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Recap

SML modules facilitate abstraction:

-} Specification: signature.

-} Implementation: structure.

SML modules allow us to control the “flow of information”:

Structures can hide auxiliary, implementation-specific
components, not specified by signature.

Transparent ascription: for undefined type specified in
signature, representation type chosen by structure is revealed.

Opaque ascription: for undefined type specified in signature,
representation type chosen by structure is hidden.




Recap

Type classes and functors:

Prescriptive signatures exhaustively specify a type's operations,
typically using opaque ascription.

Descriptive signatures (aka type classes) expose a type
parameter's operations, typically using transparent ascription.

-} A functor creates a structure, given a structure as an argument.

' Functor arguments are typically type classes to prevent

code redundancy.

Representation invariants:

-} Hidden consistency condition enforced by structure.




Today

A closer look at representation invariants:

-} Some code may necessarily violate the invariant.

-} |_ocalize violation and characterize with weaker invariant.

We'll explain these ideas on an example, further illustrating:

Complement with code that re-establishes stronger invariant,

when weaker invariant holds.

-} A functional implementation of balanced trees.

"Picture-guided programming” thanks to pattern matching.



Let's reconsider our dictionary

signature DICT =

sig
type key = string (x concrete x)
type 'a entry = key x 'a (x concrete )
type 'a dict (x abstract x)
val empty : 'a dict
val lookup : 'a dict —> key —> 'a option
val insert : 'a dict x 'a entry —> 'a dict

end

Last time we implemented our dictionary as a binary search tree:
structure BST : DICT = ...

-} Representation invariant: tree is sorted on key (no duplicate keys)



Let's reconsider our dictionary

Last time we implemented our dictionary as a binary search tree:
structure BST : DICT = ...

-} Representation invariant: tree is sorted on key (no duplicate keys)

Problem: insertion may result in an unbalanced tree and thus make
lookup slow.

-} Implement dictionary as a red black treel!

datatype 'a dict =
Empty
| Red of 'a dict x 'a entry x 'a dict
| Black of 'a dict * 'a entry *x 'a dict



Red Black Trees

code shown

datatype 'a dict = monochromatically
Empty

| Red of 'a dict * 'a entry % 'a dict

| Black of 'a dict * 'a entry x 'a dict

colors used for
node coloring



Red Black Trees

datatype 'a dict =
Empty
| Red of 'a dict x 'a entry x 'a dict
| Black of 'a dict * 'a entry *x 'a dict

black nodes




Red Black Trees

datatype 'a dict =

Empty
| Red of 'a dict x 'a entry x 'a dict
|/Black of 'a dict * 'a entry *x 'a dict

red nodes




Red Black Trees

datatype 'a dict =

Empty
| Red of 'a dict x 'a entry *x 'a dict
lABlack of 'a dict * 'a entry *x 'a dict

empty nodes

are black

we'll

suppress them,
moving forward
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Red Black Trees

datatype 'a dict =
Empty
| Red of 'a dict x 'a entry *x 'a dict
| Black of 'a dict * 'a entry *x 'a dict
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Red Black Tree (RBT) Invariant

or, the
number of black
nodes from the
root

e Tree Is sorted according to an entry's key.

@ A red node's children must be black. _

Black height: for any node, the number of black nodes along

any path from the node to a leaf (empty) is the same.
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Red Black Tree (RBT) Invariant

e Tree Is sorted according to an entry's key.
@ A red node's children must be black.

Black height: for any node, the number of black nodes along

any path from the node to a leaf (empty) is the same.

This representation invariant ensures that tree is roughly balanced:
depth < 2log,(|nodes| + 1)
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Let's play with a given red black tree

(For simplicity, we use integer keys and omit value part of an entry.)
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Let's play with a given red black tree

L et's insert 20:
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Let's play with a given red black tree

L et's insert 20:

color red, to
preserve black height
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Let's play with a given red black tree

Now, let's insert 19:

17



Let's play with a given red black tree

Now, let's insert 19:

let's
color it red, to preserve
black height

at the cost of a
red-red violation
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Let's play with a given red black tree

Let's fix it with a rotation and re-coloring:
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Let's play with a given red black tree

Let's fix it with a rotation and re-coloring:
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Two out of four possible rotations/re-coloring



