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1 Topics

• Functional Programming and Parallelism

• Cost Semantics

• Sequences

2 Introduction

2.1 The Big Picture

Before we start, let’s think about the big picture of parallelism. Parallelism is relevant to situations
where many things can be done at once—e.g., using the multiple cores in multi-processor machine, or
the many machines in a cluster. Overall, the goal of parallel programming is to describe computation
in a way that allows us to exploit the potential for doing work on multiple processors simultaneously.
At the lowest level, this means deciding, at each step, what to do on each processor. These decisions
are constrained by the data dependencies in a problem or a program. For example, evaluating
(1 + 2) * (3 + 4) takes three units of work, one for each arithmetic operation, but you cannot
do the middle multiplication until you have done the two additions. So even with three processors,
you cannot perform the calculation in fewer than two time-steps. That is, the expression has work
3 but span 2.

Now, one way to do parallel programming is to say explicitly what to do on each processor at
each time-step — by giving what is called a schedule. There are languages that let you write out
a schedule explicitly, but there are disadvantages to this approach. For example, when you buy a
new machine, you may need to adapt your program that was written for (say) 4 processors to the
new machine’s larger number of processors, maybe 16, or 64, or a million. Moreover, it is tedious
and boring to think about assigning work to processors, when what you really want think about is
the problem you are trying to solve. After all, we might reasonably expect the scheduling details
to be something a smart compiler can best figure out, whereas it is the programmer’s job to design
an algorithm that best solves the overall problem.

∗Adapted from documents by Stephen Brookes and Dan Licata.
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2.2 Our Approach

The approach to parallelism that we advocate in this class (and is further developed in 15-210) is
based on raising the level of abstraction at which you can think, by separating algorithm specification
(and work/span analysis) from scheduling. You, the programmer, worry about specifying what work
there is to do, and how much potential for parallelism there is (as measured by span complexity);
the compiler should take care of scheduling the work onto processors.

Three points to facilitate this separation of concerns:

1. The code you write to implement an algorithm must not “bake in” a schedule; design your
code to avoid unnecessary data dependencies.

2. You must be able to reason about the evaluation behavior of your code independent of the
schedule.

3. You must be able to reason about the time complexity of your code independent of the
schedule.

Functional Programming

Our central tool for avoiding schedule-baking is functional programming. In pure functional pro-
gramming, evaluation has no side effects. This purity limits the dependence of one chunk of work
on another to whatever is inherent to the data-flow within the program. All that matters from a
prior evaluation is the value returned. When there is little or no data dependency, as often is the
case with bulk operations on large chunks of data, one can do work in parallel without specifying
evaluation order, and be sure to get the same results no matter what evaluation order occurs.

Functional programming therefore also allows us to reason about code behavior independent
of schedule. Purely functional programs are said to exhibit deterministic parallelism, meaning
the extensional behavior of a program does not depend on whatever scheduling decisions occurred
during evaluation. This is true because pure functional programs have well-defined mathematical
meanings, independent of any implementation.

Analogous statements are possible but not as straightforward when programming imperatively,
where function calls might influence one another via memory updates or other side effects.

Cost Graphs

Our central tool for reasoning about time complexity, independent of the schedule, is a cost seman-
tics. This involves the asymptotic work and span analyses that we have been doing all semester.
These analyses let us reason abstractly, yet actually imply some concrete constraints on how well
any potential scheduler might be able to divide work among processors.

As we will see, work and span analyses can be phrased in terms of cost graphs, which can be
used to reason abstractly about the running time of a program independent of the schedule. It
turns out that cost graphs are actually also useful data structures for creating schedules.

Sequences

Many modern algorithms perform bulk operations on potentially very large collections of data. Here
higher-order functional programming creates a particularly nice opportunity for parallelism.
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In many practical applications, one wants to combine large amounts of data using some binary
operation (such as +). When such a binary operation is associative, the order of pairwise combi-
nations is irrelevant. By representing the data as an abstract type with efficient bulk operations,
one can write code that avoids being overly specific about evaluation order. Lists are not very well
suited for this task, because the built-in combination operations on lists (foldl and foldr) bake
in a sequential evaluation order. For trees one can define “tree folding” operations as higher-order
functions in which the left and right subtrees get combined independently, and as we saw earlier
the tree fold operations have better span than the list fold operations. But we can do even better
than trees.

