
Imperative Programming

15-150
Lecture 21: November 21, 2024

Stephanie Balzer
Carnegie Mellon University

1

Functional programming

2

So far we have used the term "functional programming" as a synonym
for pure programming.

But what does pure really mean?

Well, the prototypical answer is, without any side-effects.

But what does that really mean? !

Functional programming

3

So far we have used the term "functional programming" as a synonym
for pure programming.

But what does pure really mean?

Well, the prototypical answer is, without any side-effects.

Let's reconsider the correctness proofs that we carried out.

Can you think of an implicit assumption that we made when
proving a function correct, ensuring that our reasoning is valid?

We assumed that it suffices to only consider the function
specification and implementation, nothing else.

We carried out per-function (aka local) reasoning.

Functional programming

4

Let's reconsider the correctness proofs that we carried out.

Can you think of an implicit assumption that we made when
proving a function correct, ensuring that our reasoning is valid?

We assumed that it suffices to only consider the function
specification and implementation, nothing else.

We carried out per-function (aka local) reasoning.

Functional programming validates local reasoning and guarantees that:

Repeated evaluation of an expression yields the same result.

Sequential and parallel evaluation of independent sub-
expressions produces the same result.

Effects (impure or imperative programming)

5

Examples of effects:

*(Local reasoning can be re-established by using program logics such as separation logic.)

In the presence of effects, local reasoning* breaks down.

Effect, aka anything else that we can observe when evaluating an
expression other than the returned value.

• When two functions share state, mutations by one affect the other.
• A non-terminating function will cause its caller to diverge too.

Sequential and parallel evaluation of independent sub-
expressions may not produce the same result.

In the presence of effects, the order of evaluation matters.

Repeated evaluation of an expression may not yield the same
result.

SML supports imperative programming

6

To reap all the benefits of functional programming, we have stayed
entirely* in the pure fragment of SML until now.

*(Except for non-termination and exceptions.)

However, SML supports imperative features, such as reference cells,
arrays, and commands for I/O.

We may use effects locally to increase efficiency, for example.

referred to as "benign effects"

Expressions that engender effects typically are of unit type.

Today's menu

7

Shared state through mutable reference cells

reference type

typing and evaluation rules

Aliasing

Race conditions

Persistent versus ephemeral data

Examples of benign effects

Mutable reference cells

8

Reference type: t ref
arbitrary

SML type* including t ref

*(Restriction: at top level, t must be monomorphic.)

Mutable reference cells

9

Reference type: t ref

*(Restriction: at top level, t must be monomorphic.)

Reference type values:

x : t ref
v

The type t ref represents mutable reference cells that store a
value of type t.

Functions: ref : 'a -> 'a ref allocation
! : 'a ref -> 'a read
:= : 'a ref * 'a -> unit write

(where v : t)

Allocation: ref: 'a -> 'a ref

10

Evaluation rules:

Evaluate expression e.1

ref e

If e reduces to a value v, create a new cell containing v and
return the reference to it.2

val r = ref (1 + 3)Example:

r 4evaluates to:

Here, r : int ref is bound to a reference to the
reference cell containing the value 4 : int.

Allocation: ref: 'a -> 'a ref

11

Evaluation rules:

Evaluate expression e.1

ref e

If e reduces to a value v, create a new cell containing v and
return the reference to it.2

Typing rules: ref e

If e : t, then ref e : t ref.

Read: !: 'a ref -> 'a

12

Evaluation rules:

Evaluate expression e.1

!e

val r = ref (1 + 3)Example:

r 4evaluates to:

Here, r : int ref is bound to a reference to the cell
containing the value 4 : int and x : int is bound to 4.

If e reduces to reference to a cell containing v, then return v.2

val x = !r

and [4/x]

Read: !: 'a ref -> 'a

13

Evaluation rules:

Evaluate expression e.1

!e

If e reduces to reference to a cell containing v, then return v.2

Typing rules: !e

If e : t ref, then !e : t.

Write: := : 'a ref * 'a -> unit

14

Evaluation rules:

Evaluate expression e1.1

e1 := e2

val r = ref (1 + 3)Example:

r 8evaluates to:

Here, r : int ref is bound to a reference to the cell
containing the value 8 : int and () is returned.

r := (!r * 2)

and [()/it]

If e1 reduces to a reference r, then evaluate expression e2.2

If e2 reduces to a value v, update contents of r to v, return ().3

Write: := : 'a ref * 'a -> unit

15

Evaluation rules:

Evaluate expression e1.1

e1 := e2

If e1 reduces to a reference r, then evaluate expression e2.2

If e2 reduces to a value v, update contents of r to v, return ().3

Typing rules: e1 := e2

If e1 : t ref and e2 : t, then e1 := e2 : unit.

