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Parallelism

Cost Semantics and Sequences




today

• Parallelism and functional style


• Cost semantics


• Brent’s Theorem and speed-ups


• Sequences: an abstract type with                  
efficient parallel operations



parallelism
Exploiting multiple processors


Evaluating independent code simultaneously


• low-level implementation


• scheduling work onto processors, tell each 
processor to do at each time step


• high-level planning


• designing code abstractly


• without baking in a schedule



our approach
Deal with scheduling implicitly


•Programmer specifies what to do


•Compiler determines how to schedule the work

Our thesis: this approach to parallelism will prevail..

(and 15-210 builds on these ideas...)



functional benefits
• No side effects, so…                             

evaluation order doesn’t affect correctness


• Can build abstract types that support        
efficient parallel-friendly operations


• Can use work and span to predict          
potential for parallel speed-up


• Work and span are independent of 
scheduling details 



caveat
• In practice, it’s hard to achieve speed-up 


• Current language implementations       
don’t make it easy


• Problems include:


• scheduling overhead


• locality of data (cache problems)


• runtime sensitive to scheduling choices



what can programmers do?

• Lists bake in sequential evaluation. Trees 
don’t.


• Today, we introduce sequences that have a 
linear structure like lists but offer 
parallelism of trees.


• Reason about time complexity using work 
and span



Cost semantics
We already introduced work and span


• Work estimates the sequential running time      
on a single processor 


• Span takes account of data dependency,     
estimates the parallel running time                 
with unlimited processors



Cost semantics
• We showed how to calculate work and span  for 

recursive functions with recurrence relations


• Now we introduce cost graphs,                            
another tool to deal with work and span 


• Cost graphs also allow us to talk about schedules...


• ... and the potential for speed-up



Cost graphs
A cost graph is a series-parallel graph


• a directed acyclic graph, with source 
and sink


• nodes represent units of work


• edges represent data dependencies


• branching indicates potential 
parallelism

(constant time)



series-parallel graphs
.

a single node

G2
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composition
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.
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parallel 

composition

(n-ary parallelism allowed)



example
(1+2) * 3

(Edges are implicitly directed downward)

｛(1+2) ｝(1+2) * 3

... . .

..1 2 3



work and span

• The work is the number of nodes 


• The span is the length of the longest path 
from source to sink

of a cost graph

span(G)  ≤  work(G)



= span G1 + span G2 + c

sequential code … add the span

= max(span G1 , span G2) + c

parallel code … max the span

span

span
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span G2

.

.
G1

parallel 

composition



sources and sinks
• Sometimes we omit them from pictures


• No loss of generality 


• easy to put them in


• No difference, asymptotically


• a single node represents an additive 
constant amount of work and span


• Allows easier explanation of execution



example
(1+2) * 3

work = 7 span = 5

... . .

.. 2 31



Brent’s Theorem
An expression with work w and span s 
can be evaluated on a p-processor machine 
in time Ω(max(w/p, s)).

Optimal schedule using p processors:

        Do (up to) p units of work each round

Total work to do is w 

Needs at least s steps



scheduling
• p pebbles, with p the number of processors


• Start with one pebble on cost graph G’s 
source


• Putting a pebble on a node visits the node


• At each time step, pick up all pebbles and put 
at most p on the graph, no more than one per 
node. Can only put a pebble on an unvisited 
model all of whose ancestors have been 
visited.
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next
• Exploiting parallelism in ML


• A signature for parallel collections


• Cost analysis of implementations


• Cost benefits of parallel algorithm design



sequences
signature SEQ =
sig
   type 'a seq  (* abstract *)
   exception Range of string
   val empty : unit ->'a seq
   val tabulate : (int -> 'a) -> int -> 'a seq
   val length : 'a seq -> int
   val nth : 'a seq -> int -> 'a
   val map : ('a -> 'b) -> 'a seq ->'b seq
   val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
   val mapreduce : ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
   val filter: ('a -> bool) -> 'a seq -> 'a seq
end



implementations
• Many ways to implement the signature


• lists, balanced trees, arrays, ...


• For each one, can give a cost analysis


• There may be implementation trade-offs


• arrays: item access is O(1)


• trees:  item access is O(log n)



Seq :SEQ
• An abstract parameterized type of sequences


• Think of a sequence as a parallel collection


• With parallel-friendly operations


• constant-time access to items


• efficient map and reduce



sequence values

• We use math notation like

⟨v0, ..., vn-1⟩

⟨ ⟩

for sequence values

is a value of type int seq⟨1, 2, 4, 8⟩

A value of type t seq 

is a sequence of values of type t

Reminder:  

A client would 

write t Seq.seq



equivalence
• Two sequence values are extensionally 

equivalent iff they have the same length                           
and have extensionally equivalent items at all 
positions

⟨v0, ..., vn-1⟩ ⟨u0, ..., um-1⟩

if and only if
n = m and for all i, vi ≅ ui

≅



operations
For our given structure Seq : SEQ, we specify          


• the (extensional) behavior 


• the cost semantics


of each operation

Other implementations of SEQ may achieve                   
different work and span profiles

Learn to choose wisely!



