Lazy Programming

15-150 Lecture 20: November 19, 2024

Stephanie Balzer Carnegie Mellon University

So far we have only dealt with finite data structures.

But how to represent infinite data structures?

Examples:

- Natural numbers, primes
- Keystrokes made on a keyboard
- My email inbox (\mathcal{L})
- Video / audio streams

To facilitate programming infinite data structures, we use the notion of a **delayed computation**.

The notion of a delayed computation also facilitates **demanddriven** (aka **lazy**) programming in a call-by-value language.

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? $\circled{.}$

Let's take a step back and ask ourselves the following question:

What is the difference between the following two expressions?

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? (\mathbb{F})

Let's take a step back and ask ourselves the following question:

What is the difference between the following two expressions?

Idea:

Can we do that in SML? (\mathbb{F})

For example, given

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

Idea:

Encapsulate computation to suspend it. Execute computation by explicitly forcing it.

Can we do that in SML? (\mathbb{F})

For example, given

From
$$
g(x) = g(x)
$$

\nSo $g(x) = 3$ (or $g(x) = 3$)

\nSo $g(x) = 3$

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? \odot

Yes, using lambdas to represent infinite, possibly diverging computations.

We call such lambdas **suspensions**:

A **suspension** of type t is a function f of type

f: unit \rightarrow t

A **suspension** of type t is a function f of type

```
f: unit \rightarrow t
```
such that for $e: t, f$ is fn () => e .

A suspension is **forced**, when it is applied, i.e., f ().

The suspension f is a **lazy** representation of e because e won't be evaluated until f is forced.

Let's use suspensions to represent (possibly infinite) **streams** of data.

Streams*

Streams are data structures that are being continuously created, e.g.,

Streams are data structures that are being continuously created, e.g.,

* (Note, different from SML's built-in I/O streams.)

Intermezzo: induction versus coinduction

if you'd like to know aka, we don't expect you to know

Intermezzo: induction versus coinduction

The data types (e.g., lists, trees) encountered so far were defined **inductively**.

We can view **inductive** and **coinductive** types as **duals** of each other:

Intermezzo: induction

We can also define corresponding lazy versions!

The data types (e.g., lists, trees) encountered so far were defined **inductively**.

We can view **inductive** and **coinductive** types as **duals** of each other:

Let's implement streams

signature STREAM = sig type 'a stream (* abstract *)

end

```
signature STREAM =
sig 
    type 'a stream (* abstract *)
   datatype 'a front = Cons of 'a * 'a stream
                                                                 (* concrete *)Forcing ("kicking") a stream yields a value of type 'a front,
val delay : (unit -> 'a front) -> 'a front) -> 'a front) -> 'a stream : (iii) -> 'a stream : (ii
       comprising the current element
```

```
signature STREAM =
sig 
   type 'a stream (* abstract *)
  datatype 'a front = Cons of 'a * 'a stream
                                         (* concrete *)Forcing ("kicking") a stream yields a value of type 'a front,
comprising the current element and the rest of the stream,
    comprising the current element and the rest of the stream,
```


```
signature STREAM =
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                    | Empty (* concrete *)
```

```
signature STREAM =
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                        | Empty (* concrete *)
  val expose : 'a stream -> 'a front 
 val delay : (unit -> 'a front) -> 'a stream 
Caution: expose may loop!
end
    Function expose forces the computation yielding the current
    element and the remainder of the stream.
```

```
signature STREAM = 
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                    | Empty (* concrete *)
 val expose : 'a stream -> 'a front
```

```
signature STREAM = 
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                       | Empty (* concrete *)
  val expose : 'a stream -> 'a front 
 val delay : (unit \rightarrow 'a front) \rightarrow 'a stream
```

```
signature STREAM =
sig 
   type 'a stream (* abstract *)
  datatype 'a front = Cons of 'a * 'a stream
                              | Empty (* concrete *)
   val expose : 'a stream -> 'a front 
  val delay : (unit -> 'a front) -> 'a stream
\blacksquare more functions (see also according control in the seed and \blacksquare ) \blacksquare . The code of the second second \blacksquareFunction delay creates a stream, given a suspension for
     computing the stream.
```

```
signature STREAM =
sig 
   type 'a stream (* abstract *)
  datatype 'a front = Cons of 'a * 'a stream
                              | Empty (* concrete *)
  val expose : 'a stream -> 'a front
  val delay : (unit -> 'a front) -> 'a stream
\blacksquare more functions (see also according control in the seed and \blacksquare ) \blacksquare . The code of the second second \blacksquareend
     Function delay creates a stream, given a suspension for
     computing the stream.
     Suspension required, otherwise SML will evaluate argument!
```

```
signature STREAM = 
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                     | Empty (* concrete *)
  val expose : 'a stream -> 'a front 
 val delay : (unit -> 'a front) -> 'a stream
```

```
signature STREAM = 
sig 
  type 'a stream (* abstract *)
 datatype 'a front = Cons of 'a * 'a stream
                       | Empty (* concrete *)
 val expose : 'a stream -> 'a front
 val delay : (unit \rightarrow 'a front) \rightarrow 'a stream
  (* more functions (see accompanying code) *)end
```
structure Stream : STREAM =

