELSE (match r2) $match (Star r) = REPEAT (match r)$

accept (Plus(Char(a),Char(b)) "ab"

==> match (Char(a)) ORELSE match (Char(b)) [a,b] List.null

==> (CHECK_FOR a) ORELSE (CHECK_FOR b) [a,b] List.null

==> (**fn** cs1 => …) ORELSE (**fn** cs2 => …) [a,b] List.null

==> (**fn** cs => **fn** k => ((**fn** cs1 => …) cs k) **orelse** ((**fn** cs1 => …) cs k)) [a,b] List.null $=$ \geq

==> ((**fn** cs1 => **fn** k => (**case** cs **of** [] => false | (c::cs') => (a=c) **andalso** k(cs')) [a,b] List.null) **orelse** $((fn cs1 = > fn k = > (case cs of [] = > false$ | (c::cs') => (b=c) **andalso** k(cs')) [a,b] List.null)

Build a matcher from a regexp

fun match (Char a) = CHECK_FOR a | match One = ACCEPT | match Zero = REJECT | match (Times $(r1, r2)$) = (match $r1$) THEN (match $r2$) | match (Plus $(r1, r2)$) = (match $r1$) ORELSE (match $r2$) | match (Star r) = REPEAT (match r)


```
fun match (Char a) = 
CHECK_FOR a
 | match Zero =
 REJECT
 | match One = 
ACCEPT
| match (Times (r1, r2)) = (match r1) THEN (match r2)
| match (Plus (r1, r2)) = (match r1) ORELSE (match r2)
 | match (Star r) =
REPEAT (match r)
```
(* Unstaged *)

fun accept r s = match r (String.explode s) List.null

Staged matcher

```
fun accept (r : regexp) : string \rightarrow bool =
```

```
let
    val m = match rin
     fn s => m (String.explode s) List.null
end
```