15-150 Fall 2024
Lecture 18

Parallelism

Cost Semantics and Sequences

today

® Parallelism and functional style
® Cost semantics
® Brent’s Theorem and speed-ups

® Sequences: an abstract type with
efficient parallel operations

parallelism

Exploiting multiple processors

Evaluating independent code simultaneously

® |ow-level implementation

® scheduling work onto processors, tell each
processor to do at each time step

® high-level planning
® desighing code abstractly

® without baking in a schedule

our approach

Deal with scheduling implicitly
eProgrammer specifies what to do

eCompiler determines how to schedule the work

Our thesis: this approach to parallelism will prevail..

(and 15-210 builds on these ideas...)

functional benefits

® No side effects, so...
evaluation order doesn’t affect correctness

® Can build abstract types that support
efficient parallel-friendly operations

® Can use work and span to predict
potential for parallel speed-up

® \Work and span are independent of
scheduling details

caveat

® |n practice, it’s hard to achieve speed-up

® Current language implementations
don’t make it easy

® Problems include:
® scheduling overhead
® |ocality of data (cache problems)

® runtime sensitive to scheduling choices

what can programmers do?

® |ists bake in sequential evaluation. Trees
don’t.

® Today, we introduce sequences that have a
linear structure like lists but offer
parallelism of trees.

® Reason about time complexity using work
and span

Cost semantics

We already introduced work and span

® Work estimates the sequential running time
on a single processor

® Span takes account of data dependency,
estimates the parallel running time
with unlimited processors

Cost semantics

® \We showed how to calculate work and span for
recursive functions with recurrence relations

® Now we introduce cost graphs,
another tool to deal with work and span

® Cost graphs also allow us to talk about schedules...

® ... and the potential for speed-up

Cost graphs

A cost graph is a series-parallel graph

® a directed acyclic graph, with source
and sink (constant time)

® nodes represent units of work
® edges represent data dependencies

® branching indicates potential
parallelism

series-parallel graphs

a single node

i N\

c \/

@
sequential

. arallel
composition P

composition

(n-ary parallelism allowed)

example

(1+2) * 3

(Edges are implicitly directed downward)

(1+2) * 3

work and span

of a cost graph

® The work is the number of nodes

® The span is the length of the longest path
from source to sink

span(G) < work(G)

span

G1
span l =span Gy + span Gz + C
G2
sequential code ... add the span
>pan G1\“/Gz = max(span G1, span G) + c
. parallel code ... max the span
parallel

composition

sources and sinks

® Sometimes we omit them from pictures
® No loss of generality

® casy to put them in
® No difference, asymptotically

® 3 single node represents an additive
constant amount of work and span

® Allows easier explanation of execution

example

(1+2) * 3

AN,
\//

work =7

1le

span =5

Brent’s Theorem

An expression with work w and span s
can be evaluated on a p-processor machine
in time Q(max(w/p, s)).

Optimal schedule using p processors:

Do (up to) p units of work each round
Total workto do isw

Needs at least s steps

scheduling

p pebbles, with p the number of processors

Start with one pebble on cost graph G’s
source

Putting a pebble on a node visits the node

At each time step, pick up all pebbles and put
at most p on the graph, no more than one per
node. Can only put a pebble on an unvisited
model all of whose ancestors have been
visited.

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1| a (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN
-

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

This could be a cost graph for (1+2) * (3+4)

Processors

1 2

1 (idle)

time

o O A W DN

(idle) f

work = 10
span= 5

time

Processors

1 2

1 (idle)

o O A W DN

(idle)

next

® Exploiting parallelism in ML
® A signature for parallel collections
® Cost analysis of implementations

® Cost benefits of parallel algorithm design

sequences

signature SEQ =
Sig
type 'a seq (* abstract)
exception Range of string
val empty : unit ->'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val length : 'a seq -> int
val nth : 'a seq ->int->'a
val map : ('a -> 'b) -> 'a seq ->'b seq
val reduce : ('a* 'a->'a) ->'a->'aseq->'a
val mapreduce : (a->b)>b->(b*b->'b)->"'aseq->'b
val filter: (‘a -> bool) -> 'a seq -> 'a seq
end

implementations

® Many ways to implement the signature
® |ists, balanced trees, arrays, ...

