
Modules III

15-150 
Lecture 19: November 14, 2024 

Stephanie Balzer 
Carnegie Mellon University

 1



Recap

2

SML modules facilitate abstraction:

Specification: signature.

Implementation: structure.

SML modules allow us to control the “flow of information”:

Structures can hide auxiliary, implementation-specific 
components, not specified by signature.

Transparent ascription: for undefined type specified in 
signature, representation type chosen by structure is revealed.

Opaque ascription: for undefined type specified in signature, 
representation type chosen by structure is hidden.



Recap

3

Type classes and functors:

Prescriptive signatures exhaustively specify a type's operations, 
typically using opaque ascription.

Descriptive signatures (aka type classes) expose a type 
parameter's operations, typically using transparent ascription.

A functor creates a structure, given a structure as an argument.

Functor arguments are typically type classes to prevent 
code redundancy.

Representation invariants:

Hidden consistency condition enforced by structure.



Today

4

A closer look at representation invariants:

Some code may necessarily violate the invariant.

Localize violation and characterize with weaker invariant.

Complement with code that re-establishes stronger invariant, 
when weaker invariant holds.

We'll explain these ideas on an example, further illustrating:

A functional implementation of balanced trees.

"Picture-guided programming" thanks to pattern matching.



Let's reconsider our dictionary

5

signature DICT = 
sig 
  type key = string                 (* concrete  *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = ...

Last time we implemented our dictionary as a binary search tree:

Representation invariant: tree is sorted on key (no duplicate keys)



Let's reconsider our dictionary

6

structure BST : DICT = ...

Last time we implemented our dictionary as a binary search tree:

Representation invariant: tree is sorted on key (no duplicate keys)

Problem: insertion may result in an unbalanced tree and thus make 
lookup slow.

Implement dictionary as a red black tree!

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict



Red Black Trees

7

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

code shown 
monochromatically

colors used for 
node coloring



Red Black Trees

8

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

black nodes



Red Black Trees

9

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

red nodes



Red Black Trees

10

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

empty nodes 
are black

we'll 
suppress them, 
moving forward



Red Black Trees

11

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict



Red Black Tree (RBT) Invariant

12

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

or, the 
number of black 
nodes from the 

root 



Red Black Tree (RBT) Invariant

13

This representation invariant ensures that tree is roughly balanced:

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

𝖽𝖾𝗉𝗍𝗁 ≤ 2𝗅𝗈𝗀2( |𝗇𝗈𝖽𝖾𝗌 | + 1)



Let's play with a given red black tree

14

(For simplicity, we use integer keys and omit value part of an entry.)

8

6 22

7 21 26

25

2

1 3



Let's play with a given red black tree

15

Let's insert 20:

8

6 22

7 21 26

25

2

1 3 20

what color?



Let's play with a given red black tree

16

Let's insert 20:

8

6 22

7 21 26

25

2

1 3 20

what color?
color red, to 

preserve black height



Let's play with a given red black tree

17

Now, let's insert 19:

8

6 22

7 21 26

25

2

1 3 20

19

what color?



Let's play with a given red black tree

18

Now, let's insert 19:

8

6 22

7 21 26

25

2

1 3 20

19

what color?

let's 
color it red, to preserve 

black height

at the cost of a 
red-red violation



Let's play with a given red black tree

19

8

6 22

7 21 26

25

2

1 3 20

19

Let's fix it with a rotation and re-coloring:



Let's play with a given red black tree

20

8

6 22

7 20 26

25

2

1 3

Let's fix it with a rotation and re-coloring:

19 21



Two out of four possible rotations/re-coloring

21



Two out of four possible rotations/re-coloring

22

z

y

x

1 2

3

4

restoreLeft 
(1st clause)



Two out of four possible rotations/re-coloring

23

z

y

x

1 2

3

4

z

y

x

1 2 3 4

restoreLeft 
(1st clause)



Two out of four possible rotations/re-coloring

24

z

y

x

1 2

3

4

z

y

x

1 2 3 4

z

x

y1

2 3

4

restoreLeft 
(1st clause)

restoreLeft 
(2nd clause)



The other two possible rotations/re-coloring

25



The other two possible rotations/re-coloring

26

restoreReft 
(1st clause)

x

y

z2

3 4

1



The other two possible rotations/re-coloring

27

z

y

x

1 2 3 4

restoreReft 
(1st clause)

x

y

z2

3 4

1



The other two possible rotations/re-coloring

28

z

y

x

1 2 3 4

x

z

y 4

2 3

1

restoreReft 
(1st clause)

restoreReft 
(2nd clause)

x

y

z2

3 4

1



Let's look at another example

29

8

6 25

21 292

Let's insert 20:

20

what color?



Let's look at another example

30

8

6 25

21 292

Let's insert 20:

20

what color?
color red, to 

preserve black height



Let's look at another example

31

8

6 25

21 292

Now, let's insert 19:

20

19

what color?



Let's look at another example

32

8

6 25

21 292

Now, let's insert 19:

20

19

what color?

let's color it 
red, to preserve 

black height

at the cost of a 
red-red violation



Let's look at another example

33

8

6 25

21 292

Now, let's insert 19:

20

19

z

y

x

1 2

3

4

z

y

x

1 2 3 4



Let's look at another example

34

8

6 25

21

292

Now, let's insert 19:

20

19

z

y

x

1 2

3

4

z

y

x

1 2 3 4



Let's look at another example

35

8

6 25

21

292

Now, let's insert 19:

20

19

but, there is a new 
red-red violation

let's rotate again



Let's look at another example

36

8

6 25

21

292

Now, let's insert 19:

20

19

z

y

x

1 2 3 4

x

z

y 4

2 3

1



Let's look at another example

37

20

8 25

296

Now, let's insert 19:

2119
z

y

x

1 2 3 4

x

z

y 4

2 3

1

2



Let's look at another example

38

20

8 25

296

If we wanted, we could safely re-color the root:

2119

2



Let's look at another example

39

20

8 25

296

If we wanted, we could safely re-color the root:

2119

2



Now, let's implement our dictionary!