Two out of four possible rotations/re-coloring

A

restoreleft \

(1st clause)
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Two out of four possible rotations/re-coloring

A

restoreleft \

(1st clause)
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Two out of four possible rotations/re-coloring

A A

restoreleft \

(1st clause)

/ restoreleft

(2nd clause)
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The other two possible rotations/re-coloring




The other two possible rotations/re-coloring

A

restoreReft \

(1st clause)
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The other two possible rotations/re-coloring

A

restoreReft \

(1st clause)
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The other two possible rotations/re-coloring

A A

restoreReft \

(1st clause)

/ restoreReft

(2nd clause)
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Let's look at another example

L et's insert 20:
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Let's look at another example

L et's insert 20:

color red, to
preserve black height

30



Let's look at another example

Now, let's insert 19:
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Let's look at another example

Now, let's insert 19:

at the cost of a
let's color it red-red violation
red, to preserve
black height
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Let's look at another example

Now, let's insert 19:
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Let's look at another example

Now, let's insert 19:
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Let's look at another example

Now, let's insert 19:

but, there Is a new
red-red violation

let's rotate again
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Let's look at another example

Now, let's insert 19:
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Let's look at another example

Now, let's insert 19:
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Let's look at another example

If we wanted, we could safely re-color the root:
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Let's look at another example

If we wanted, we could safely re-color the root:
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Now, let's implement our dictionary!

datatype 'a dict =
Empty
| Red of 'a dict x 'a entry *x 'a dict
| Black of 'a dict * 'a entry *x 'a dict

Red Black Tree (RBT) invariant:
e Tree is sorted according to an entry's key.
@ A red node's children must be black.

Black height: for any node, the number of black nodes along
any path from the node to a leaf (empty) is the same.

-} RBT invariant will become representation invariant of structure.
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Now, let's implement our dictionary!

Red Black Tree (RBT) invariant:
e Tree Is sorted according to an entry's key.

e A red node's children must be black.

Black height: for any node, the number of black nodes along
any path from the node to a leaf (empty) is the same.

-} RBT invariant will become representation invariant of structure.

Recall, representation invariants are hidden consistency conditions, s.t.

-} All functions declared by structure

-} may assume representation invariant for input,

-} and must assert representation invariant for output.



Now, let's implement our dictionary!

Red Black Tree (RBT) invariant:
e Tree Is sorted according to an entry's key.

e A red node's children must be black.

Black height: for any node, the number of black nodes along

any path from the node to a leaf (empty) is the same.

Our implementation will even make use of a weaker invariant, which can
be locally and temporarily violated, but is restored in the end.

Almost RBT (ARBT) invariant:

e and @ as above,

A red node's children must be black, unless for a red root node,

who may have one red child.



Specification for restoreleft

iInput may
only satisty weaker
iInvariant

(%
restoreLeft : 'a dict —> 'a dict

REQUIRES: Either d 1s a RBT
or d's root 1is black,
1ts left child 1s an ARBT,
and 1ts right child a RBT.

ENSURES: restoreLeft(d) is a RBT,
containing exactly the same entries as d,
and with the same black height as d.
*)
representation
iINnvariant established for
output
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Picture-guided implementation of restoreleft

restoreleft
(1st clause)

—

A
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Picture-guided implementation of restoreleft

restoreleft
(1st clause)

—

A

fun
restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) =
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Picture-guided implementation of restoreleft

restoreleft
(1st clause)

—

A

fun
restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) =

Red(Black(dl, x, d2), vy, Black(d3, z, d4))

46



Picture-guided implementation of restoreleft

A restoreleft

(2nd clause)

—

fun
restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) =

Red(Black(dl, x, d2), vy, Black(d3, z, d4))
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Picture-guided implementation of restoreleft

A restoreleft

(2nd clause)

—

fun
restoreLeft(Black(Red(Red(d1l, x, o

Red(Black(d1l, x, d2), vy, Black(c

|restoreLeft(Black(Red(d1l, x, Red(c

2), y, d3), z, d4))
3, z, d4))
2, y, d3)), z, d4))

48



Picture-guided implementation of restoreleft

A restoreleft

(2nd clause)