We will be discussing sequences frequently in the next few lectures. We will use the (math)
notation <x1,..., xn> for a sequence of length n containing the items x1 through xn. Our im-
plementation of sequences includes many familiar operations, including a map operation. This is a
higher-order function similar in spirit to List.map, with the following equivalence specification 1:

map f <x1, x2, . . ., xn> ∼= <f x1, f x2, . . ., f xn>

In terms of evaluation,

map f <x1, x2, ..., xn> =⇒ <v1,. . ., vn>

if f x1 =⇒ v1, f x2 =⇒ v2, ..., f xn =⇒ vn.

This description also implicitly specifies the data dependencies, namely none:
To calculate map f <x1, ..., xn>, one needs to calculate f x1, . . . , f xn. There are no data
dependencies, assuming f is purely functional. Moreover, we did not specify any particular schedule
or evaluation strategy. This suggests plenty of opportunity for parallel evaluation.

(There is one subtlety when the function f is not total. One possibility is to specify more
generally an evaluation rule for a sequence <e1, e2, ..., en> when the constituent expressions
e1, . . ., ek are not necessarily valuable. One may evaluate the constituent expressions in parallel,
but if one or more fails to return a value, one might choose the leftmost such behavior as the overall
behavior of evaluating the sequence.)

2.3 Caveat Programmer

There is an important caveat: even with today’s technology, this methodology based on separation
of concerns — you design the algorithm, the compiler schedules it — is not always going to deliver
good performance. It is difficult to get parallel programs to run quickly in practice, and many
smart researchers are actively working on this problem. Some of the issues include: overhead (it
takes time to distribute tasks to processors, notice when they’ve completed, etc.); spatial locality
(we want to ensure that needed data can be accessed quickly); and schedule-dependence (the choice
of schedule can sometimes make an asymptotic difference in time or space usage).

There are some implementations of functional languages that address these issues, to vary-
ing degrees of success: Manticore, MultiMLton, and PolyML are implementations of SML that
have a multi-threaded run-time, so you can run in parallel 15-150’s sequence code. NESL is a
research language by Guy Blelloch (who designed 15-210), and that’s where a lot of the ideas on
parallelism that we discuss in this class originated; there is a real implementation of NESL and
some benchmarks with actual speedups on multiple processors. GHC, a Haskell compiler, imple-
ments many of the same ideas, and you can get some real speedups there too. Scala is a hybrid
functional/object-oriented language with some demonstrated potential for parallel performance.

1We extend the notion of extensional equivalence to sequences as follows: two sequence values are extensionally
equivalent iff they have the same length and contain extensionally equivalent values at corresponding positions.
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3 Cost Semantics

A cost graph is a type of series-parallel graph. A series-parallel graph is a directed graph with a
designated source node (no edges in) and a designated sink node (no edges out), formed by two
operations called sequential and parallel composition. The particular series-parallel graphs we need
are of the following form (there are three graphs in this diagram):

.

. G1 / \

| G1 G2

G2 \ /

.

(Notation: We always draw a cost graph so that edges point down the page. Consequently, we
omit drawing arrows on the edges.)

1. The first graph is a graph with one node (the node is both source and sink in that graph). It
represents no computation.

2. The second graph is the sequential combination of graphs G1 and G2, formed by putting an
edge from the sink of G1 to the source of G2; its source is the source of G1 and its sink is the
sink of G2. As a special case,

.

|

.

represents a single reduction or evaluation in a program.

3. The third graph is the parallel combination of graphs G1 and G2, formed by adding a new
source and sink, and adding edges from the new source to the sources of G1 and G2, and from
the sinks of G1 and G2 to the new sink.

We also use n-ary versions of sequential and parallel composition for cost graphs. We draw an
n-ary parallel combination of graphs G1 ... Gn as

.

/ | \

G1 G2 ... Gn

\ | /

.