® For each one, can give a cost analysis

® There may be implementation trade-offs
® arrays: item access is O(1)

® trees: item access is O(log n)

Seq :SEQ

® An abstract parameterized type of sequences
® Think of a sequence as a parallel collection
® \Vith parallel-friendly operations

® constant-time access to items

® efficient map and reduce

sequence values

A value of type t seq
IS a sequence of values of type t

® \We use math notation like

Reminder:
VO, ..., Vn-1) A client would
O write t Seq.seq

for sequence values

(1, 2,4, 8) is a value of type int seq

equivalence

® Two sequence values are extensionally
equivalent iff they have the same length
and have extensionally equivalent items at all
positions
{Vo, ..., Vn-1) = <{Uo, ..., Um-1,
if and only if

n=m and for all i, vi = u;

operations

For our given structure Seq : SEQ, we specify
® the (extensional) behavior
® the cost semantics

of each operation

Other implementations of SEQ may achieve
different work and span profiles

Learn to choose wisely!

empty () returns ¢}

® Type can be t seq for any type t

® Cost graph

work and span O(1)

tabulate fn = <t 0, ..., f(n-1))

® |f G;is cost graph for (i), the
cost graph for tabulate f nis

TN

N,

If fis O(1), the work for tabulate f n is O(n)
If fis O(1), the span for tabulate f nis O(1)

tabulate fn = <t 0, ..., f(n-1))
examples

e tabulate (fn x:iint=>x)6 <0, 1,2, 3,4, 5)
¢ tabulate (fn x:iint=>x*x) 6 <0, 1, 4, 9, 16, 25)

nth <{vo, ..., Vn-1) |

I

Vi fO<i<n
= raise Range otherwise

® Work is O(1)
® Spanis O(1)

® Cost graph is

Contrast: List.nth
work, span O(n)

length {vo, ..., Vn-1) = N

® Work is O(1)
® Spanis O(1)

® Cost graph is

Contrast: List.length [vo,...,vn-1] = n
work, span O(n)

map f (vo, ..., Vn-1) = I Vo, ..., T Vn-1)

map f {(vo, ..., Vn-1) has cost graph

//\ where each G

Go Gi ... Gna is cost graph for f v;
\\/

® |f f is constant time, map f (vo, ..., Vn-1) has
work O(n), span O(1)

(contrast with List.map)

reduce

reduce is used to combine a sequence

reduce : ('la * 'a->'a) -> 'a->'a seq -> 'a

Compare it with

reduce
('a*'a->'a)->'a->'aseq->'a

reduce g z<Vo, ..., Vn-1) = Vo ® V1 ... O Vn1() Z

where g is an associative function with a base value z
where we represent g with the infix operator @

® o:t*t->tisassociative iff for all x1,x2,x3:t

g(x1, g(x2, x3)) = glg(x1, X2), X3)

® Sometimes we will assume that z is an identity

element for g, i.e. for all x:t, g(x,z) =x
reduce g z<Vo, ..., Vn-1) = Vo (@ V1 ... () Vn-1

I

reduce g z {) Z

reduce g z<Vo, ..., Vn-1) = Vo (@ V1 ... O Vn1() Z

assuming g is O(1) \@/

work is O(n)

span is O(log n)

mapreduce fz g (vo, ..., V) = (Vo) @ - @(f Vn-1)® Z

assuming f and g are O(1)
has work O(n)
and span O(log n)

filerps = s

with S' a sequence consisting of all Xjin S such that
p(Xi) = true. The order of retained elements in ' is the
same asin s

Assuming p is O(1), has work O(n)

and span O(log n)

mapreduce fzg vy, .., Vo =(fvi)g...g(fvn) gz

val singleton : 'a ->'a seq (" gives a single element
seguence *)
val append : 'a seq * 'a seq -> 'a seq

fun filter (p: 'a -=> bool) : 'a seq -> 'a seq =
let val nothing = empty ()
fun keep x = if p (x) then singleton x
else nothing
in
mapreduce keep nothing append
end

mapreduce fzg vy, .., Vo =(fvi)g...g(fvn) gz

val singleton : 'a ->'a seq (" gives a single element
seguence *)
val append : 'a seq * 'a seq -> 'a seq

fun filter (p: 'a -=> bool) : 'a seq -> 'a seq =
let val nothing = empty ()
fun keep x = if p (x) then singleton x
else nothing
in
mapreduce keep nothing append
end

S(n) = O(log n), W(n) = O(n log n) assuming append has span O(1)

Example: count

fun sum (s : int Seq.seq) : int =

type row = int Seq.seq
type room = row Seq.seqg

fun count (class: room) : int = sum

Example: count

using map

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

type row = int Seq.seq
type room = row Seq.seqg

fun count (class: room) : int = sum

Example: count

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

type row = int Seq.seq
type room = row Seq.seqg

fun count (class: room) : int = sum (Seqg.map sum class)

analysis

Let i = sSUmM row; m rows of length n each

—

count s = sum (lo, ..., tIm-1)

cost graph of /
sum (map sum s)

A
logo m

v

work is O(mn)
span is O(log n+ log m)

mapreduce fzg <v1, .., vap =(fvi)g...g(fvn) gz

AIternativeTy

using mapreduce

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s
type row = int Seq.seq
type room = row Seqg.seq

fun count (class: room) : int =
Seq.mapreduce sum O (op +) class