Reference cells support pattern matching

16

We can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
 | containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZeros (ref 0)

pattern

Reference cells support pattern matching

17

We can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
 | containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZeros (ref 0)

Reference cells support pattern matching

18

We can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
 | containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZeros (ref 0)

Reference cells support pattern matching

19

We can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
 | containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZeros (ref 0)

Reference cells support pattern matching

20

We can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
 | containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZeros (ref 0)

Sequential composition

21

In the presence of effects, the order of evaluation matters.

For convenience, SML supports the semicolon expression:

(e1; e2)

Which is syntactic sugar for:

let val _ = e1 in e2 end

Evaluate e1, executing effects but ignoring any returned value.1

Then, evaluate e2, executing effects and return the value of e2.2

Generalizes to:

(e1; e2; ...; en) : tn

Sequential composition

22

Example:

let
 val c = ref 10
in
 (print(Int.toString(!c));
 c)
end

What is the type of this let expression? int ref

What is its value? ref 10

What its effect? prints 10

Sequential composition

23

Alternative implementation of previous example:

let
 val c = ref 10
 val _ = print(Int.toString(!c))
in
 c
end

Aliasing

24

Consider this code:

val c = ref 10
val w = !c
val d = c
val () = d := 42
val v = !c

What values are w and v bound to?

w is bound to 10, v is bound to 42.

d is now referring to
the same cell as c

assignment to
d affects what can be

read from c

To account for aliasing, we must extend dynamics with a store.

Aliasing

25

To account for aliasing, we must extend dynamics with a store.

For pure expressions:

e ==> e'

For impure expressions:

{s | e} ==> {s' | e'}

store,
i.e., all allocated
reference cells

evaluation may alter
the store!

Aliasing

26

To account for aliasing, we must extend dynamics with a store.

For pure expressions:

e ==> e'

For impure expressions:

{s | e} ==> {s' | e'}

We won't go into any further details in 15-150.

More on this in 15-312!

Note: aliasing complicates reasoning about programs "

Extensional equivalence

27

For pure programs:

extensional equivalence as defined until now

allow equals to be replaced by equals ("referential transparency")

For imperative programs:

extensional equivalence must additionally account for the store

requires advanced program logics (even beyond 15-312)

For pure expressions e and e', to show e e', we must show
that e and e' are independent of any store.

≅

Extensional equivalence

28

For imperative programs:

extensional equivalence must additionally account for the store

requires advanced program logics (even beyond 15-312)

For pure expressions e and e', to show e e', we must show
that e and e' are independent of any store.

≅

Note:

ref types are so called equality types

For r : 'a ref and s : 'a ref, r = s evaluates to true, if r
and s are aliases, i.e., point to the same cell.

Race conditions

29

In the presence of mutation, reasoning about parallel program becomes
complicated.

fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n
val chk = ref 100
val _ = (deposit chk 50; withdraw chk 80)

What is the value of !chk?
70

Now, if we parallelize, what is the value of !chk?

Race conditions

30

In the presence of mutation, reasoning about parallel program becomes
complicated.

fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n
val chk = ref 100
val _ = (deposit chk 50, withdraw chk 80)

What is the value of !chk?
70

Now, if we parallelize, what is the value of !chk?

Race conditions

31

In the presence of mutation, reasoning about parallel program becomes
complicated.

fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n
val chk = ref 100
val _ = (deposit chk 50, withdraw chk 80)

What is the value of !chk?
70

Now, if we parallelize, what is the value of !chk?
We could end up with 20, 70, or 150.

Race conditions

32

In the presence of mutation, reasoning about parallel program becomes
complicated.

fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n
val chk = ref 100
val _ = (deposit chk 50, withdraw chk 80)

Mutation and parallelism leads to non-deterministic outcomes "

Persistent versus ephemeral data

33

Pure programs:

yield persistent data structures

facilitate reasoning and support deterministic parallelism

Imperative programs:

yield ephemeral data structures

complicate reasoning and demand concurrent scheduling

However, not all effects are evil.

When employed locally, effects can be benign.

Benign effects

34

A benign effect is an effect (such as mutation) that is localized within
some sufficiently small chunk of code (e.g., function or structure) so
that external users can sue the code as if it were purely functional.

Benign effects can be useful, for instance, in improving efficiency.

Let's look at some examples!

Because effect is local, local reasoning remains intact.