Again, there is a new source and a new sink, with edges from the new source to the sources of the
Gi, and edges from the sinks of the Gi to the new sink.

The work of a cost graph G is the number of nodes in G. The span of G is the number of nodes
on the longest path from the source of G to the sink of G, which we may refer to as the critical path.
We will associate a cost graph with each closed program, and define the work/span of a program
to be the work/span of its cost graph.

These graphs model fork-join parallelism: a computation forks into various subcomputations
that are run in parallel, but these come back together at a well-defined join point. These forks
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and joins are well-nested, in the sense that the join associated with a later fork precedes the join
associated with an earlier fork.

For example, the expression

(1 + 2)

has cost graph

.

/ \

. .

\ /

.

|

.

This says that the summands 1 and 2 are evaluated in parallel; because 1 and 2 are already values,
the middle graphs have only one node. After the parallel combination, there is one step for doing
the addition. For simplicity of drawing graphs, we may merge the evaluation that occurs after a
join into the join itself, so we may simply write the previous graph as

.

/ \

. .

\ /

.

This is consistent with viewing fork as splitting input into subproblems and join as merging
results from those subproblems, much as with divide-and-conquer.

The work of the graph above is 4 and the span is 3.
(Note: These numbers may differ by a constant factor or term from those we defined earlier in

the course, because we are counting slightly differently, due to the presence of fork and join nodes.
Asymptotically, there will not be a difference.)

We can link cost graphs with our earlier discussions of work and span for expressions, as follows.
Recall that we add the work and add the span for code fragments that need to be executed
in sequential order; just as the number of nodes in the sequential composition or the parallel
composition of G1 and G2 is the sum of the numbers of nodes in the two subgraphs. And for
independent code fragments we combine spans with max rather than +, just as the span of the
parallel composition of two graphs corresponds to the maximum of the spans of the individual
graphs.

3.1 Brent’s Principle

Cost graphs can be used to reason abstractly about the time complexity of a program, independent
of the schedule. For example, below, we associate a cost graph with each operation on sequences.
One can reason about the work and span of code that uses these operations to manipulate sequences,
via these graphs, without worrying about any particular schedule.

You may well ask: what do work and span predict about the actual running time of your code?
The work predicts the running-time when evaluated sequentially, using a single processor; the span
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predicts the running time if you have “infinitely many” processors and the scheduler always uses
parallel evaluation for independent computations. Of course in practice you are unlikely to have
infinitely many processors (it is even unlikely that you will always have “enough” processors). What
can we say, based on work and span, about what happens when you evaluate SML code using the
4 processors in your laptop, or the 1000 in your cluster, relying on whatever scheduling strategy is
implemented on these machines? The answer is that there is a provable bound on the best running
time that can be achieved, asymptotically:

Brent’s Theorem
An expression with work w and span s can be evaluated on a p-processor machine in
time Ω(max(w/p, s)).

[The notation Ω is similar to big-O, except that Ω means an asymptotic lower bound whereas
big-O means an asymptotic upper bound.]

The intuition behind Brent’s Theorem is that the best (most efficient) way to employ p proces-
sors is to try dividing the total work w up into chunks of size p (there are w/p such chunks) and do
these chunks one after another; but the data dependencies may prevent this from being feasible, so
one can never do better than the span s.

For example, if you have 10 units of work to do and span 5, you can achieve the span on
2 processors. If you have 15 units of work (and still span 5), it will take at least 8 steps on 2
processors. If you increase the number of processors to 3, then you can achieve the span 5. If you
have 5 units of work to do (still with span 5), then having 2 processors doesn’t help: you still need
5 steps. (In this example, we pretended that Brent’s Theorem asserted a direct equality rather
than a big-O class, for simplicity.)

Brent’s Theorem can also tell us useful information about the potential for speed-up when
multiple processors are available. If your code has work w and span s, calculate the smallest
integer p such that w/p ≤ s. Given this many processors, you can evaluate your code in the best
possible time. Having even more processors yields no further improvement. (Of course these are all
asymptotic estimates, and in practice constant factors do matter. So you may not see real speedups
consistent with these numbers.)

