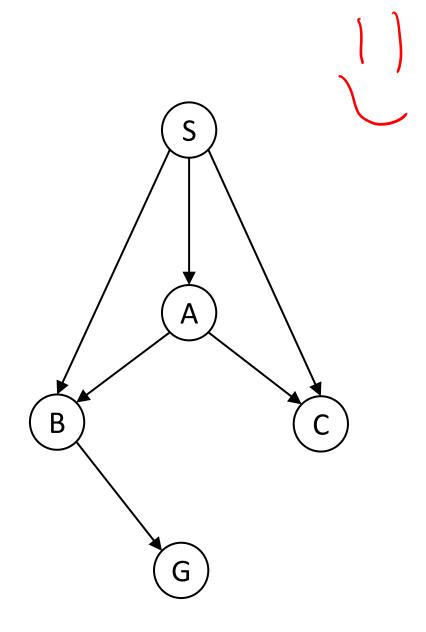
Warm-up: DFS Graph Search

Why is the answer S->B->G, not S->A->B->G?

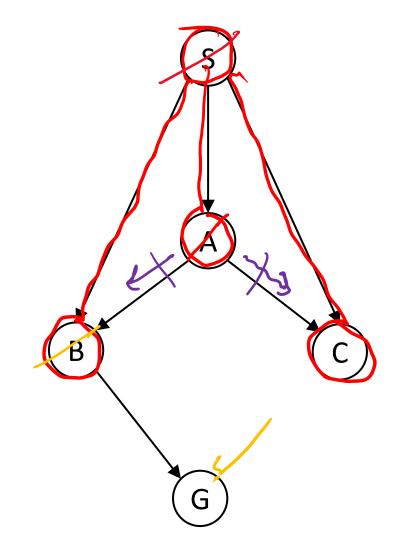
After all, we were doing DFS and breaking ties alphabetically.



Warm-up: DFS Graph Search

Why is the answer S->B->G, not S->A->B->G? After all, we were doing DFS and breaking ties alphabetically.

Exp: SAB Front: 8 S-AS-BS-C



Plan

Last time

Tree search vs graph search

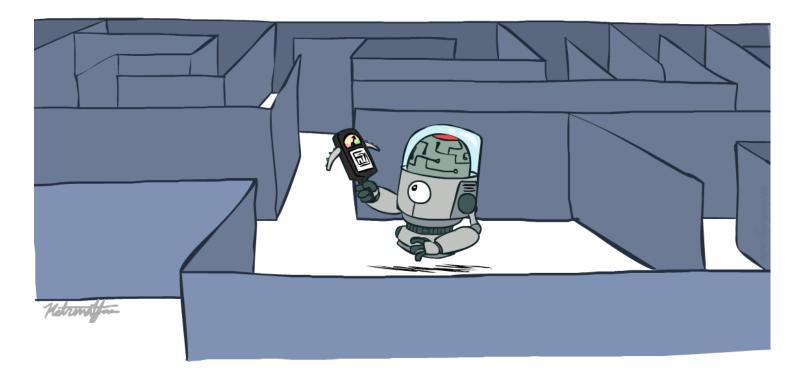
Today _>

- Uniform cost search
- Heuristics
- Greedy search
- A* search
 - Optimality
- [More on heuristics]

Uniform Cost Search

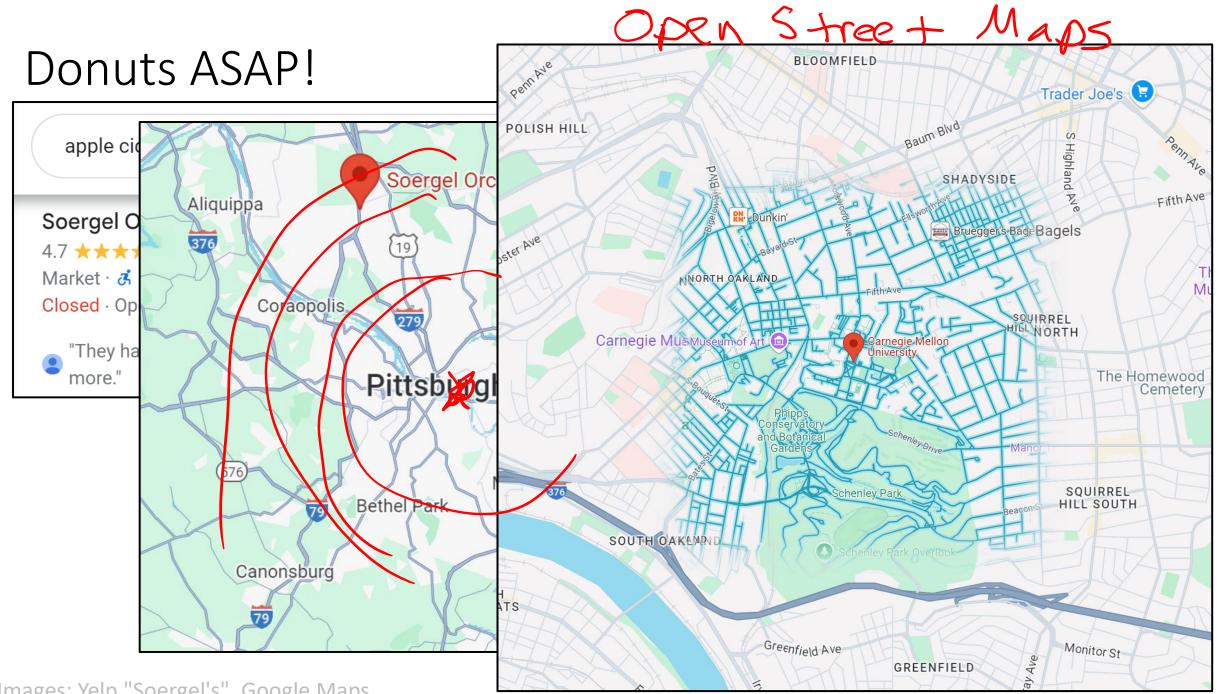
Back to Lecture 2 slides

AI: Representation and Problem Solving Informed Search



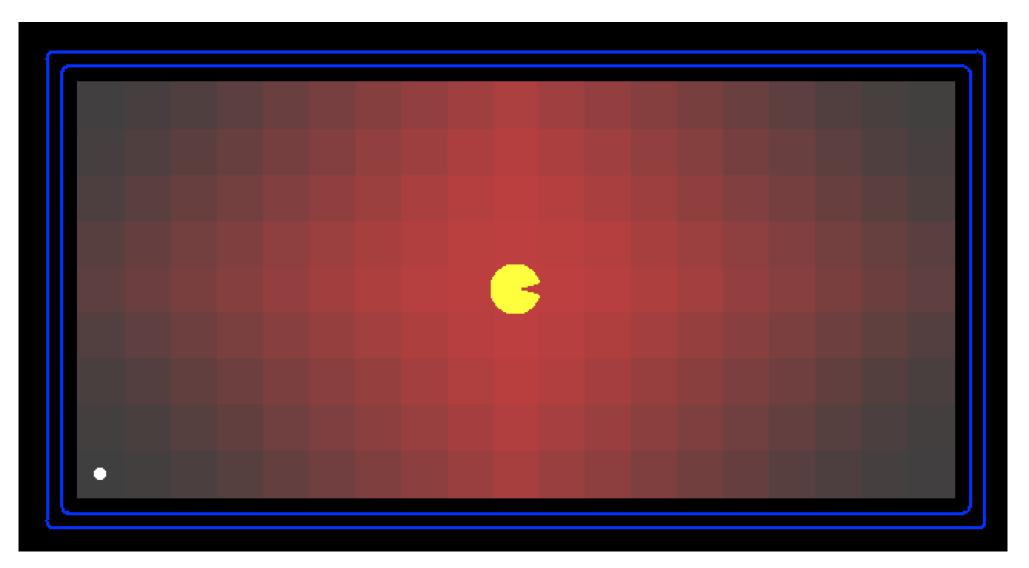
Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

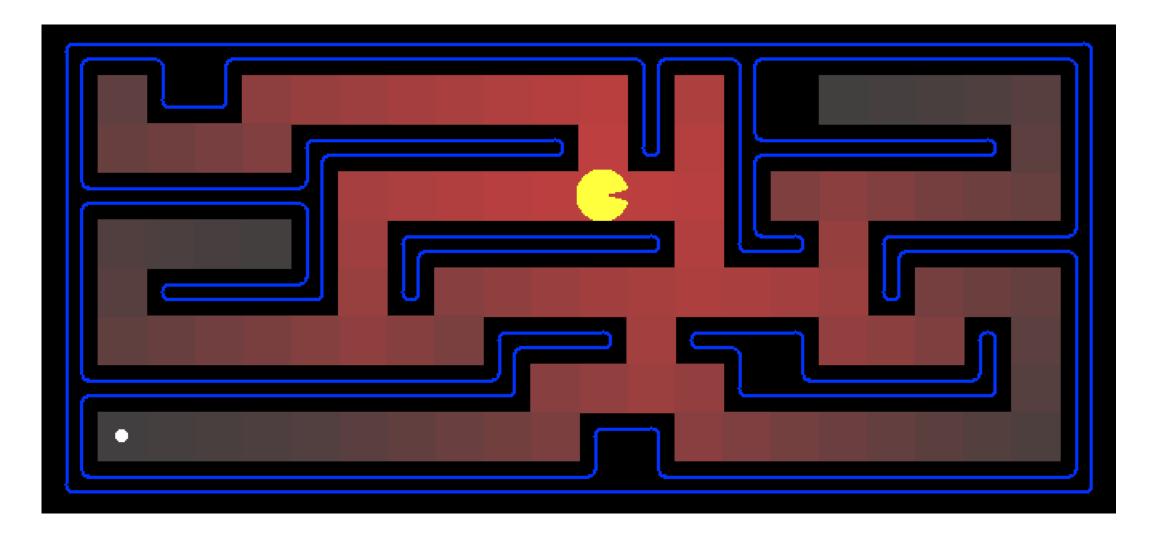


Images: Yelp "Soergel's", Google Maps

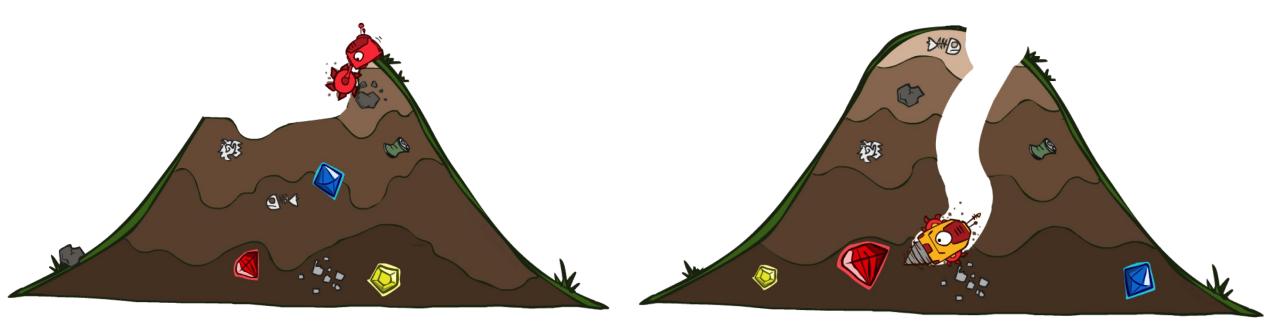
Demo Contours UCS Empty



Demo Contours UCS Pacman Small Maze



Uninformed vs Informed Search

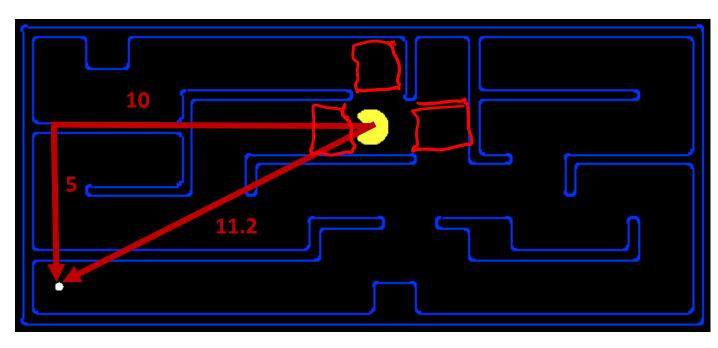


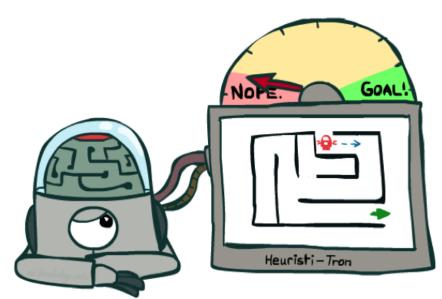
Informed Search

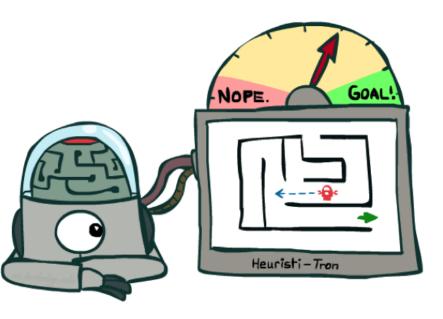
Search Heuristics

A heuristic is:

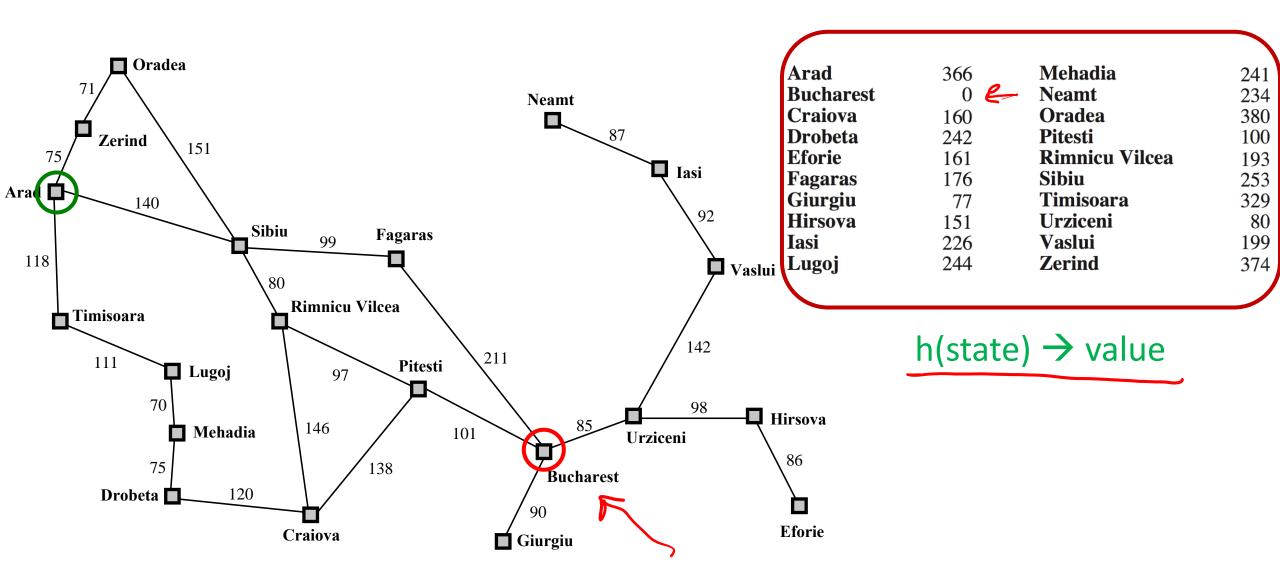
- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing





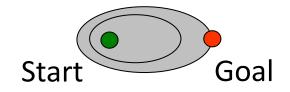


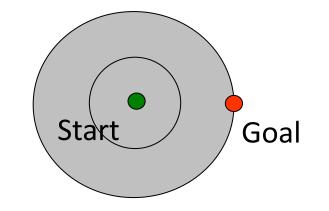
Example: Euclidean distance to Bucharest



Effect of heuristics

Guide search *towards the goal* instead of *all over the place*

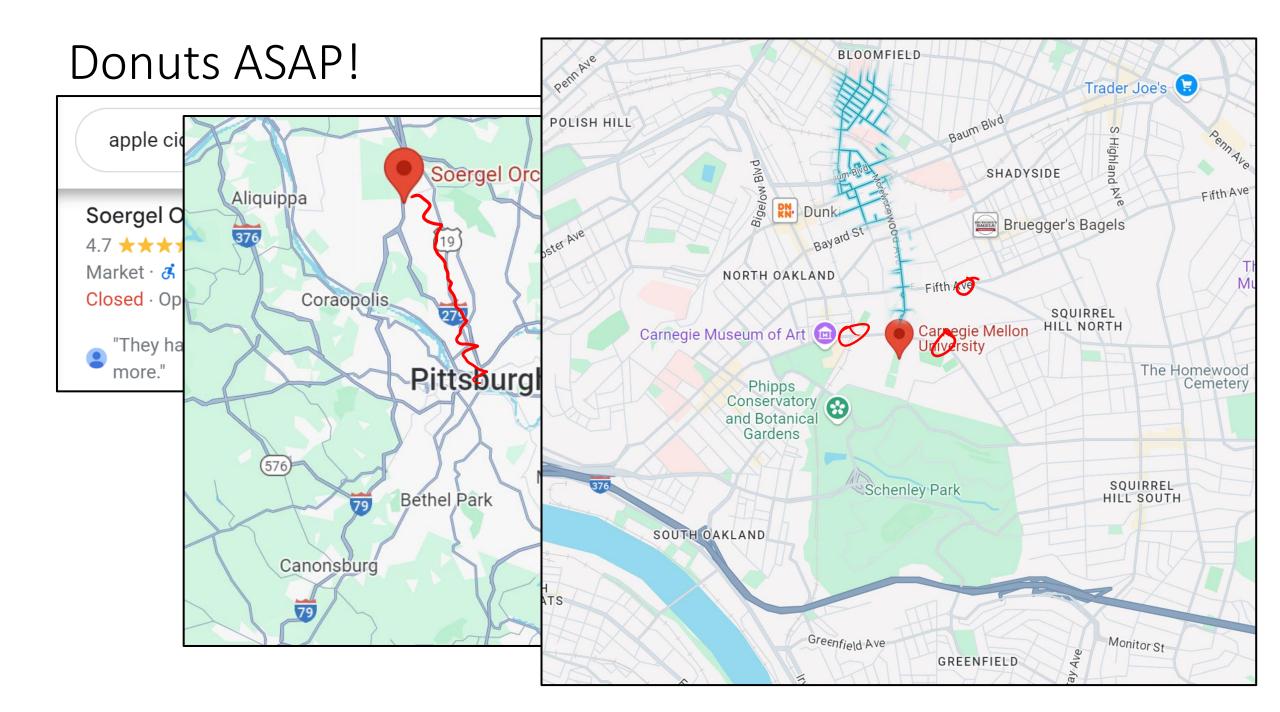




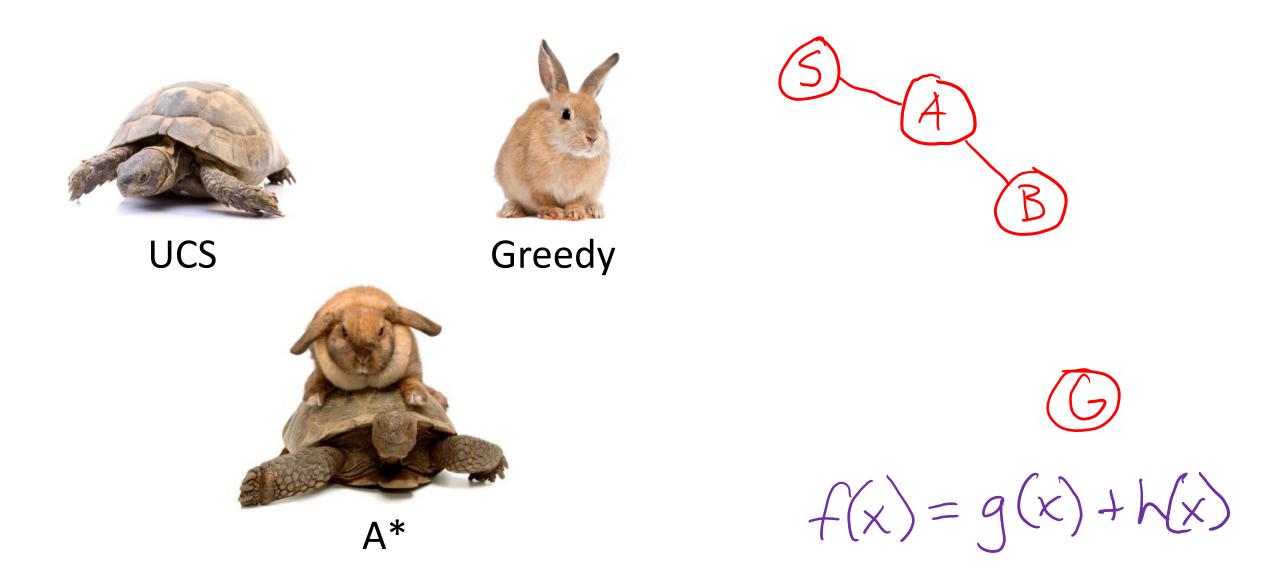
Informed

Uninformed

Greedy Search



A* Search



A* Search

f(S-A-B) = g(S-A-B) + h(B)

f(x) = g(x) + h(x)

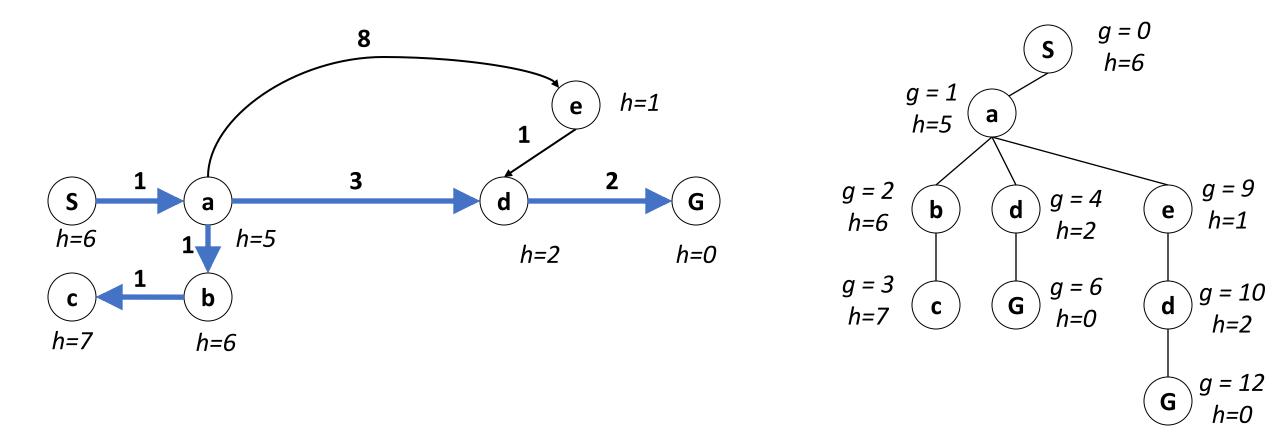
UCS

Greedy

A*

Combining UCS and Greedy

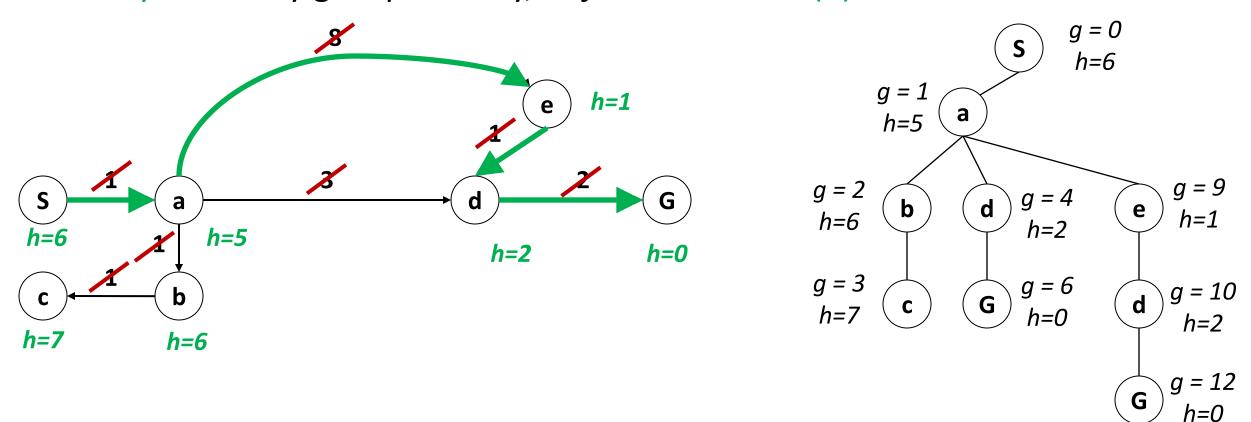
Uniform-cost orders by path cost, or *backward cost* g(n)



Example: Teg Grenager

Combining UCS and Greedy

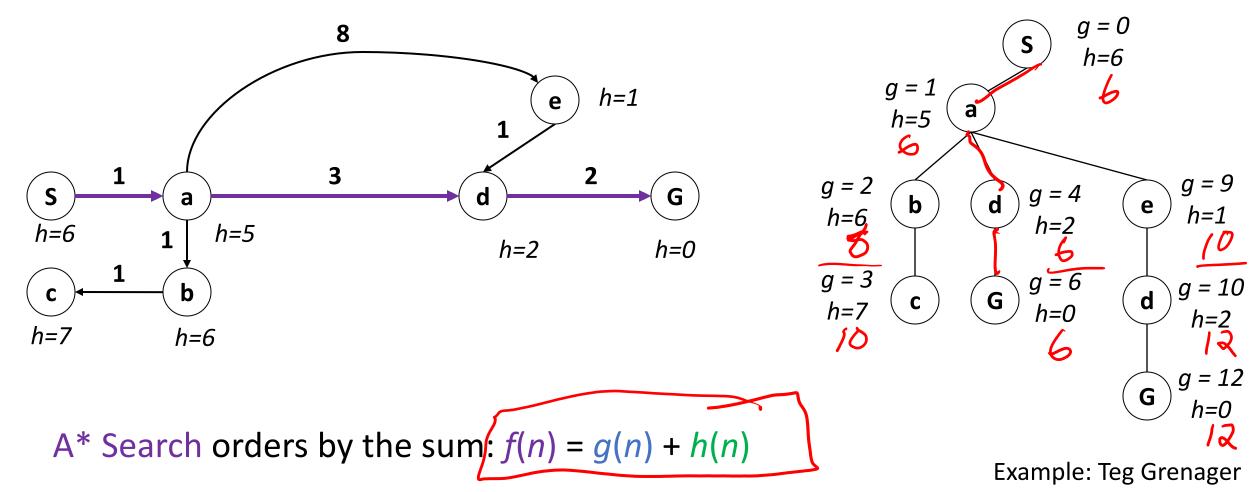
Uniform-cost orders by path cost, or *backward cost* g(n)Greedy orders by goal proximity, or *forward cost* h(n)

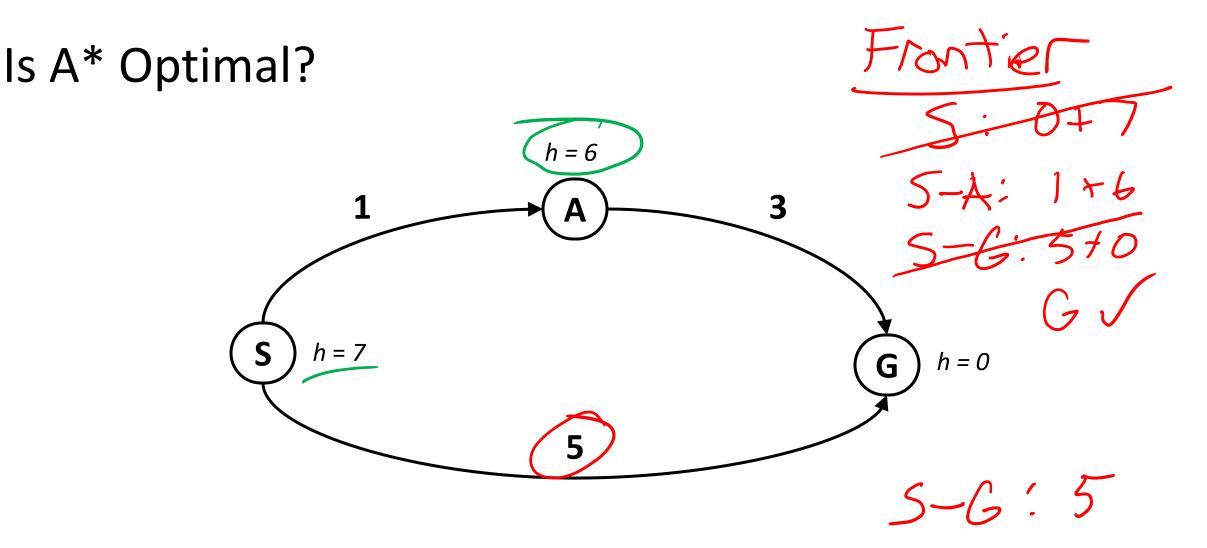


Example: Teg Grenager

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)Greedy orders by goal proximity, or forward cost h(n)





What went wrong?

