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Let's reconsider the correctness proofs that we carried out.

Can you think of an implicit assumption that we made when 
proving a function correct, ensuring that our reasoning is valid?

We assumed that it suffices to only consider the function 
specification and implementation, nothing else.

We carried out per-function (aka local) reasoning.

Functional programming validates local reasoning and guarantees that:

Repeated evaluation of an expression yields the same result.

Sequential and parallel evaluation of independent sub-
expressions produces the same result. 
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*(Local reasoning can be re-established by using program logics such as separation logic.)

In the presence of effects, local reasoning* breaks down.

Effect, aka anything else that we can observe when evaluating an 
expression other than the returned value.

• When two functions share state, mutations by one affect the other.
• A non-terminating function will cause its caller to diverge too.

Sequential and parallel evaluation of independent sub-
expressions may not produce the same result. 

In the presence of effects, the order of evaluation matters.

Repeated evaluation of an expression may not yield the same 
result.
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To reap all the benefits of functional programming, we have stayed 
entirely* in the pure fragment of SML until now.

*(Except for non-termination and exceptions.)

However, SML supports imperative features, such as reference cells, 
arrays, and commands for I/O.

We may use effects locally to increase efficiency, for example.

referred to as "benign effects"

Expressions that engender effects typically are of unit type.
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Shared state through mutable reference cells

reference type

typing and evaluation rules

Aliasing

Race conditions

Persistent versus ephemeral data

Examples of benign effects
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Reference type: t ref

*(Restriction: at top level, t must be monomorphic.)

Reference type values:

x : t ref
v

The type t ref represents mutable reference cells that store a 
value of type t.

Functions: ref : 'a -> 'a ref allocation
!   : 'a ref -> 'a read
:=  : 'a ref * 'a -> unit write

(where v : t)
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ref e

If e reduces to a value v, create a new cell containing v and 
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val r = ref (1 + 3)Example:

r 4evaluates to:

Here, r : int ref is bound to a reference to the 
reference cell containing the value 4 : int.
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Evaluation rules:

Evaluate expression e.1

ref e

If e reduces to a value v, create a new cell containing v and 
return the reference to it.2

Typing rules: ref e

If e : t, then ref e : t ref.
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Evaluate expression e.1

!e

val r = ref (1 + 3)Example:

r 4evaluates to:

Here, r : int ref is bound to a reference to the cell 
containing the value 4 : int and x : int is bound to 4.

If e reduces to reference to a cell containing v, then return v.2

val x = !r

and [4/x]
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e1 := e2

If e1 reduces to a reference r, then evaluate expression e2.2

If e2 reduces to a value v, update contents of r to v, return ().3

Typing rules: e1 := e2

If e1 : t ref and e2 : t, then e1 := e2 : unit.
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In the presence of effects, the order of evaluation matters.

For convenience, SML supports the semicolon expression:

(e1; e2)

Which is syntactic sugar for:

let val _ = e1 in e2 end

Evaluate e1, executing effects but ignoring any returned value.1

Then, evaluate e2, executing effects and return the value of e2.2

Generalizes to:

(e1; e2; ...; en) : tn
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Example:

let 
  val c = ref 10 
in 
  (print(Int.toString(!c)); 
   c) 
end

What is the type of this let expression? int ref

What is its value? ref 10

What its effect? prints 10
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Alternative implementation of previous example:

let 
  val c = ref 10 
  val _ = print(Int.toString(!c)) 
in 
  c 
end
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To account for aliasing, we must extend dynamics with a store.

For pure expressions:

e ==> e'

For impure expressions:

{s | e} ==> {s' | e'}

store, 
i.e., all allocated 
reference cells

evaluation may alter 
the store!
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To account for aliasing, we must extend dynamics with a store.

For pure expressions:

e ==> e'

For impure expressions:

{s | e} ==> {s' | e'}

We won't go into any further details in 15-150.

More on this in 15-312!

Note: aliasing complicates reasoning about programs "
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For imperative programs:

extensional equivalence must additionally account for the store

requires advanced program logics (even beyond 15-312)

For pure expressions e and e', to show e  e', we must show 
that e and e' are independent of any store.