Brent’s theorem should hold for any language one designs; if not, the cost semantics are wrong.
Thus, we will sometimes refer to Brent’s Principle: a language should be designed so that Brent’s
Principle is in fact a theorem.

3.2 Scheduling

Cost graphs are also a helpful data structure for scheduling work onto processors. Let’s take a look
at how a compiler might do this.

A schedule can be generated by pebbling a cost graph. To schedule a graph onto p processors,
you play a pebbling game with p pebbles. The rules of the game are: You can pick up a pebble
from a graph node or from your hand and place it on any graph node all of whose predecessors
have been visited but which itself has not yet been visited. When you place a pebble on a node,
you mark that node as visited. (You can also put the pebble back in your hand, if you don’t want
it on the graph anymore.)

A schedule is supposed to say what piece of work each processor does in each time-step. To
generate a schedule, we divide the pebbling up into steps. In any step, you can place p (or fewer)
pebbles onto the graph. The nodes with pebbles on them represent the units of work to be completed
by the p processors during that time-step. The restriction on placing pebbles only on nodes whose
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predecessors have been visited ensures that data dependencies are respected. The nodes whose
predecessors have been visited, but have not themselves been visited, form what is sometimes
called the frontier, meaning the currently available work.

Consider the following cost graph:
(This graph might represent evaluation of the expression (1 + 2) * (3 + 4), as can be seen

by generalizing the example of page 5.)

a

b g

c d

e

f

h i

j

A 2-pebbling with pebbles X and O might start out like this:

Step X O
1 a
2 b g
3 c

In the first step, we can only place a pebble on the source (all of its predecessors have been
pebbled, trivially, because it has no predecessors), because no other node in the graph is available.
In this step, one processor is idle because there is not enough available work to be done. In the
second step, we can place pebbles on both of the next two nodes and did so, meaning that both
processors had work to do in that time-step. In the third step, we can place our two pebbles on
any two of the four nodes at the next level. We chose, however, to place only a single pebble, on
one of those nodes. So this is again a step in which a processor is idle, though this time by choice;
there was work that could have been done by the other processor. Why did we choose to place only
a single pebble? Simply to indicate that it is possible to do so. A greedy schedule assigns as many
processors as possible work at each time step. Sometimes, a non-greedy scheduler might actually
be more efficient overall.

For a fixed number of processors p we can identify two particularly natural scheduling algo-
rithms, known as pDFS (p depth-first search) and pBFS (p breadth-first search). A DFS schedule
prefers the left-most bottom-most available nodes, whereas a BFS schedule prefers higher nodes
(but then tackles them left-to-right). At each step, one can place as many pebbles (a maximum of
p) as one can, subject to availability of work.

Here is a schedule for the cost graph above, using 2DFS (giving preference to processor X when
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only one unit of work is available):

Step X O
1 a
2 b g
3 c d
4 e h
5 i
6 j
7 f

In step 4, we prefer node e to node i because e is lower (bottom-most). In the remaining steps
there is only one node available to work on.

Here’s a schedule for the same graph, using 2BFS:

Step X O
1 a
2 b g
3 c d
4 h i
5 e j
6 f

This time, in step 4 we prefer i to e because it is higher. Consequently, in step 6, two units of
work are available to do, so we can finish in 6 steps instead of 7.

Thus: different scheduling algorithms can give different overall run-time. Additionally, they
differ in how many times a processor stops working on one computation and switches to working
on an unrelated computation. For example, in the 2BFS schedule, step 4, both processors “jump”
over to the other side of the graph. This can be bad for spatial reasons (cache performance may be
worse) but the details are subtle. And actually in this kind of small example the differences aren’t
really likely to be noticeable. Of course, this may not be the case in more realistic examples.
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4 Sequences

To introduce sequences, here is a signature containing some of their primary operations:

signature SEQUENCE =

sig

type ’a seq (* abstract *)

val empty : unit -> ’a seq

exception Range of string

val tabulate : (int -> ’a) -> int -> ’a seq

val length : ’a seq -> int

val nth : ’a seq -> int -> ’a

val map : (’a -> ’b) -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val mapreduce : (’a -> ’b) -> ’b -> (’b * ’b -> ’b) -> ’a seq -> ’b

val filter : (’a -> bool) -> ’a seq -> ’a seq

end

Let’s assume we have an implementation of this signature, i.e., a structure Seq:SEQUENCE. For
any type t, the type t Seq.seq has values that represent sequences of values of type t. Sequences
are parallel collections : ordered collections of values, with parallelism-friendly operations on them.
Don’t think of sequences as being implemented by lists or trees (though you could implement them
as such); think of them as a new built-in abstract type with only the operations we’re about to
describe (the operations mentioned in the signature SEQUENCE). The differences between sequences
and lists or trees show up in the cost of these operations, which we specify below.

