
Lazy Programming

15-150
Lecture 20: November 19, 2024

Stephanie Balzer
Carnegie Mellon University

 1

Today

2

Today

2

So far we have only dealt with finite data structures.

Today

2

So far we have only dealt with finite data structures.

But how to represent infinite data structures?

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard
• My email inbox (!)

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard
• My email inbox (!)
• Video / audio streams

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard
• My email inbox (!)
• Video / audio streams

To facilitate programming infinite data structures, we use the
notion of a delayed computation.

Today

2

So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard
• My email inbox (!)
• Video / audio streams

To facilitate programming infinite data structures, we use the
notion of a delayed computation.

The notion of a delayed computation also facilitates demand-
driven (aka lazy) programming in a call-by-value language.

Delayed computation

3

Delayed computation

3

Idea:

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Here, SML will
evaluate e.

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Here, SML will
evaluate e.

Delayed computation

3

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Here, SML will
evaluate e.

Here, SML will only
evaluate e, when the lambda is applied to

an argument.

Delayed computation

4

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Delayed computation

4

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Lambdas allow us to suspend computation.

Delayed computation

4

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

Delayed computation

5

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

e fn x => e xand

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

For example, given
fun g x = g x

Delayed computation

5

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

e fn x => e xand

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

For example, given
fun g x = g x

Delayed computation

6

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

g 3 fn x => (g 3) xloops, but

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

For example, given
fun g x = g x

is a value

Delayed computation

7

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Delayed computation

7

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Yes, using lambdas to represent infinite, possibly diverging
computations.

Delayed computation

7

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Yes, using lambdas to represent infinite, possibly diverging
computations.

We call such lambdas suspensions:

Delayed computation

7

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Yes, using lambdas to represent infinite, possibly diverging
computations.

We call such lambdas suspensions:

A suspension of type t is a function f of type

Delayed computation

7

Idea:

Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

Yes, using lambdas to represent infinite, possibly diverging
computations.

We call such lambdas suspensions:

A suspension of type t is a function f of type

f: unit -> t

Delayed computation

8

A suspension of type t is a function f of type

f: unit -> t

Delayed computation

8

A suspension of type t is a function f of type

f: unit -> t

such that for e: t, f is fn () => e.

Delayed computation

8

A suspension of type t is a function f of type

f: unit -> t

such that for e: t, f is fn () => e.

A suspension is forced, when it is applied, i.e., f ().

Delayed computation

8

A suspension of type t is a function f of type

f: unit -> t

such that for e: t, f is fn () => e.

A suspension is forced, when it is applied, i.e., f ().

The suspension f is a lazy representation of e because e won't
be evaluated until f is forced.

Delayed computation

8

A suspension of type t is a function f of type

f: unit -> t

such that for e: t, f is fn () => e.

A suspension is forced, when it is applied, i.e., f ().

The suspension f is a lazy representation of e because e won't
be evaluated until f is forced.

Let's use suspensions to represent (possibly infinite) streams of
data.

Streams*

9* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

primes

* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7
suspension

* (Note, different from SML's built-in I/O streams.)

Streams*

9

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7
suspension

captures current
element and a program to

compute next element

* (Note, different from SML's built-in I/O streams.)

Streams

10

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

* (Note, different from SML's built-in I/O streams.)

Streams

10

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

We can think of streams as being generated by state machines:

* (Note, different from SML's built-in I/O streams.)

Streams

10

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

We can think of streams as being generated by state machines:

only when "kicked" (forcing suspension) they yield element

* (Note, different from SML's built-in I/O streams.)

Streams

10

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

We can think of streams as being generated by state machines:

only when "kicked" (forcing suspension) they yield element

advancing state for computation of next element.

* (Note, different from SML's built-in I/O streams.)

Streams

10

Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

We can think of streams as being generated by state machines:

only when "kicked" (forcing suspension) they yield element

advancing state for computation of next element.

Streams are defined coinductively

* (Note, different from SML's built-in I/O streams.)

Intermezzo: induction versus coinduction

11

Intermezzo: induction versus coinduction

11

Intermezzo: induction versus coinduction

11

if you'd like to
know

Intermezzo: induction versus coinduction

11

if you'd like to
know

aka, we
don't expect you to

know

Intermezzo: induction versus coinduction

12

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.
We can view inductive and coinductive types as duals of each other:

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

show that all possible ways of construction satisfy property

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

Coinductive data types facilitate proofs by coinduction

show that all possible ways of construction satisfy property

Intermezzo: induction versus coinduction

12

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

Coinductive data types facilitate proofs by coinduction

show that all possible ways of construction satisfy property

show containment of element by consistent behavior

Intermezzo: induction versus coinduction

13

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

Coinductive data types facilitate proofs by coinduction

show that all possible ways of construction satisfy property

show containment of element by consistent behavior

Intermezzo: induction versus coinduction

13

The data types (e.g., lists, trees) encountered so far were defined
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus
be infinite.