≅

Note:

ref types are so called equality types

For r : 'a ref and s : 'a ref, r = s evaluates to true, if r 
and s are aliases, i.e., point to the same cell.
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In the presence of mutation, reasoning about parallel program becomes 
complicated.

fun deposit a n = a := !a + n 
fun withdraw a n = a := !a - n 
val chk = ref 100 
val _ = (deposit chk 50, withdraw chk 80)

What is the value of !chk?
70

Now, if we parallelize, what is the value of !chk?
We could end up with 20, 70, or 150.
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In the presence of mutation, reasoning about parallel program becomes 
complicated.

fun deposit a n = a := !a + n 
fun withdraw a n = a := !a - n 
val chk = ref 100 
val _ = (deposit chk 50, withdraw chk 80)

Mutation and parallelism leads to non-deterministic outcomes "
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Pure programs:

yield persistent data structures

facilitate reasoning and support deterministic parallelism

Imperative programs:

yield ephemeral data structures

complicate reasoning and demand concurrent scheduling

However, not all effects are evil.

When employed locally, effects can be benign.
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A benign effect is an effect (such as mutation) that is localized within 
some sufficiently small chunk of code (e.g., function or structure) so 
that external users can sue the code as if it were purely functional.

Benign effects can be useful, for instance, in improving efficiency.

Let's look at some examples!

Because effect is local, local reasoning remains intact.
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Consider this directed graph:

1

2
3 4

We can represent this graph as a function, giving for a node the nodes 
immediately reachable from it:

type  graph = int -> int list 

val G : graph = fn 1 => [2,3] 
                 | 2 => [1,3] 
                 | 3 => [4] 
                 | _ => [ ]
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We can fix this by recording who we have already visited.
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     in 
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We can fix this by recording who we have already visited.

fun mem (n:int) = List.exists (fn x => n=x) 

fun reachable (g:graph) (x:int, y:int) : bool = 
  let 
    val visited = ref [] 
    fun dfs n = (n=y) orelse 
                (not (mem n (!visited)) andalso 
                (visited := n::(!visited); 
                 List.exists dfs (g n))) 
     in 
        dfs x 
     end

update visited list
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signature RANDOM =  
sig 
  type gen (*abstract *) 
  val init: int -> gen (* REQUIRES: seed > 0 *) 
  val random: gen -> int -> int 
end

(Reference: "ML for the Working Programmer" by Paulson.  1996.)

bound
pseudo-random 

nonnegative integer 
less than bound 
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signature RANDOM =  
sig 
  type gen (*abstract *) 
  val init: int -> gen (* REQUIRES: seed > 0 *) 
  val random: gen -> int -> int 
end

(Reference: "ML for the Working Programmer" by Paulson.  1996.)

val G = R.init(12345) 
val L = List.tabulate(42,fn _ => R.random G 1000)
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signature RANDOM =  
sig 
  type gen (*abstract *) 
  val init: int -> gen (* REQUIRES: seed > 0 *) 
  val random: gen -> int -> int 
end

struct R :> RANDOM 
  type gen = real ref 
  val a = 16807.0 
  val m = 2147483647.0 
  fun next r = a * r - m*real(floor(a*r/m)) 
  val init = ref o real 
  fun random g b = (g := next(!g); 
                    floor( (!g/m)* (real b))) 
end
(Reference: "ML for the Working Programmer" by Paulson.  1996.)
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Previously, we had the following code inside our Stream structure:

(* delay : (unit -> 'front) -> 'a stream *) 
fun delay (d) = Stream(d) 

(* expose : 'a stream -> 'a front *) 
fun expose (Stream(d)) = d ()

Let's add a hidden reference cell that remembers the result of 
computing d().

We will will leave expose as is, but change delay.
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Updated function delay:

fun delay (d) = 
  let 
    val cell = ref d 
    fun memoFn () = 

  let 
    val r = d() 
  in 
    (cell := (fn () => r); r) 
  end 
val _ = cell := memoFn 

  in 
    Stream (fn () => !cell()) 
  end



That's all for today.

47