We write Seq.seq, Seq.map, etc. to refer to the seq type and the map function defined in our
given structure named Seq. This use of qualified names will help us to avoid confusion with the
built-in SML map function on lists (which we could also refer to using the qualified name List.map).

Intuitively, the sequence operations have names that suggest that they do the same things as
the corresponding operations on lists with which you are familiar. However, they have different
work and span than the corresponding list functions. Firstly, sequences admit constant-time access
to items — nth s i takes constant time, for instance. Secondly, sequences have better parallel
complexity—many operations, such as map, act on each element of a sequence in parallel.

For each sequence operation described on the next few pages, we will (a) describe its behavior
abstractly and (b) give a cost graph, that specifies the operation’s work and span.

Before we start, recall that we use the math notation

<v1, . . . , vn>

for a sequence of length n whose entries are v1 through vn. Actually, since the nth function uses
zero-based indexing, it is sometimes more convenient to mimic this and write

<v0, . . ., v_(n-1)>
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tabulate
The operation for building a sequence is tabulate, which constructs a sequence from a function that
gives you the items at each position, the positions being indexed from 0 up to a specified bound.
So tabulate f n builds a sequence of length n with 0’th item f 0, 1st item f 1, and so on. We
can describe this operation via the following equivalence:

tabulate f n ∼= <f 0, ..., f (n-1)>

and its evaluation properties are summarized by:

tabulate f n =⇒ <v0 , ... , v (n-1)>

if f 0 =⇒ v0, f 1 =⇒ v1, ..., f (n-1) =⇒ v (n-1).

(Again, this characterization does not imply any specific order of evaluation.)
The cost graph for tabulate f n is

.

/ | \

G0 G1 ... G(n-1)

\ | /

.

where each Gi is the cost graph for f i.
So when f i is constant time, the work for tabulate f n is O(n) and the span is O(1).

nth
We define the behavior of nth as

nth <v0 , ... , v (n-1)> i =⇒ vi, if 0 <= i < n

raise Range "nth index out of bounds", otherwise

For a sequence value s and integer value i, the cost graph for nth s i is simply

.

|

.

Thus, as promised, sequences provide constant-time access to elements;
nth s i has O(1) work and O(1) span.

length
The behavior of length is given by:

length < > =⇒ 0

length <v1 , ... , vn> =⇒ n

The cost graph for length s when s is a sequence value is also simply

.

|

.

Thus, length s also has O(1) work and span.
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map
The behavior of map f <v1,...vn> is given by:

map f <v1 , ... , vn> ∼= <f v1,...,f vn>

Each function application may be evaluated in parallel. This is shown by the cost graph

.

/ | \

G1 G2 ... Gn

\ | /

.

where we let Gi be the cost graph for (f vi), i = 1, ..., n. (This cost graph resembles the cost
graph for tabulate.)

As a consequence, if f x takes constant time for all values x, and s is a sequence value with
length n, then map f s has O(n) work and O(1) span.2

reduce
reduce is intended to be used with an associative binary function g of type t * t -> t, for some
type t, a value z:t, and a sequence of items of type t.

Recall, a function g is associative iff for all values a,b,c of type t,

g(a, g(b, c)) ∼= g(g(a, b), c).

Associativity implies that if we pairwise combine a sequence of values using g, in any order that
respects the original enumeration order, we will get equivalent results. For example,

g(g(x1, x2), g(x3, x4)) ∼= g(x1, g(x2, g(x3, x4))).

