
INSTRUCTIONS

- Due: Thursday, 27 September 2024 at 10:00 PM ET. Remember that you may use up to 2 slip days for the Written Homework making the last day to submit Saturday, 28 September 2024 at 10:00 PM ET.
- Format: Write your answers in the yoursolution.tex file and compile a pdf (preferred) or you can type directly on the blank pdf. Make sure that your answers are within the dedicated regions for each question/part. If you do not follow this format, we may deduct points. Handwritten solutions are not acceptable and may lead to lost points.
- How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 15-281, click on the HW4 assignment, and upload your pdf containing your answers.
- Policy: See the course website for homework policies and academic integrity.

Name	
Andrew ID	
Hours to complete?	
	\bigcirc (0, 2] hours \bigcirc (2, 4] hours \bigcirc (4, 6] hours
	\bigcirc (6, 8] hours \bigcirc > 8 hours

Q1. [11 pts] Alpha-Beta Pruning with Iterative Deepening

Evaluation	Function
State, s	f(s)
B	4
C	14
D	19
E	5
F	7
G	8
H	17
I	16
J	15
K	23
L	20
M	26

Iterative deepening may be combined with pruning in game trees to increase the pruning and speed up the search. To see how this works, we are going to prune the above fragment of a tree using the following steps:

- 1. Select the order of the min-node children, B, C, D, based on the values of the evaluation function of those states, f(B), f(C), f(D). Specifically, using the evaluation function of the children (not the grandchildren), order the children from best to worst evaluation function value, from the perspective of the parent node.
- 2. Prune the (sub-)tree using the resulting order and limiting the depth to the grandchildren(E/F/G/...), using the evaluation function on the grandchildren as their value.
- (a) [3 pts] What would the resulting order of the subtrees be?

() B then C then I

\circ	$C \; { m t.}$	hen	D	then	E

\cap	D then	C +1	T
()	, , then	C Enen	-

(b) [4 pts] Prune the tree with this new ordering of the child subtrees. (Grandchildren are still visited left to right.) Write in the box below the nodes that would NOT be visited because of pruning. Note: It might be helpful to sketch a new version of tree with the child subtrees reordered.

Nodes:	

Iterative deepening would then repeat steps (a) and (b) one level deeper, but skipping any subtrees that were pruned.

(c) [4 pts] When alpha-beta pruning is applied to a minimax tree, it is guaranteed to return the same move that standard minimax without pruning would return. This is because it prunes away branches that cannot possibly influence the final decision.

Is this iterative deepening with pruning method also guaranteed to return the same move as standard minimax on the complete tree? Briefly explain your reasoning.

O Yes	O No
Explain:	

O 37

Explain:			

Q2. [22 pts] Pinky's Day

Pinky is trying to organize her time in a day. Except for sleeping, eating, and (most importantly) posting on Instagram (@pinkythepenguin15281), she still has 8 hours to spare each day. Two important things in her life are partying and doing homework. In order to keep up with her classes, she has to spend at least 2 hours per day on homework. But she doesn't want the wear herself out, so the number of hours she spends partying should equal at least half the number of hours she spends on homework. On the other hand, she feels bad if she parties too much, so her party time should not exceed her homework time by more than 3 hours.

Pinky knows that she will gain 1 unit of happiness for every hour she parties, and she will loose 0.5 unit of happiness for every hour she spends on homework. But she needs your help to figure how much time she should spend on partying and how much time she should spend doing homework such that her happiness is **maximized**.

(a) [9 pts] Write this problem as an LP in inequality form as defined in lecture. Define variable x_1 to be hours

- (b) [9 pts] Accurately plot the graphical representation of this linear program. Specifically:
 - Plot the boundary of each halfspace as a line (no need to shade or draw normal vectors), and
 - Plot the cost vector as an arrow with magnitude one, somewhere within the feasible region.

