
15-150 Fall 2024

Dilsun Kaynar

Review

What is on the final exam?

Advice for the final

Review

Lecture slides, notes, labs, homeworks
Practice

Sleep

If languages were cars …

http://crashworks.org/if_programming_languages_were_vehicles/

C was the great all-arounder: compact, powerful, goes
everywhere, and reliable in situations where your life

depends on it.

If languages were cars …

http://crashworks.org/if_programming_languages_were_vehicles/

C++ is the new C — twice the power, twice the size, works in
hostile environments, and if you try to use it without care

and special training you will probably crash.

If languages were cars …

http://crashworks.org/if_programming_languages_were_vehicles/

Java is another attempt to improve on C. It sort of gets the
job done, but it's way slower, bulkier, spews pollution

everywhere, …

If languages were cars …

http://crashworks.org/if_programming_languages_were_vehicles/

Python is great for everyday tasks: easy to drive, versatile, comes with all the conveniences built in.

If languages were cars …

Thanks to Stephen Brookes

What is SML?
• A functional programming language

• A typed language

• A polymorphic typed language

• A call-by-value language

Computation =
evaluation

Only well-typed
expressions are

evaluated

well-typed expressions
have a most general type

Function calls evaluate
their arguments first

Benefits

• Referential transparency

• Equivalent code is interchangeable, in all contexts

• Simple compositional reasoning

•Mathematical foundations

• Can use math and logic to prove correctness

• Use induction to analyze recursive code and data

• Functions are values

• Can be used as data in lists, tuples, …

• and argument or result of other functions

• Parallelism

• Expression evaluation has no side-

effects

• Evaluation order makes no

difference to the value obtained

•Can evaluate independent code in

parallel

Principles

• Expressions must be well-typed.

Well-typed expressions don't go wrong.

• Every specification needs a proof.

Well-proven programs do the right thing.

• Every function needs a specification.

Well-specified programs are easy to

understand.

• Large programs should be designed as

modules.

Well-interfaced code is easier to maintain.

• Data structures, algorithms.

Good choice of data structure leads to better

code.

• Exploit parallelism.

Parallel code may run faster.

• Strive for simplicity.

Programs should be as simple

as possible, but no simpler.

Functions are values

Some values are -- integers, lists of integers, …

Some values do -- functions, streams, …

Functions can be used to represent

graphs, dictionaries, …

Higher order functions

•Functions can take functions as arguments

•Functions can return functions as results

List.map : (’a -> ’b) -> (’a list -> ’b list)

Seq.map : (’a -> ’b) -> (’a seq -> ’b seq)

List.foldl, foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

Seq.reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

•Allow uniform solutions to parameterized problems

•Write once, use many ways

•Can represent patterns of computation

•Can express control flow such as continuations

•Let you delay, manipulate, ignore a computation

ins : (’a * ’a -> order) -> (’a * ’a list -> ’a list)

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

fun isort cmp = foldr (ins cmp) []

Staging
• A curried function may do useful work

before getting all of its arguments

• May improve efficiency by doing this

work once, early, rather than in every

function call

•Choose argument order wisely

Recursion

• ML supports recursive function definition

fun f(x:t1):t2 = e

• Use induction to prove properties

Datatypes

• Represent your problem, your way

• Extend the type discipline, seamlessly

• Can be recursive and parametric

’a list ’a tree

Structural induction
• The set of values of a recursive

datatype can be characterized

inductively

• For every recursive datatype

definition there is a principle of

structural induction

•Use to prove properties of values...
For all types t and values T : t tree,

inord(T) evaluates to a value...

Modules

• Signatures as interfaces

• Structures as implementations

signature DICT =

sig

structure Key : ORDER

type ’a dict

val empty : ’a dict

...

end

structure Bst : DICT =

struct

structure Key = ...

datatype ’a dict = Empty | ...

val empty = Empty

...

end

hide information …

• Users of a structure can only see what’s

visible in the signature

support abstract code design

•abstract data types with limited

operations

•type classes: types with

operations

invariants guide design and

support localized reasoning

Functors
• Build implementations from

implementations

• Encapsulate common constructions

• Allow code re-use

Work and Span

• Can reason abstractly about both sequential and

parallel complexity

W = sequential complexity

S = parallel complexity

• Can extract recurrence relations for W and S

from a recursive function definition

• Can solve or find asymptotic approximation

• Can use a cost graph for an expression evaluation

W = size

S = depth Abstracts away from scheduling

details

Functional Programming in

Practice

• Theorem provers, hardware/software

verification

• Companies in finance and

telecommunications

• Compilers for most functional

languages are implemented in

themselves

You might also like

• 15-210: Parallel Data Structures and Algorithms

• 15-312: Principles of Programming Languages

• 15-317: Constructive Logic

• 15-411: Compiler Design

• 15-451: Algorithms

• 80-413: Category Theory

Two Sources of

Beauty In Programs

• Structure: code as an expression of an

idea

• Efficiency: code as instructions for a

computer

Bob Harper’s talk at John Mitchell’s birthday celebration, 2016

It has been a

pleasure to have

you as my

students!

Thanks to our

awesome course

staff!

	Slide 1: 15-150 Fall 2024
	Slide 2
	Slide 3: Advice for the final
	Slide 4: If languages were cars …
	Slide 5: If languages were cars …
	Slide 6: If languages were cars …
	Slide 7: If languages were cars …
	Slide 9: If languages were cars …
	Slide 10: What is SML?
	Slide 11: Benefits
	Slide 12
	Slide 13
	Slide 14: Principles
	Slide 15
	Slide 16
	Slide 17: Functions are values
	Slide 18: Higher order functions
	Slide 19
	Slide 20
	Slide 21: Staging
	Slide 22: Recursion
	Slide 23: Datatypes
	Slide 24: Structural induction
	Slide 25: Modules
	Slide 26
	Slide 27: hide information …
	Slide 28: support abstract code design
	Slide 29: Functors
	Slide 30: Work and Span
	Slide 31
	Slide 32
	Slide 103: Functional Programming in Practice
	Slide 104: You might also like
	Slide 105: Two Sources of Beauty In Programs
	Slide 106: It has been a pleasure to have you as my students!
	Slide 107: Thanks to our awesome course staff!