—

fun
restoreLeft(Black(Red(Red(d1l, x, o

Red(Black(d1l, x, d2), vy, Black(c
|restoreLeft(Black(Red(d1l, x, Red(c

Red(Black(dl, x, d2), vy, Black(c

2), Y,
3, z, C
2, Y, O

3, z, C

d3), z, d4))
4))
3)), z, d4))
4))
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Picture-guided implementation of restoreleft

A restoreleft

(2nd clause)

—

fun
restoreLeft(Black(Red(Red(d1l, x, o

Red(Black(d1l, x, d2), vy, Black(c
|restoreLeft(Black(Red(d1l, x, Red(c

Red(Black(dl, x, d2), vy, Black(c
|restoreLeft d = d

2), Y,
3, z, C
2, Y, O

3, z, C

d3), z, d4))
4))
3)), z, d4))
4))
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Specification for restoreRight

iInput may
only satisty weaker
iInvariant

(%
restoreRight : 'a dict —> 'a dict

REQUIRES: Either d 1s a RBT
or d's root 1s black,
1ts right child 1s an ARBT,
and 1ts left child a RBT.

ENSURES: restoreRight(d) is a RBT,
containing exactly the same entries as d,
and with the same black height as d.

* )

representation
INnvariant established for
output
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Picture-guided implementation of restoreR

A

restoreRight
(1st clause)

—
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Picture-guided implementation of restoreR

A

restoreRight
(1st clause)

—

fun
restoreRight(Black(dl, x, Red(d2, y, Red(d3, z, d4)))) =
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Picture-guided implementation of restoreR

A

restoreRight
(1st clause)

—

fun
restoreRight(Black(dl, x, Red(d2, y, Red(d3, z, d4)))) =

Red(Black(dl, x, d2), vy, Black(d3, z, d4))
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Picture-guided implementation of restoreR

ﬁ restoreRight
(2nd clause)
q

fun
restoreRight(Black(dl, x, Red(d2, y, Red(d3, z, d4)))) =

Red(Black(dl, x, d2), vy, Black(d3, z, d4))
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Picture-guided implementation of restoreR

A

fun
restoreRig

Red(Blac
| restoreR1g

restoreRight
(2nd clause)

—

nt(Black(dl, x, Red(d2, y, Red(d3, z, d4))))
k(d1, x, d2), vy, Black(d3, z, d4))

nt(Black(dl, x, Red(Red(d2, y, d3), z, d4)))
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Picture-guided implementation of restoreR

A

fun
restoreRig

Red(Blac
| restoreR1g
Red(Blac

restoreRight
(2nd clause)

—

nt(Black(dl, x, Red(d2, y, Red(d3, z, d4))))
k(d1, x, d2), vy, Black(d3, z, d4))
nt(Black(dl, x, Red(Red(d2, vy, d3), z, d4)))

k(d1, x, d2), vy, Black(d3, z, d4))
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Picture-guided implementation of restoreR

A

fun
restoreRig

Red(Blac
| restoreR1g
Red(Blac
|restoreRig

restoreRight
(2nd clause)

—

nt(Black(dl, x, Red(d2, y, Red(d3, z, d4))))
k(d1, x, d2), vy, Black(d3, z, d4))
nt(Black(dl, x, Red(Red(d2, y, d3), z, d4)))
k(d1, x, d2), vy, Black(d3, z, d4))

Nt d = d
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What else?

signature DICT =

sig
type key = string (x concrete x)
type 'a entry = key x 'a (x concrete )
type 'a dict (x abstract x)
val empty : 'a dict
val lookup : 'a dict —> key —> 'a option
val insert : 'a dict x 'a entry —> 'a dict

end

-} Note: restoreleft and restoreRight are not externally visible!

-} Let's implement insert next.
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Specification for insert

expects
representation

(x insert: 'a dict *x 'a entry —>_.'a"uictL invariant
REQUIRES: d 1s a RBT.
ENSURES: insert(d,e) is a RBT containing exactly
all the entries of d plus e,
with e replacing an entrywaf d,
1f the keys are EQUAL.

establishes
representation invariant

60



Specification for insert

(* insert: 'a dict x 'a entry —> 'a dict
REQUIRES: d 1s a RBT.
ENSURES: insert(d,e) is a RBT containing exactly
all the entries of d plus e,
with e replacing an entry of d,
1f the keys are EQUAL.
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Specification for insert

(* insert: 'a dict x 'a entry —> 'a dict
REQUIRES: d 1s a RBT.