Do not draw; use a plotting tool such as Python matplotlib and include the resulting image here. Be sure to label the axes of your plot, including tick-marks. Display your plot with a square aspect ratio, e.g. in matplotlib: plt.axis("equal"). Additionally, zoom your plot to make the entire feasible region visible.

Tip to a plot vector $[v_1, v_2]^T$ in matplotlib starting at some point (x_1, x_2) :

```
plt.quiver(x1, x2, v1, v2, angles="xy", scale_units="xy", scale=1)
```

Tip to properly control scaling using a specific width and height:

```
plt.figure(figsize=(width,height))
```

We have included some starter code for you in figures/plot_graph.py. You will need to modify the plot_graph() function and fill in code for compute_unit_length() yourself.

Note: For the sake of grading please let your x be of range [-2, 10] and y be of range [-4, 8].

ot:			

(c) [4 pts] Find the optimal solution to the LP problem. Give the solution hours she should spend in party and homework respectively and her happiness.

Party:	Homework:	Happiness:

Q3. [16 pts] Graphing LPs

For the inequality form of a linear program, and a given A matrix and \mathbf{b} vector,

$$\min_{\mathbf{x}} \ \mathbf{c}^T \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$

For each row i of A and b, accurately plot 1) the line $a_{i,1}x_1 + a_{i,2}x_2 = b_i$ and 2) the vector $[a_{i,1}, a_{i,2}]^T$ as an arrow beginning at any point on its respective line with magnitude one.

Tip to plot a vector $[v_1, v_2]^T$ in matplotlib starting at some point (x_1, x_2) :

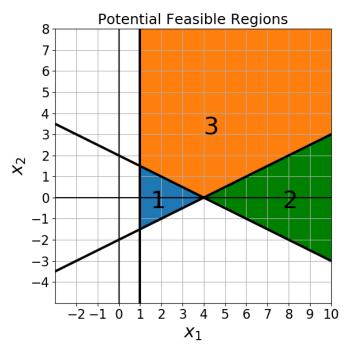
Tip to properly control scaling using a specific width and height: plt.figure(figsize=(width,height))

Do not draw; use a plotting tool such as Python matplotlib and include the resulting image here. Be sure to label the axes of your plot, including tick-marks. Display your plot with a square aspect ratio, e.g. in matplotlib: plt.axis("equal"). Additionally, zoom your plot or adjust the axes such that all of the vectors are visible. You do not need to shade the feasible regions.

We have included some starter code for you in plot_graph.py. You will need to modify the plot_graph() function and fill in code for compute_unit_length() yourself.

(a) [8 pts]

Plot:


$$A = \begin{bmatrix} 3 & 5 \\ 7 & 6 \\ 12 & 6 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 17 \\ 27 \end{bmatrix}$$

(b) [8 pts]

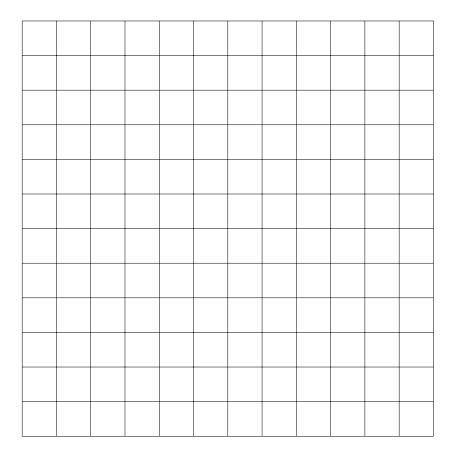
$$A = \begin{bmatrix} -2 & -1 \\ 2 & 5 \\ 7 & 2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -4 \\ 10 \\ 11 \end{bmatrix}$$

Plot:		

Q4. [18 pts] Feasible Regions

In this problem, you are given a graph with constraint boundary lines (**bolded**) and potential feasible regions. You may assume shaded regions at the edge of the plot continue to infinity. Provide a corresponding A and \mathbf{b} using the inequality form below which defines each feasible region in the boxes below. You must include all constraints.