• Type can be t seq for any type t

• Cost graph                        

empty () returns ⟨⟩

.

.
work and span O(1)



• If Gi is cost graph for f(i),                         the 
cost graph for tabulate f n is

If f is O(1),  the work for tabulate f n is O(n)

If f is O(1),  the span for tabulate f n is O(1)

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩

.

.
G0 G1 …      Gn-1



examples

• tabulate (fn x:int => x) 6

• tabulate (fn x:int => x*x) 6
⟨0, 1, 2, 3, 4, 5⟩

⟨0, 1, 4, 9, 16, 25⟩

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩



• Work is O(1)


• Span is O(1)


• Cost graph is
.

.

nth ⟨v0, ..., vn-1⟩  i ≅ vi                    if 0 ≤ i < n          
                            ≅ raise Range     otherwise

Contrast:   List.nth 

      work, span O(n)



• Work is O(1)


• Span is O(1)


• Cost graph is .
.

Contrast:   List.length [v0,…,vn-1] ≅ n

            work, span O(n)

length ⟨v0, ..., vn-1⟩ ≅ n



• If f is constant time, map f ⟨v0, ..., vn-1⟩ has 
work O(n), span O(1) 

(contrast with List.map)

 map f ⟨v0, ..., vn-1⟩ has cost graph

map f ⟨v0, ..., vn-1⟩ ≅ ⟨f v0, ..., f vn-1⟩

.

.
G0 G1 …      Gn-1

where each Gi 

is cost graph for f vi



reduce is used to combine a sequence 


reduce : ('a * 'a -> 'a) -> 'a ->'a seq -> 'a 


    Compare it with


   

reduce



reduce

where g is an associative function with a base value z 
where we represent g with the infix operator 


• g : t * t -> t is associative iff for all x1,x2,x3:t  


                  g(x1, g(x2, x3)) = g(g(x1, x2), x3)


• Sometimes we will assume that z is an identity 
element for g, i.e. for all x:t,   g(x,z) = x 

reduce g z ⟨v0, ..., vn-1⟩

 ('a * 'a -> 'a) -> 'a ->'a seq -> 'a 

.≅ v0 v1 . vn-1 . z... 

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1... 
reduce g z ⟨⟩ ≅ z



v0

.
v1 v2

.
v3 vn-1

.
z

. .

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1 . z... 

work is O(n)

span is O(log n)

assuming g is O(1)



mapreduce f z g ⟨v0, ..., vn⟩ ≅

has work O(n)

and span O(log n)

(f v0) . . (f vn-1) . z…

assuming f and g are O(1)



filter p s ≅ s'

Assuming p is O(1), has work O(n)

and span O(log n)

with s' a sequence consisting of all xi in s such that 

p(xi) ≅ true. The order of retained elements in s' is the 

same as in s



mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 

val singleton : 'a -> 'a seq   (* gives a single element    
                   sequence *)

val append : 'a seq  * 'a seq -> 'a seq  

fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
           let val nothing  = empty ()
                fun keep x = if p (x) then singleton x
                                     else nothing
           in
             
           end

________________ mapreduce keep nothing append



fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
           let val nothing  = empty ()
                fun keep x = if p (x) then singleton x
                                     else nothing
           in
             
           end

S(n) = O(log n), W(n) = O(n log n) assuming append has span O(1) 

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 

val singleton : 'a -> 'a seq   (* gives a single element    
                   sequence *)

val append : 'a seq  * 'a seq -> 'a seq  

 mapreduce keep nothing append



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

________________

________________



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

________________

using map

Seq.reduce (op +) 0 s



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

(Seq.map sum class)

Seq.reduce (op +) 0 s



analysis

count s = sum ⟨t0, ..., tm-1⟩ 
Let ti = sum rowi

work is O(mn)

span  is O(log n+ log m)

sum ⟨t0, ..., tm-1⟩

log2 n

log2 m

cost graph of

sum (map sum s)

sum row1

.

.
... sum rowm-1

m rows of length n each



Alternatively

fun sum (s : int Seq.seq) : int =  Seq.reduce (op +) 0 s

fun count (class: room) : int = 
                      Seq.mapreduce                                

type row = int Seq.seq 
type room = row Seq.seq

using mapreduce

_____________sum 0 (op +) class

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 