ENSURES: insert(d,e) is a RBT conta’®
iInsert makes use

all the entries of d pl .
with e replacing an ent of a locally defined helper

if the keys are EQUAL. function

ins: 'a dict —> 'a dict
REQUIRES: d is a RBT.
ENSURES: ins(d) is a tree containing exactly
all the entries of d plus e,
with e replacing an entry of d,
1f the keys are EQUAL.
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Specification for insert

(* insert: 'a dict x 'a entry —> 'a dict

REQUIRES: d 1s a RBT.
ENSURES: insert(d,e) is a RBT containing exactly

all the entries of d plus e,
with e replacing an entry of d,
1f the keys are EQUAL.

ins: 'a dict —> 'a dict
REQUIRES: d 1is a RBT.
ENSURES: ins(d) is a tree containing exactly
all the entries of d plus e,
with e replacing an entry of d,

1f the keys are EQUAL.
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Specification for insert

(* insert: 'a dict x 'a entry —> 'a dict

REQUIRES: d 1s a RBT.
ENSURES: insert(d,e) is a RBT containing exactly

all the entries of d plus e,
with e replacing an entry of d,
1f the keys are EQUAL.

ins: 'a dict —> 'a dict
REQUIRES: d 1is a RBT. may
ENSURES: ins(d) is a tree contair temporarily violate
all the entries of d pl (onrasentation invariant
with e replacing an entry
1f the keys are EQUAL.

ins(d) has the same black height as d.

Moreover, ins(Black(t)) is a RBT
ins(Red(t)) is an ARBT. x)
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Let's Implement insert

fun insert (d, e as (k, v)) =

let re-color in
fun ins ... (% will write shortl case of a red-red violation
in at the root

(case ins d of
Red(t as (Red (_), _, _)) => Black t
| Red(t as (_, _, Red(_))) => Black t
| d' =>d')
end

-} RBT representation invariant preserved.
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Let's Implement insert

fun insert (d, e as (k, v)) =
let
fun ins ... (*x will write shortly x)
1n
(case ins d of
Red(t as (Red (_), _, _)) == Black t
| Red(t as (_, _, Red(_))) => Black t
| d' =>d")

end recall layered pattern

matching!
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL =>
| LESS =>
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =

only choice,
(case String.compare (k, k') of = otherwise we destroy
EQUAL => Black(l, e, r) black height
| LESS =>
| GREATER => recall: weaker

iInvariant still guarantees
black height
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS =>
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => Black(ins 1, e', r)
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => Black(ins 1, e', r)
| GREATER => Black(l, e', ins r))

-} s that really it?

No, we have to invoke restore functions because 1ns may return

a tree that only satisfies ARBT!
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))

-} s that really it?

No, we have to invoke restore functions because 1ns may return

a tree that only satisfies ARBT!
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))
| ins (Red(1l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL =>
| LESS =>
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))
| ins (Red(1l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Red(1l, e, r)
| LESS =>
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))
| ins (Red(1l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Red(1l, e, r)
| LESS => Red(ins 1, e', r)
| GREATER =>
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Let's Implement Ins

fun ins (Empty) = Red(Empty, e, Empty)
| ins (Black(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Black(l, e, r)
| LESS => restoreLeft(Black(ins 1, e', r))
| GREATER => restoreRight(Black(l, e', ins r)))
| ins (Red(l, e' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Red(1l, e, r)
| LESS => Red(ins 1, e', r)
| GREATER => Red(1l, e', ins r))

-} Should we call the restore functions here too?




Let's Implement Ins

| ins (Red(1l, e"' as (k',_), r)) =
(case String.compare (k, k') of
EQUAL => Red(1l, e, r)
| LESS => Red(ins 1, e', r)
| GREATER => Red(1l, e', ins r))

-} Should we call the restore functions here too?
-} No, restore functions require black roots.
-} Moreover, L and r must have black roots by the pre-condition.
-} And, we get back an RBT by the post-condition.
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FIiNnishing up

-} Look at lecture code for function Lookup.

-> Uses SML's and construct for mutually recursive functions.

-} We use opaqgue ascription for our RBT structure.

-} Encapsulates and protects representation invariant.

-} Experiment with the code to see hiding at play!
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That's all for today.



