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So far we have only dealt with finite data structures.

Examples:

But how to represent infinite data structures?

• Natural numbers, primes
• Keystrokes made on a keyboard
• My email inbox (!)
• Video / audio streams

To facilitate programming infinite data structures, we use the 
notion of a delayed computation.

The notion of a delayed computation also facilitates demand-
driven (aka lazy) programming in a call-by-value language.
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Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "
Let's take a step back and ask ourselves the following question:
What is the difference between the following two expressions?

e fn x => e xand

Here, SML will 
evaluate e.

Here, SML will only 
evaluate e, when the lambda is applied to 

an argument.
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Encapsulate computation to suspend it.

Execute computation by explicitly forcing it.

Can we do that in SML? "

g 3 fn x => (g 3) xloops, but

Lambdas allow us to suspend computation.

Lambdas are values (even if encapsulated computation diverges).

For example, given
fun g x = g x

is a value
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A suspension of type t is a function f of type

f: unit -> t

such that for e: t, f is fn () => e.

A suspension is forced, when it is applied, i.e., f ().

The suspension f is a lazy representation of e because e won't 
be evaluated until f is forced.

Let's use suspensions to represent (possibly infinite) streams of 
data.
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Streams are data structures that are being continuously created, e.g.,

primes
Prime?

7

We can think of streams as being generated by state machines:

only when "kicked" (forcing suspension) they yield element

advancing state for computation of next element.

Streams are defined coinductively

* (Note, different from SML's built-in I/O streams.)
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13

The data types (e.g., lists, trees) encountered so far were defined 
inductively.

Inductive data types are constructed upfront and are thus finite.

We can view inductive and coinductive types as duals of each other:

Coinductive data types are computed on demand and may thus 
be infinite.

Inductive data types facilitate proofs by induction

Coinductive data types facilitate proofs by coinduction

show that all possible ways of construction satisfy property

show containment of element by consistent behavior

We can also define 
corresponding lazy versions!
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element and the remainder of the stream.

Caution: expose may loop!
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Suspension required, otherwise SML will evaluate argument!
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end

We find it convenient to wrap a Stream constructor around the 
suspension of an 'a front.

The use of the constructor Stream, instead of the plain 
suspension, conveys more readily what the function is about.

Recall: 'a front refers to 'a stream.

How do we handle that?
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end

Define mutually recursive data structures with keyword and.

Recall: 'a front is already defined as such in signature.
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end

Wraps Stream constructor around suspension of 'a front.
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structure Stream : STREAM = 
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end

Forces underlying suspension in input stream.
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end
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structure Stream : STREAM = 
struct 
  datatype 'a stream = Stream of unit -> 'a front 
  and 'a front = Cons of 'a * 'a stream | Empty 

  (* delay : (unit -> 'front) -> 'a stream *) 
  fun delay (d) = Stream(d) 

  (* expose : 'a stream -> 'a front *) 
  fun expose (Stream(d)) = d () 

  (* more functions (see accompanying code) *) 
end
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Assume that the following codes is written outside the Stream 
structure, such that structure S = Stream.

Let's implement an infinite stream whose elements are 1:

(* ones' : unit -> int S.front *) 
fun ones' () = S.Cons(1, S.delay ones') 

(* int S.stream *) 
val ones = S.delay ones'

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:

current element
remains the 
same in tail
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Assume that the following codes is written outside the Stream 
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *) 
fun nat' x () = S.Cons(x, S.delay (nat' (x+1))) 

(* int S.stream *) 
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:

initial element
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Assume that the following codes is written outside the Stream 
structure, such that structure S = Stream.

Let's implement an infinite stream of all natural numbers:

(* nat' : int -> unit -> int S.front *) 
fun nat' x () = S.Cons(x, S.delay (nat' (x+1))) 

(* int S.stream *) 
val nats = S.delay (nat' 0)

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:
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(* nat' : int -> unit -> int S.front *) 
fun nat' x () = S.Cons(x, S.delay (nat' (x+1))) 
(* int S.stream *) 
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats 
val S.Cons(y, _) = S.expose tail

What values are x and y bound to?  What does tail represent?

x is bound to 0 and y to 1

tail denotes the stream of all natural numbers greater than 0
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(* nat' : int -> unit -> int S.front *) 
fun nat' x () = S.Cons(x, S.delay (nat' (x+1))) 
(* int S.stream *) 
val nats = S.delay (nat' 0)

Consider now:
val S.Cons(x, tail) = S.expose nats 
val S.Cons(y, _) = S.expose tail 

val S.Cons(z, _) = S.expose nats

What value is z bound to?

z is bound to 0
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Memoization for efficiency

47

Each time we force the same stream, the element is recomputed.

Memoization allows us to remember a computed value for a 
stream, so that when forced, the stored value is simply returned.

On Thursday, we will introduce reference cells, which precisely 
allow us to do that.

initially, reference cell contains suspension

after force, reference cell contains computed value
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When are two streams equivalent?

48

To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

take(s,n) returns the first n elements of stream s as a list.

May loop or raise an exception if stream is empty.
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To define equivalence, we augment our signature with this function:

take : ('a stream * int) -> 'a list

We say that two streams X and Y produced by the same structure 
Stream: STREAM are extensionally equivalent, X  Y, if and only if, 
for all integers n  0:

≅
≥

Stream.take(X,n)  Stream.take(Y,n)≅
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Inspired by the Sieve of Eratosthenes.
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Write down all the natural numbers greater than 1.
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Keep repeating this process.
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Inspired by the Sieve of Eratosthenes.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...

The diagonal of leftmost elements constitutes all primes.

❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌
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val filter : ('a -> bool) -> 'a stream -> 'a stream
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val notDivides p q = (q mod p <> 0)

returns false if q is a 
multiple of p

otherwise 
true



Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)



Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:



Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))



Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))



Another example: prime numbers

57

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:



Another example: prime numbers

58

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:



Another example: prime numbers

58

val filter : ('a -> bool) -> 'a stream -> 'a stream
val notDivides p q = (q mod p <> 0)

Now, the algorithm:

fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:



Another example: prime numbers

58
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Recall:
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actual sieving
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Recall:

not really needed 
because primes are 

infinite
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fun sieve s = S.delay (fn () => sieve' (S.expose s)) 
and sieve' (S.Empty) = S.Empty 
  | sieve' (S.Cons(p, s)) = 
      S.Cons(p, sieve (S.filter (notDivides p) s)) 

val primes = sieve (S.delay (nat' 2))

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d)

Recall:

filters multiples of 
current element precursively 

constructs stream of 
larger primes, with p 

at front



That's all for today.
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