struct

 $datotype$ 'a stream = Stream of unit \rightarrow 'a front

and 'a front α 'a front α 'a front α 'a stream α 'and 'a stream α ' and 'a stream α ' extended the suspension of an 'a front. We find it convenient to wrap a Stream constructor around the

Thouse of the constructor S trea Gasponsion, conveys increased when the fame The use of the constructor Stream, instead of the plain suspension, conveys more readily what the function is about.

structure Stream : STREAM =

struct

 $datatype$ 'a stream = Stream of unit \rightarrow 'a front

structure Stream : STREAM = struct $datatype$ 'a stream = Stream of unit \rightarrow 'a front and 'a front = Cons of 'a $*$ 'a stream | Empty

EX Define mutually recursive data structures with keyword and.

 fun delay (d) = Stream(d) Recall: 'a front is already defined as such in signature.

structure Stream : STREAM = struct $datarype$ 'a stream = Stream of unit \rightarrow 'a front and 'a front = Cons of 'a $*$ 'a stream | Empty

structure Stream : STREAM = struct $datatype$ 'a stream = Stream of unit \rightarrow 'a front and 'a front = Cons of 'a $*$ 'a stream | Empty $(*$ delay : $(unit \rightarrow 'front) \rightarrow 'a$ stream $*)$ fun delay (d) = Stream (d)

(* expose to the constructor around suspension Wraps Stream constructor around suspension of 'a front.

structure Stream : STREAM = struct $datatype$ 'a stream = Stream of unit \rightarrow 'a front

- and 'a front = Cons of 'a $*$ 'a stream | Empty
- $(*$ delay : (unit \rightarrow 'front) \rightarrow 'a stream $*)$ fun delay (d) = Stream (d)

```
structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit \rightarrow 'a front
  and 'a front = Cons of 'a * 'a stream | Empty
  (* delay : (unit \rightarrow 'front) \rightarrow 'a stream *) fun delay (d) = Stream(d) 
  (* expose : 'a stream \rightarrow 'a front *)fun expose (Stream(d)) = d ()
```
Forces underlying suspension in input stream. Forces underlying suspension in input stream.

end

```
structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit \rightarrow 'a front
  and 'a front = Cons of 'a * 'a stream | Empty
  (* delay : (unit \rightarrow 'front) \rightarrow 'a stream *)fun delay (d) = Stream(d)(* expose : 'a stream \rightarrow 'a front *)fun expose (Stream(d)) = d ()
```

```
structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit \rightarrow 'a front
  and 'a front = Cons of 'a * 'a stream | Empty
  (* delay : (unit \rightarrow 'front) \rightarrow 'a stream *)fun delay (d) = Stream(d)(* expose : 'a stream \rightarrow 'a front *)fun expose (Stream(d)) = d ()
  (* more functions (see accompanying code) *)end
```
Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Let's implement an infinite stream whose elements are 1:

 $(* ones' : unit -> int S.front *)$ fun ones' () = S_{s} Cons(1, S_{s} delay ones')

 $(*$ int S.stream $*)$ val ones = S.delay ones'

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream(d)

Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Let's implement an infinite stream of all natural numbers:

 $(* nat': int -> unit -> int S.front *)$ fun nat' x () = S_{r} Cons(x, S.delay (nat' (x+1)))

 $(*$ int S.stream $*)$ val nats = S .delay (nat' θ) initial element

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream(d)

Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Let's implement an infinite stream of all natural numbers:

 $(* nat': int -> unit -> int S.front *)$ fun nat' x () = $S_{\text{cons}}(x, S_{\text{delay}}(nat'(x+1)))$

 $(*$ int S.stream $*)$ val nats = S .delay (nat' θ)

current element

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream (d)

Assume that the following codes is written outside the Stream structure, such that $structure S = Stream$.