Let’s write g in infix notation using the operator �. So we will abbreviate g(x1, x2) by x1�x2.
When g is associative, we can abbreviate g(x1, g(x2, g( ..., xn))) by

x1 � x2 � . . . � xn.

Assuming that g is associative, reduce g z <x1, . . ., xn> has the following equivalence
characterization:

reduce g z 〈x1, . . . xn〉 ∼= x1 � x2 � . . . � xn � z

We assume that the implementation of reduce uses a balanced parenthesization format to form
pairwise combinations. So, for example, the cost graph of reduce g z <x1, x2, x3> is the same
as the cost graph for (x1� x2)� (x3� z). (See the next page for the general picture.)

Remark: One sometimes asks as well that z be an identity for g, meaning
g(x, z) ∼= x ∼= g(z, x) for all values x : t. We do not require that in this document, but it can
be helpful behind the scenes in implementing a nicely parallel version of reduce. You will likely
make this assumption in 15-210.

2Unfortunately, there is no known way to express the time complexity of the map function itself, abstractly for all
f — we lack a theory of asymptotic analysis for higher-order functions.
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If g(a,b) is constant time, for all values a and b, it follows that the cost graph for reduce g z 〈x1, . . . xn〉
looks something like

.

/ / / \ \ \

/ / / \ \ \

x1 x2 x3 x4 xn z (width n+1 here)

\ / \ / ... \ /

\ / \ / \ /

x1 � x2 x3 � x4 ... xn � z (width (n+1)/2 here)

\ /

\ / .

\ / ... .

\ / .

\ /

�
\ /

\ ... /

\ /

.

.

.

�
. (roughly log n levels deep)

Consequently, the graph has size O(n) and critical path length O(log n), giving us the work and
span, respectively. This computation does not have constant span, because later uses of g need
the results of earlier combinations: there are data dependencies, because we can only combine two
items at a time.

Contrast this with lists and foldl or foldr. When L is a list of length n, foldr g z L has
work O(n) and also span O(n). Similarly for foldl.

mapreduce
mapreduce is intended to be used with a function f of type t1 -> t2 for some types t1 and t2,
an associative binary function g of type t2 * t2 -> t2, a value z:t2, and a sequence of items of
type t1.

The behavior of mapreduce f z g <x1, . . ., xn> (assuming that g is associative and that
we again represent it by an infix operator �) is given by:

mapreduce f z g 〈x1, . . . xn〉 ∼= (f x1) � (f x2) � . . . � (f xn) � z

The implementation of mapreduce uses a balanced parenthesization format for pairwise combina-
tions, as with reduce. Its work and span are as for reduce, when f and g are constant time.

filter
filter is a higher order function for retaining only those elements in a sequence that satisfy a
given predicate: Assuming p is total, filter p s ∼= s’, where s’ consists of all elements e of s
such that p e ∼= true. The order of retained elements in s’ is the same as in s.

Assuming further that p is constant time, filter p s has work O(n) and span O(log n).
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5 Examples

Let’s look at some examples. As before, let’s assume we are working with a structure Seq that
ascribes to signature SEQUENCE.

• Building an empty sequence. We might implement

empty : unit -> ’a seq

within Seq by

fun empty () = tabulate (fn _ => raise Range "empty") 0

empty() returns a sequence of length zero.

• We could also implement a cons operation for sequences within Seq, using tabulate. Let’s
specify that the function has type ’a -> ’a seq -> ’a seq and that cons x xs returns a
sequence with length one more than the length of xs, whose first (0’th) element is x, and
whose remaining items are the items of xs shifted by one:

fun cons (x : ’a) (xs : ’a seq) : ’a seq =

tabulate (fn 0 => x | i => nth xs (i-1)) (length xs + 1)

• Outside Seq, let’s define a function first : int -> int Seq.seq that constructs the se-
quence consisting of the first n natural numbers (with 0 being a natural number):

fun first n = Seq.tabulate (fn x:int => x) n

For n > 0, first n returns the sequence value

<0, 1, . . ., n-1>

• Let’s define a function squares : int -> int Seq.seq that constructs the sequence con-
sisting of the first n natural numbers squared:

fun squares n = Seq.map (fn x => x*x) (first n)