Inductive data types facilitate proofs by induction

Coinductive data types facilitate proofs by coinduction

show that all possible ways of construction satisfy property

show containment of element by consistent behavior

We can also define
corresponding lazy versions!

Let's implement streams

14

Let's implement streams

14

First, we define a signature, capturing streams abstractly.

Let's implement streams

14

First, we define a signature, capturing streams abstractly.

Then, we implement them in a corresponding structure.

Stream signature

15

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

15

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

15

streams with
elements of type 'a

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

16

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

17

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

17

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

17

Forcing ("kicking") a stream yields a value of type 'a front,

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

18

Forcing ("kicking") a stream yields a value of type 'a front,

comprising the current element

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

19

Forcing ("kicking") a stream yields a value of type 'a front,

comprising the current element and the rest of the stream,

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

20

Forcing ("kicking") a stream yields a value of type 'a front,

comprising the current element and the rest of the stream,

or Empty, in case the stream is finite.

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

21

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

22

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

22

Function expose forces the computation yielding the current
element and the remainder of the stream.

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

22

Function expose forces the computation yielding the current
element and the remainder of the stream.

Caution: expose may loop!

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

23

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

24

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

25

Function delay creates a stream, given a suspension for
computing the stream.

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

26

Function delay creates a stream, given a suspension for
computing the stream.

Suspension required, otherwise SML will evaluate argument!

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream signature

27

Stream signature

28

signature STREAM =
sig
 type 'a stream (* abstract *)

 datatype 'a front = Cons of 'a * 'a stream
 | Empty (* concrete *)

 val expose : 'a stream -> 'a front

 val delay : (unit -> 'a front) -> 'a stream

 (* more functions (see accompanying code) *)
end

Stream structure

29

Stream structure

29

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

29

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

29

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

Stream structure

29

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

The use of the constructor Stream, instead of the plain
suspension, conveys more readily what the function is about.

Stream structure

30

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

The use of the constructor Stream, instead of the plain
suspension, conveys more readily what the function is about.

Stream structure

30

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

The use of the constructor Stream, instead of the plain
suspension, conveys more readily what the function is about.

Stream structure

30

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

The use of the constructor Stream, instead of the plain
suspension, conveys more readily what the function is about.

Recall: 'a front refers to 'a stream.

Stream structure

30

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

We find it convenient to wrap a Stream constructor around the
suspension of an 'a front.

The use of the constructor Stream, instead of the plain
suspension, conveys more readily what the function is about.

Recall: 'a front refers to 'a stream.

How do we handle that?

Stream structure

31

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

31

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

31

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Define mutually recursive data structures with keyword and.

Stream structure

31

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Define mutually recursive data structures with keyword and.

Recall: 'a front is already defined as such in signature.

Stream structure

32

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

33

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

33

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Wraps Stream constructor around suspension of 'a front.

Stream structure

34

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

35

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

35

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Forces underlying suspension in input stream.

Stream structure

36

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Stream structure

37

structure Stream : STREAM =
struct
 datatype 'a stream = Stream of unit -> 'a front
 and 'a front = Cons of 'a * 'a stream | Empty

 (* delay : (unit -> 'front) -> 'a stream *)
 fun delay (d) = Stream(d)

 (* expose : 'a stream -> 'a front *)
 fun expose (Stream(d)) = d ()

 (* more functions (see accompanying code) *)
end

Let's practice: stream of 1s

38

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of 1s

38

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of 1s

39

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of 1s

39

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of 1s

39

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element

Let's practice: stream of 1s

40

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element

Let's practice: stream of 1s

40

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *)
fun ones' () = S.Cons(1, S.delay ones')

(* int S.stream *)
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element
remains the
same in tail

Let's practice: stream of nats

41

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of nats

41

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

initial element

Let's practice: stream of nats

42

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of nats

42

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Let's practice: stream of nats

42

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element

Let's practice: stream of nats

43

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element

Let's practice: stream of nats

43

Assume that the following codes is written outside the Stream
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))

(* int S.stream *)
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

current element next element

Let's practice: stream of nats

44

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Let's practice: stream of nats

44

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:

Let's practice: stream of nats

44

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

Let's practice: stream of nats

44

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

(* expose : 'a stream -> 'a front *)
fun expose (Stream(d)) = d ()

Recall:

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

Let's practice: stream of nats

44

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

(* expose : 'a stream -> 'a front *)
fun expose (Stream(d)) = d ()

Recall:

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

What values are x and y bound to? What does tail represent?