Let's implement an infinite stream of all natural numbers:

 $(* nat': int -> unit -> int S.front *)$ fun nat' x () = $S_{\text{cons}}(x, S_{\text{delay}}(nat'(x+1)))$ $(*$ int S .stream $*)$ val nats $=$ S.delay (nat' 0) Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream (d) current element later next element

43

```
(* nat': int -> unit -> int S.front *)fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)val nats = S.delay (nat' \theta)
```
Consider now:

```
val S_{\text{r}} Cons(x, tail) = S_{\text{r}} expose nats
val S.Cons(y, ) = S.expose tail
```
What values are x and y bound to? What does tail represent?

Recall: $(*$ expose : 'a stream \rightarrow 'a front $*)$ fun expose (Stream(d)) = d ()

```
(* nat': int -> unit -> int S.front *)fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)val nats = S.delay (nat' \theta)
```
Consider now:

```
val S_{\text{r}} Cons(x, tail) = S_{\text{r}} expose nats
val S.Cons(y, ) = S.expose tail
```
What values are x and y bound to? What does tail represent?

x is bound to 0 and y to 1

tail denotes the stream of all natural numbers greater than 0

```
(* nat': int -> unit -> int S.front *)fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)val nats = S.delay (nat' \theta)
```
Consider now:

```
val S_{\text{r}} Cons(x, tail) = S_{\text{r}} expose nats
val S.Cons(y, _) = S.expose tail
```
What value is z bound to?

Memoization for efficiency

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a stream, so that when forced, the stored value is simply returned.

On Thursday, we will introduce **reference cells**, which precisely allow us to do that.

initially, reference cell contains suspension

after force, reference cell contains computed value

When are two streams equivalent?

To define equivalence, we augment our signature with this function:

```
take : ('a stream * int) \rightarrow 'a list
```
take(s, n) returns the first n elements of stream s as a list.

May loop or raise an exception if stream is empty.

When are two streams equivalent?

To define equivalence, we augment our signature with this function:

```
take : ('a stream * int) \rightarrow 'a list
```
We say that two streams X and Y produced by the same structure Stream: STREAM are **extensionally equivalent**, $X \cong Y$, if and only if, for all integers $n \geq 0$:

Stream.take(X,n) \cong Stream.take(Y,n)

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Write down all the natural numbers greater than 1.

Inspired by the Sieve of Eratosthenes.

$$
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
$$

Find leftmost element (2 currently).

Inspired by the Sieve of Eratosthenes.

$$
2, 3, X, 5, X, 7, X, 9, X, 11, X, 13, X, 15, X, 17, X, ...
$$

Cross off all multiples of that leftmost element.

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,... ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 3, 5, 7, 9, 11, 13, 15, 17,... ❌ ❌

Repeat the process with the remaining numbers.

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,... ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 3, 5, 7, **x**, 11, 13, **x**, 17,... $\boxed{5}$, 7, 11, 13, 17,...

Keep repeating this process.

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,... ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 3, 5, 7, 9, 11, 13, 15, 17,... ❌ ❌ 5, 7, 11, 13, 17,...

The diagonal of leftmost elements constitutes all primes.

To implement this algorithm, we augment our signature with the following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Moreover, we define locally, the following helper function:

```
val notDivides p q = (q mod p \gg 0)
```


val filter : ('a -> bool) -> 'a stream -> 'a stream val notDivides $p q = (q mod p \gg 0)$

Now, the algorithm:

```
fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
  | sieve' (S.\text{Cons}(p, s)) = S.Cons(p, sieve (S.filter (notDivides p) s))
```
val primes = sieve (S.delay (nat' 2))

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream (d)

val filter : ('a -> bool) -> 'a stream -> 'a stream val notDivides $p q = (q mod p \gg 0)$ delays

Now, the algorithm:

fun sieve $s = S$.delay (fn () => sieve' (S.expose s)) and sieve' (S.Empty) = S.Empty $|$ sieve' $(S.\text{Cons}(p, s)) =$ S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream (d)

actual sieving

val filter : ('a -> bool) -> 'a stream -> 'a stream val notDivides $p q = (q \mod p \ll 0)$ Now, the algorithm: fun sieve $s = S$.delay (fn () => $s²$ (section) => $s³$ (section) and sieve' (S.Empty) = S.Empty $|$ sieve' $(S.\text{Cons}(p, s)) =$ S.Cons(p, sieve (S.filter (notDivides p) s)) val primes = sieve (S.delay (nat' 2)) not really needed because primes are infinite

Recall: $(*$ delay : $(unit -> 'front) -> 'a stream *)$ fun delay (d) = Stream (d)

val filter : ('a -> bool) -> 'a stream -> 'a stream val notDivides $p q = (q mod p \gg 0)$

Now, the algorithm:

That's all for today.