Example: graph reachability

35

Consider this directed graph:

1

2
3 4

We can represent this graph as a function, giving for a node the nodes
immediately reachable from it:

type graph = int -> int list

val G : graph = fn 1 => [2,3]
 | 2 => [1,3]
 | 3 => [4]
 | _ => []

Example: graph reachability

36

Now, let's define a function, reach g (x,y), determining whether y
is transitively reachable from x in graph g.

fun reach (g:graph) (x:int, y:int) : bool =
 let
 fun dfs n = (n=y) orelse (List.exists dfs (g n))
 in
 dfs x
 end did we reach y? neighbors of n

Example: graph reachability

37

Now, let's define a function, reach g (x,y), determining whether y
is transitively reachable from x in graph g.

fun reach (g:graph) (x:int, y:int) : bool =
 let
 fun dfs n = (n=y) orelse (List.exists dfs (g n))
 in
 dfs x
 end

Problem: reach can loop on our example graph, which is cyclic!

1

2
3 4

Example: graph reachability

38

We can fix this by recording who we have already visited.

fun mem (n:int) = List.exists (fn x => n=x)

fun reachable (g:graph) (x:int, y:int) : bool =
 let
 val visited = ref []
 fun dfs n = (n=y) orelse
 (not (mem n (!visited)) andalso
 (visited := n::(!visited);
 List.exists dfs (g n)))
 in
 dfs x
 end

mem n L checks
whether n is in list L

Example: graph reachability

39

We can fix this by recording who we have already visited.

fun mem (n:int) = List.exists (fn x => n=x)

fun reachable (g:graph) (x:int, y:int) : bool =
 let
 val visited = ref []
 fun dfs n = (n=y) orelse
 (not (mem n (!visited)) andalso
 (visited := n::(!visited);
 List.exists dfs (g n)))
 in
 dfs x
 end

reference that
records visited nodes

Example: graph reachability

40

We can fix this by recording who we have already visited.

fun mem (n:int) = List.exists (fn x => n=x)

fun reachable (g:graph) (x:int, y:int) : bool =
 let
 val visited = ref []
 fun dfs n = (n=y) orelse
 (not (mem n (!visited)) andalso
 (visited := n::(!visited);
 List.exists dfs (g n)))
 in
 dfs x
 end

only continue
if not has not yet been

visited

Example: graph reachability

41

We can fix this by recording who we have already visited.

fun mem (n:int) = List.exists (fn x => n=x)

fun reachable (g:graph) (x:int, y:int) : bool =
 let
 val visited = ref []
 fun dfs n = (n=y) orelse
 (not (mem n (!visited)) andalso
 (visited := n::(!visited);
 List.exists dfs (g n)))
 in
 dfs x
 end

update visited list

Example: random number generator

42

signature RANDOM =
sig
 type gen (*abstract *)
 val init: int -> gen (* REQUIRES: seed > 0 *)
 val random: gen -> int -> int
end

(Reference: "ML for the Working Programmer" by Paulson. 1996.)

bound
pseudo-random

nonnegative integer
less than bound

Example: random number generator

43

signature RANDOM =
sig
 type gen (*abstract *)
 val init: int -> gen (* REQUIRES: seed > 0 *)
 val random: gen -> int -> int
end

(Reference: "ML for the Working Programmer" by Paulson. 1996.)

val G = R.init(12345)
val L = List.tabulate(42,fn _ => R.random G 1000)

Example: random number generator

44

signature RANDOM =
sig
 type gen (*abstract *)
 val init: int -> gen (* REQUIRES: seed > 0 *)
 val random: gen -> int -> int
end

struct R :> RANDOM
 type gen = real ref
 val a = 16807.0
 val m = 2147483647.0
 fun next r = a * r - m*real(floor(a*r/m))
 val init = ref o real
 fun random g b = (g := next(!g);
 floor((!g/m)* (real b)))
end
(Reference: "ML for the Working Programmer" by Paulson. 1996.)

reference cell

Example: stream memoization

45

Previously, we had the following code inside our Stream structure:

(* delay : (unit -> 'front) -> 'a stream *)
fun delay (d) = Stream(d)

(* expose : 'a stream -> 'a front *)
fun expose (Stream(d)) = d ()

Let's add a hidden reference cell that remembers the result of
computing d().

We will will leave expose as is, but change delay.

Example: stream memoization

46

Updated function delay:

fun delay (d) =
 let
 val cell = ref d
 fun memoFn () =

 let
 val r = d()
 in
 (cell := (fn () => r); r)
 end
val _ = cell := memoFn

 in
 Stream (fn () => !cell())
 end

That's all for today.

47