• We could also have defined squares with a single tabulate, rather than a tabulate followed
by a map, as in:

fun squares n = Seq.tabulate (fn i => i*i) n

There is a general “fusion” law that expresses this kind of result. When f : int -> t1 and
g : t1 -> t2 are total function values, it follows that g o f : int -> t2 is also total, and
for all values n:int,

Seq.map g (Seq.tabulate f n) ∼= Seq.tabulate (g o f) n

The squares example is a special case,
with f being (fn x:int => x) and g being (fn x:int => x*x).
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• Similarly, when f : t1 -> t2 and g : t2 -> t3 are total function values,
so is g o f : t1 -> t3, and

Seq.map (g o f) ∼= (Seq.map g) o (Seq.map f)

As an example, consider

fun square x = x*x

fun quads s = Seq.map square (Seq.map square s)

Here quads is extensionally equivalent to (Seq.map square) o (Seq.map square). And
quads is extensionally equivalent to Seq.map (square o square). Since square o square

is extensionally equivalent to fn x:int => x*x*x*x, we have

quads ∼= Seq.map (fn x:int => x*x*x*x)

• Evens.
You may recall writing a function in lab once to filter a list of integers, retaining only the
even integers. That took O(n) work and span. Here is an implementation using sequences:

fun evens (s : int Seq.seq) : int Seq.seq =

Seq.filter (fn n => n mod 2 = 0) s

Alternatively, we could simply have written:

val evens = Seq.filter (fn n => n mod 2 = 0)

The predicate (fn n => n mod 2 = 0) takes constant time, so the work and span of the
filter operation are O(n) and O(log n), respectively, where n is the length of s. This is the
only operation performed by evens, so this gives the work and span of evens as well.

• Counting, revisited.
In the first lecture, we considered at a high-level some SML functions that operate on se-
quences of integers, combining the integers together by adding them. Later we saw how to
use foldl and foldr to accomplish these tasks using lists. Now we can revisit these ideas
using actual sequences.

Here is a function sum : int Seq.seq -> int for adding the integers in a sequence:

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

(Note that (op +) is associative.)

And a function count : int Seq.seq Seq.seq -> int for combining the integers in a
sequence of integer sequences:

fun count (s : int Seq.seq Seq.seq) : int = sum (Seq.map sum s)

sum takes an integer sequence and adds up all the numbers in it using reduce, just like we
did with folds for lists and trees. count sums up all the numbers in a sequence of sequences,
by (1) summing each individual sequence and then (2) summing the sequence that results.
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(Exercise: rewrite count with mapreduce, so it takes only one pass).

We can now see that count on a sequence of m sequences, each of length n, requires O(mn)
work, as follows. First, sum s is implemented using reduce with a constant-time argument
function, and thus has O(n) work, where n is the length of s. Each call to sum inside the
map is on a sequence of length n, and thus takes O(n) work. This function is mapped across
m sequences, yielding O(mn) work for the map. The sequence sums now form a sequence of
length m, so the final sum contributes O(m) more work, which is subsumed by the O(mn).
So the total work here is O(mn), as promised.

Similarly, we can see that the span is O(logm+ log n). Again, sum s is implemented using
reduce with a constant-time argument function, and thus has O(log n) span, where n is the
length of s. Each call to sum inside the map is on a sequence of length n, and thus has O(log n)
span. These inner calls all occur in parallel, and so together have O(log n) span. The outer
sum is on a sequences of length m, and therefore has O(logm) span. The total span is the
sum of the inner span and the outer span, because of data dependency: the outer summation
must wait to happen until after all the inner sums have been computed. Therefore the total
span is O(logm+ log n).

• Reversing a sequence, by re-indexing:

fun reverse (s : ’a Seq.seq) : ’a Seq.seq =

Seq.tabulate (fn i => Seq.nth s (Seq.length s - i - 1)) (Seq.length s)

This implementation of reverse has linear work and constant span.

Caution: index calculations tend to be hard get right and just as hard to read. Moreover,
you run the risk of writing very index-y array-like code rather than stylish higher-order
functional code. So avoid doing that where possible.
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