40

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

Red Black Tree (RBT) invariant:

RBT invariant will become representation invariant of structure.



Now, let's implement our dictionary!

41

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

Red Black Tree (RBT) invariant:

RBT invariant will become representation invariant of structure.

Recall, representation invariants are hidden consistency conditions, s.t.

All functions declared by structure

may assume representation invariant for input,

and must assert representation invariant for output.



Now, let's implement our dictionary!

42

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

Red Black Tree (RBT) invariant:

Our implementation will even make use of a weaker invariant, which can 
be locally and temporarily violated, but is restored in the end.

A and C as above, 

A red node's children must be black, unless for a red root node, 
who may have one red child.B'

Almost RBT (ARBT) invariant:



Specification for restoreLeft

43

(* 
  restoreLeft : 'a dict -> 'a dict 

  REQUIRES: Either d is a RBT 
            or d's root is black, 
            its left child is an ARBT,  
            and its right child a RBT. 

  ENSURES:  restoreLeft(d) is a RBT, 
            containing exactly the same entries as d, 
            and with the same black height as d. 
 *)

input may 
only satisfy weaker 

invariant

representation 
invariant established for 

output



Picture-guided implementation of restoreLeft 

44

z

y

x

1 2

3

4

z

y

x

1 2 3 4

restoreLeft 
(1st clause)

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d



Picture-guided implementation of restoreLeft 

45

z

y

x

1 2

3

4

z

y

x

1 2 3 4

restoreLeft 
(1st clause)

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d



Picture-guided implementation of restoreLeft 

46

z

y

x

1 2

3

4

z

y

x

1 2 3 4

restoreLeft 
(1st clause)

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d



Picture-guided implementation of restoreLeft 

47

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d

z

y

x

1 2 3 4

z

x

y1

2 3

4 restoreLeft 
(2nd clause)



Picture-guided implementation of restoreLeft 

48

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d

z

y

x

1 2 3 4

z

x

y1

2 3

4 restoreLeft 
(2nd clause)



Picture-guided implementation of restoreLeft 

49

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d

z

y

x

1 2 3 4

z

x

y1

2 3

4 restoreLeft 
(2nd clause)



Picture-guided implementation of restoreLeft 

50

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d

z

y

x

1 2 3 4

z

x

y1

2 3

4 restoreLeft 
(2nd clause)



Specification for restoreRight

51

(* 
  restoreRight : 'a dict -> 'a dict 

  REQUIRES: Either d is a RBT 
            or d's root is black, 
            its right child is an ARBT,  
            and its left child a RBT. 

  ENSURES:  restoreRight(d) is a RBT, 
            containing exactly the same entries as d, 
            and with the same black height as d. 
 *)

input may 
only satisfy weaker 

invariant

representation 
invariant established for 

output



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

52

z

y

x

1 2 3 4

x

y

z2

3 4

1 restoreRight 
(1st clause)



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

53

z

y

x

1 2 3 4

x

y

z2

3 4

1 restoreRight 
(1st clause)



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

54

z

y

x

1 2 3 4

x

y

z2

3 4

1 restoreRight 
(1st clause)



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

55

z

y

x

1 2 3 4

x

z

y 4

2 3

1
restoreRight 
(2nd clause)



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

56

z

y

x

1 2 3 4

x

z

y 4

2 3

1
restoreRight 
(2nd clause)



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

57

z

y

x

1 2 3 4

x

z

y 4

2 3

1
restoreRight 
(2nd clause)



Picture-guided implementation of restoreR 

58

fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

z

y

x

1 2 3 4

x

z

y 4

2 3

1
restoreRight 
(2nd clause)



What else?

59

signature DICT = 
sig 
  type key = string                 (* concrete  *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Note: restoreLeft and restoreRight are not externally visible!

Let's implement insert next.



Specification for insert

60

(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

expects 
representation 

invariant

establishes 
representation invariant



Specification for insert

61

(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)



Specification for insert

62

(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

insert makes use 
of a locally defined helper 

function



Specification for insert

63

(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)



Specification for insert

64

(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

may 
temporarily violate 

representation invariant



Let's implement insert

65

fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end

re-color in 
case of a red-red violation 

at the root

RBT representation invariant preserved.



Let's implement insert

66

fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end recall layered pattern 

matching!



Let's implement ins

67

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

68

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

only choice, 
otherwise we destroy 

black height

recall: weaker 
invariant still guarantees 

black height



Let's implement ins

69

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

70

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

71

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

Is that really it?

No, we have to invoke restore functions because ins may return 
a tree that only satisfies ARBT!



Let's implement ins

72

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

Is that really it?

No, we have to invoke restore functions because ins may return 
a tree that only satisfies ARBT!



Let's implement ins

73

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

74

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

75

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

76

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))



Let's implement ins

77

fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => restoreLeft(Black(ins l, e', r)) 
    | GREATER => restoreRight(Black(l, e', ins r))) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

Should we call the restore functions here too?



Let's implement ins

78

  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

Should we call the restore functions here too?

No, restore functions require black roots.

Moreover, l and r must have black roots by the pre-condition.

And, we get back an RBT by the post-condition.



Finishing up

79

Look at lecture code for function lookup.

Uses SML's and construct for mutually recursive functions.

We use opaque ascription for our RBT structure.

Encapsulates and protects representation invariant.

Experiment with the code to see hiding at play!



That's all for today.

80