$$\begin{aligned} & \underset{\mathbf{x}}{\text{min.}} \ \mathbf{c}^T \mathbf{x} \\ & \text{s.t.} \ A\mathbf{x} \leq \mathbf{b} \end{aligned}$$


(a)	[6 pts] Feasible Region 1	
	A:	b:
(b)	[6 pts] Feasible Region 2	
	A:	b:
(c)	[6 pts] Feasible Region 3	
` ,	A:	b:

Q5. [23 pts] Integer Programming

Stock portfolio investment is a common application of linear and integer programming. Suppose you are interested in investing in two companies, PinkyCorp and Honk Inc. Let x_1 represent the number of shares of PinkyCorp stock you purchase and x_2 be the number of shares of Honk Inc. A good way to hedge your bets is to diversify your portfolio, so you want at least 2 shares of PinkyCorp's stock and at least 2 shares of Honk Inc's. One share of PinkyCorp costs \$1, and one share of Honk Inc. costs \$2. You want to spend at most \$10. You also want to keep your risk below some risk threshold R. Each share of PinkyCorp has risk 3, and each share of Honk Inc. has risk 1. How much of each stock should you buy to maximize profits if PinkyCorp has profit \$4 per share, and Honk Inc. has profit \$1 per share.

A:	$\ \mathbf{b}$:	c:	
4 pts] If $R = 13$, wha	at are the corners (x_1, x_2) constr	ained polygon?	
Corners:			

(Optional) For partial credit on (b) and (c), you may choose to show your work below:

							9
		What are the coordinates nization problem?	(x_1, x_2) of the optimal α	objective? W	hat is the optim	nal objective value	of this
		Solution Coordinates:	Profit:				
` '	buy v	You should find that the whole shares of stock. Run	branch and bound to fi	_			
		d buy. Follow these instruct	· ·				
	f	Each iteration corresponds to corresponds the correct correct treatment in the contract of the correct	oranch and bound algori				
	f	Specify ALL the constraint first branch on $x_2 \leq 10$ and $x_2 \geq 11$. If you then pull $x_2 \geq 11$.	$x_2 \ge 11$, then you'd write	te for the left	$branch x_2 \le 10$	and for the write b	oranch
	V	would have left branch " x_2	$\geq 11, x_1 \leq 20$ " and right	t branch " x_2	$\geq 11, x_1 \geq 21$ "	_ ,	
		f a particular solution is in					
Itera 1	ation	Left Branch Constraints	Left Solution (x_1, x_2)	Right Bran	nch Constraints	Right Solution (x	(x_1, x_2)
-		(i)	(ii)	(iii)		(iv)	
2							
		(v)	(vi)	(vii)		(viii)	
3		(•)	()	(•)		()	
		(ix)	(x)	(xi)		(xii)	
4		()	(-)				
		(xiii)	(xiv)	(xv)		(xvi)	
	What	is the optimal objective an	d its value of the integer	er solution of	this minimization	on problem?	
	IP S	Solution Coordinates:	Profit:				
	not cl	You decide that you're winange any other constraints profit given the rest of the	except the value of risk				
	_	imum R :	New IP Solution:		New Profit:		

Q6. [10 pts] Ethical Considerations for Amazon Delivery Routes

The following question will be about Amazon's $Cost\ Saving\ Routing\ Algorithm\ Makes\ Drivers\ Walk\ Into\ Traffic:$ https://www.vice.com/en/article/amazons-cost-saving-routing-algorithm-makes-drivers-walk-into-traffic/

	do you think these are being used?
	Answer:
	[3 pts] Why are these parameters in conflict with the delivery drivers' needs? Additionally, give two possible parameters that the routing algorithm could add to make it more fair for the drivers.
	Answer:
, .	
` /	[3 pts] Mike, the anonymous interviewee, gave a lot of information about his route and troubles in the interview. Do you think it would be ethical for Amazon, using their data on delivery routes, to design an algorithm to search for who Mike really was? Why or why not?
	Answer: