
Warm-up as you log in
Write the pseudo code for breadth first search and depth first search

▪ Iterative version, not recursive

class TreeNode

TreeNode[] children()

boolean isGoal()

BFS(TreeNode start)…

DFS(TreeNode start)…

AI: Representation and Problem Solving

Agents and Search

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

Agents and Environments

Search Problems

Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪Uniform-Cost Search

Rationality, contd.
What is rational depends on:

▪ Performance measure

▪ Agent’s prior knowledge of environment

▪ Actions available to agent

▪ Percept sequence to date

Being rational means maximizing your expected utility

Rational Agents
Are rational agents omniscient?
▪ No – they are limited by the available percepts

Are rational agents clairvoyant?
▪ No – they may lack knowledge of the environment dynamics

Do rational agents explore and learn?
▪ Yes – in unknown environments these are essential

So rational agents are not necessarily successful, but they are
autonomous (i.e., transcend initial program)

Task Environment - PEAS

Performance measure

▪ -1 per step; +10 food; +500 win; -500 die;
+200 hit scared ghost

Environment

▪ Pacman dynamics (incl ghost behavior)

Actuators

▪ North, South, East, West, (Stop)

Sensors

▪ Entire state is visible

PEAS: Automated Taxi

Performance measure
▪ Income, happy customer, vehicle costs, fines,

insurance premiums

Environment
▪ US streets, other drivers, customers

Actuators
▪ Steering, brake, gas, display/speaker

Sensors
▪ Camera, radar, accelerometer, engine sensors,

microphone

Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/

Environment Types

Pacman Taxi

Fully or partially observable

Single agent or multi-agent

Deterministic or stochastic

Static or dynamic

Discrete or continuous

Reflex Agents

Reflex agents:
▪ Choose action based on current percept

(and maybe memory)

▪ May have memory or a model of the
world’s current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Agents that Plan Ahead

Planning agents:
▪ Decisions based on predicted consequences of actions

▪ Must have a transition model: how the world evolves
in response to actions

▪ Must formulate a goal

▪ Consider how the world WOULD BE

Spectrum of deliberativeness:
▪ Generate complete, optimal plan offline, then execute

▪ Generate a simple, greedy plan, start executing, replan
when something goes wrong

Search Problems

Search Problems

A search problem consists of:

▪ A state space

▪ For each state, a set
 Actions(s) of allowable actions

▪ A transition model Result(s,a)

▪ A step cost function c(s,a,s’)

▪ A start state and a goal test

A solution is a sequence of actions (a plan) which transforms
the start state to a goal state

N

E

{N, E}
1

1

Search Problems Are Models

Example: Travelling in Romania

State space:
▪ Cities

Actions:
▪ Go to adjacent city

Transition model
▪ Result(A, Go(B)) = B

Step cost
▪ Distance along road link

Start state:
▪ Arad

Goal test:
▪ Is state == Bucharest?

Solution?
Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

What’s in a State Space?

• Problem: Pathing
• State representation: (x,y) location

• Actions: NSEW

• Transition model: update location

• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• State representation: {(x,y), dot booleans}

• Actions: NSEW

• Transition model: update location and
possibly a dot boolean

• Goal test: dots all false

The real world state includes every last detail of the environment

A search state abstracts away details not needed to solve the problem

State Space Sizes?

World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)

Safe Passage

Problem: eat all dots while keeping the ghosts perma-scared

What does the state representation have to specify?
▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent transitions resulting from actions

▪ The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only
once!

We can rarely build this full graph in memory (it’s
too big), but it’s a useful idea

More Examples

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

More Examples
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

State Space Graphs vs. Search Trees

State space graph

Important: Lots of repeated structure in the search tree!

Resulting search tree

We build a search tree by traversing various paths in a state space graph,
beginning from a specific start state.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

S

a b

G G ab

G a Gb

∞

Tree Search vs Graph Search

function TREE_SEARCH(problem) returns a solution, or failure

 initialize the frontier as a specific work list (stack, queue, priority queue)

 add initial state of problem to frontier

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 for each resulting child from node

 add child to the frontier

function GRAPH_SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a specific work list (stack, queue, priority queue)

 add initial state of problem to frontier

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First (Graph) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Explored set prevents
loops and repeated work

Poll 1
function GRAPH-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a specific work list (stack, queue, priority queue)

 add initial state of problem to frontier

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

Poll 1
What is the relationship between these sets of states
after each loop iteration in GRAPH_SEARCH?

(Loop invariants!!!)

A
Explored Never Seen

Frontier

B
Explored Never Seen

Frontier

C
Explored Never Seen

Frontier

Graph Search
This graph search algorithm overlays a tree on a graph

The frontier states separate the explored states from never seen states

Images: AIMA, Figure 3.8, 3.9

A Note on Implementation

Nodes have

 state, parent, action, path-cost

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

A child of parent_node by action a has:

state = result(parent_node.state,a)

parent = parent_node

action = a

path-cost = parent_node.path_cost +
step_cost(parent_ node.state, a, self.state)

Extract solution by tracing back parent pointers, collecting actions

Search Algorithm Properties

BFS vs DFS

BFS vs DFS
Is the following demo using BFS or DFS

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

BFS vs DFS

When will BFS outperform DFS?

When will DFS outperform BFS?

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Are these the properties for BFS or DFS?

▪ Takes O(bm) time

▪ Uses O(bm) space on frontier

▪ Complete with graph search

▪ Not optimal unless all goals are in the same level
(and the same step cost everywhere)

Poll 2

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

What nodes does DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

How much space does the frontier take?
▪ Only has siblings on path to root, so O(bm)

Is it complete?
▪ m could be infinite, so only if we prevent cycles

(graph search)

Is it optimal?
▪ No, it finds the “leftmost” solution, regardless of

depth or cost

Breadth-First Search (BFS) Properties

What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bs)

Is it complete?
▪ s must be finite if a solution exists, so yes!

Is it optimal?
▪ Only if costs are all the same (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest level

searched, so not so bad!

Uniform Cost Search

Finding a Least-Cost Path

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Uniform Cost (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Frontier is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost
contours

2

function GRAPH_SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a specific work list (stack, queue, priority queue)

 add initial state of problem to frontier

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

 initialize the explored set to be empty

 initialize the frontier as a priority queue using node path_cost as the priority

 add initial state of problem to frontier with path_cost = 0

 loop do

 if the frontier is empty then

 return failure

 choose a node and remove it from the frontier

 if the node contains a goal state then

 return the corresponding solution

 add the node state to the explored set

 for each resulting child from node

 if the child state is not already in the frontier or explored set then

 add child to the frontier

 else if the child is already in the frontier with higher path_cost then

 replace that frontier node with child

S

A

B

C

D

G

1

4

2

4

1

3

Walk-through UCS

S

A

B

C

D

G

1

4

2

4

1

3

Walk-through UCS

S

A

B

C

D

G

1

4

2

4

1

3

Frontier
S: 0
S-A: 1
S-B: 4
S-A-C: 3
S-A-C-D: 7
S-B-D: 5 ??

Explored
S
A
C
B

S

A

B

C

DS

A

B

C

Walk-through UCS

S

A

B

C

D

G

1

4

2

4

1

3

Frontier
S: 0
S-A: 1
S-B: 4
S-A-C: 3
S-A-C-D: 7
S-B-D: 5
S-B-D-G: 8

Explored
S
A
C
B
D

Replaced by
better path to D!

Result: S-B-D-G (path cost 8)

S

A

B

C

D

G

S

A

B

C

D

UCS: Another Example

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

UCS: Another Example

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2Frontier
S: 0
S-d: 3
S-e: 9
S-p: 1
S-p-q: 16
S-d-b: 4
S-d-c: 11
S-d-e: 5 ??