Let's practice: stream of nats

45

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

What values are x and y bound to? What does tail represent?

Let's practice: stream of nats

45

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

What values are x and y bound to? What does tail represent?

x is bound to 0 and y to 1

Let's practice: stream of nats

45

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

What values are x and y bound to? What does tail represent?

x is bound to 0 and y to 1

tail denotes the stream of all natural numbers greater than 0

Let's practice: stream of nats

46

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

val S.Cons(z, _) = S.expose nats

Let's practice: stream of nats

46

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

val S.Cons(z, _) = S.expose nats

Let's practice: stream of nats

46

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

val S.Cons(z, _) = S.expose nats

What value is z bound to?

Let's practice: stream of nats

46

(* nat' : int -> unit -> int S.front *)
fun nat' x () = S.Cons(x, S.delay (nat' (x+1)))
(* int S.stream *)
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats
val S.Cons(y, _) = S.expose tail

val S.Cons(z, _) = S.expose nats

What value is z bound to?

z is bound to 0

Memoization for efficiency

47

Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a
stream, so that when forced, the stored value is simply returned.

Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a
stream, so that when forced, the stored value is simply returned.

On Thursday, we will introduce reference cells, which precisely
allow us to do that.

Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a
stream, so that when forced, the stored value is simply returned.

On Thursday, we will introduce reference cells, which precisely
allow us to do that.

initially, reference cell contains suspension

Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a
stream, so that when forced, the stored value is simply returned.

On Thursday, we will introduce reference cells, which precisely
allow us to do that.

initially, reference cell contains suspension

after force, reference cell contains computed value

When are two streams equivalent?

48

When are two streams equivalent?

48

To define equivalence, we augment our signature with this function:

When are two streams equivalent?

48

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

When are two streams equivalent?

48

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

take(s,n) returns the first n elements of stream s as a list.

When are two streams equivalent?

48

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

take(s,n) returns the first n elements of stream s as a list.

May loop or raise an exception if stream is empty.

When are two streams equivalent?

49

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

When are two streams equivalent?

49

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

We say that two streams X and Y produced by the same structure
Stream: STREAM are extensionally equivalent, X Y, if and only if,
for all integers n 0:

≅
≥

When are two streams equivalent?

49

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

We say that two streams X and Y produced by the same structure
Stream: STREAM are extensionally equivalent, X Y, if and only if,
for all integers n 0:

≅
≥

Stream.take(X,n) Stream.take(Y,n)≅

Another example: prime numbers

50

Another example: prime numbers

50

Inspired by the Sieve of Eratosthenes.

Another example: prime numbers

50

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Another example: prime numbers

50

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Write down all the natural numbers greater than 1.

Another example: prime numbers

51

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Another example: prime numbers

51

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Find leftmost element (2 currently).

Another example: prime numbers

51

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Find leftmost element (2 currently).

Another example: prime numbers

52

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Another example: prime numbers

52

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Cross off all multiples of that leftmost element.

Another example: prime numbers

52

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Cross off all multiples of that leftmost element.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Another example: prime numbers

53

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...

Another example: prime numbers

53

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Repeat the process with the remaining numbers.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...

Another example: prime numbers

53

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Repeat the process with the remaining numbers.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...

Another example: prime numbers

53

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Repeat the process with the remaining numbers.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

Another example: prime numbers

54

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

54

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

54

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

Keep repeating this process.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

55

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

55

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

55

Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

The diagonal of leftmost elements constitutes all primes.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

 3, 5, 7, 9, 11, 13, 15, 17,...❌ ❌

 5, 7, 11, 13, 17,...

Another example: prime numbers

56

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Moreover, we define locally, the following helper function:

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Moreover, we define locally, the following helper function:

val notDivides p q = (q mod p <> 0)

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Moreover, we define locally, the following helper function:

val notDivides p q = (q mod p <> 0)

returns false if q is a
multiple of p

Another example: prime numbers

56

To implement this algorithm, we augment our signature with the
following function:

val filter : ('a -> bool) -> 'a stream -> 'a stream

Moreover, we define locally, the following helper function:

val notDivides p q = (q mod p <> 0)

returns false if q is a
multiple of p

otherwise
true

Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

58

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

58

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

58

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

delays
actual sieving

Another example: prime numbers

59

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

59

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

59

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

not really needed
because primes are

infinite

Another example: prime numbers

60

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

60

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

Another example: prime numbers

60

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

filters multiples of
current element p

Another example: prime numbers

60

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s))
and sieve' (S.Empty) = S.Empty
 | sieve' (S.Cons(p, s)) =
 S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

Recall:

filters multiples of
current element precursively

constructs stream of
larger primes, with p

at front

That's all for today.

61