Explored
S
p
d

UCS: Another Example

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2Frontier
S: 0
S-d: 3
S-e: 9
S-p: 1
S-p-q: 16
S-d-b: 4
S-d-c: 11
S-d-e: 5
S-d-b-a: 6
S-d-e-h: 13
S-d-e-r: 7

Explored
S
p
d
b
e
a
r
f

S-d-e-r-f: 9
S-d-e-r-f-c: 12??
S-d-e-r-f-G: 11

Add S-d-e-r-f-c: 12 to frontier?
→ No, there is a better path to c on the

frontier, S-d-c: 11

I see G on the frontier. Are we done?
→ No, the goal test doesn't come until

after we pop a node from the frontier

UCS: Another Example

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2Frontier
S: 0
S-d: 3
S-e: 9
S-p: 1
S-p-q: 16
S-d-b: 4
S-d-c: 11
S-d-e: 5
S-d-b-a: 6
S-d-e-h: 13
S-d-e-r: 7

Explored
S
p
d
b
e
a
r
f
c

S-d-e-r-f: 9
S-d-e-r-f-c: 12
S-d-e-r-f-G: 11

FYI: Breaking tie at cost 11 alphabetically

a is already on the explored set, so we
don't consider adding S-d-c-a

Result: S-d-e-r-f-G with cost 11

…

Uniform Cost Search (UCS) Properties
What nodes does UCS expand?

▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

How much space does the frontier take?

▪ Has roughly the last tier, so O(bC*/)

Is it complete?

▪ Assuming best solution has a finite cost and minimum arc
cost is positive, yes!

Is it optimal?

▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c 3

c 2

c 1

Uniform Cost Issues

Remember:

▪ UCS explores increasing cost contours

The good:

▪ UCS is complete and optimal!

The bad:
▪Explores options in every “direction”
▪No information about goal location

We’ll fix that!

Start Goal

…

c 3

c 2

c 1

	Slide 1: Warm-up as you log in
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Outline
	Slide 4: Rationality, contd.
	Slide 5: Rational Agents
	Slide 6: Task Environment - PEAS
	Slide 7: PEAS: Automated Taxi
	Slide 8: Environment Types
	Slide 9: Reflex Agents
	Slide 11: Agents that Plan Ahead
	Slide 12: Search Problems
	Slide 13: Search Problems
	Slide 14: Search Problems Are Models
	Slide 15: Example: Travelling in Romania
	Slide 16: What’s in a State Space?
	Slide 17: State Space Sizes?
	Slide 18: Safe Passage
	Slide 19: State Space Graphs and Search Trees
	Slide 20: State Space Graphs
	Slide 21: More Examples
	Slide 22: More Examples
	Slide 23: State Space Graphs vs. Search Trees
	Slide 24: State Space Graphs vs. Search Trees
	Slide 25: Tree Search vs Graph Search
	Slide 26
	Slide 27
	Slide 28: Depth-First (Tree) Search
	Slide 29: Depth-First (Graph) Search
	Slide 30: Poll 1
	Slide 31: Poll 1
	Slide 32: Graph Search
	Slide 33: A Note on Implementation
	Slide 34: Search Algorithm Properties
	Slide 35: BFS vs DFS
	Slide 36: BFS vs DFS
	Slide 38: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 39: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 40: BFS vs DFS
	Slide 41: Search Algorithm Properties
	Slide 42: Search Algorithm Properties
	Slide 43: Poll 2
	Slide 44: Depth-First Search (DFS) Properties
	Slide 45: Breadth-First Search (BFS) Properties
	Slide 46: Iterative Deepening
	Slide 47: Uniform Cost Search
	Slide 48: Finding a Least-Cost Path
	Slide 49: Depth-First (Tree) Search
	Slide 50: Breadth-First (Tree) Search
	Slide 51: Uniform Cost (Tree) Search
	Slide 52
	Slide 53
	Slide 54: Walk-through UCS
	Slide 55: Walk-through UCS
	Slide 56: Walk-through UCS
	Slide 57: UCS: Another Example
	Slide 58: UCS: Another Example
	Slide 59: UCS: Another Example
	Slide 60: UCS: Another Example
	Slide 61: Uniform Cost Search (UCS) Properties
	Slide 62: Uniform Cost Issues