Estimated good goal cost > *Actual* future cost!

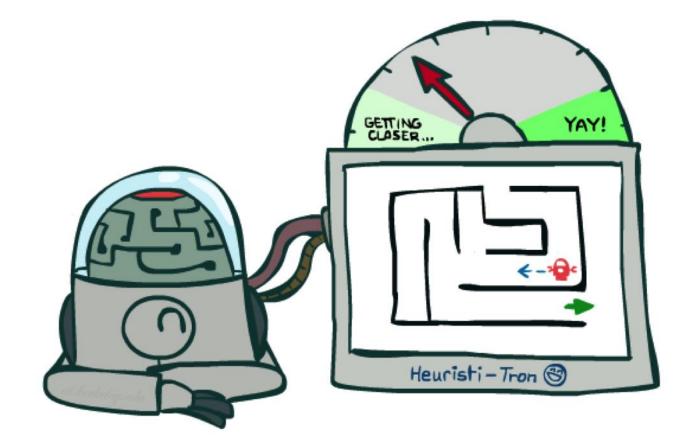
We need estimates to be less than actual costs!

The Price is Wrong...

Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics

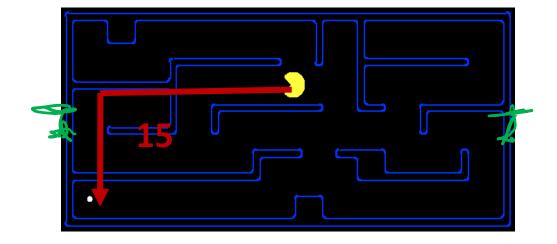


Admissible Heuristics

A heuristic *h* is admissible (optimistic) if: $\int 0 \le h(n) \le h^*(n)$

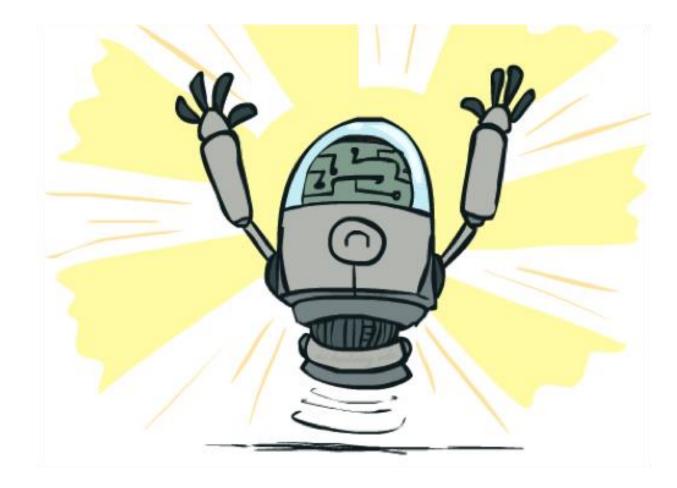
where $h^*(n)$ is the true cost to a nearest goal

Example:



Coming up with admissible heuristics is most of what's involved in using A* in practice.

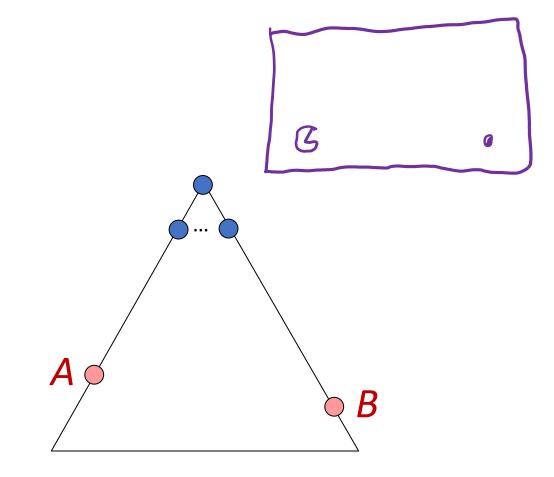
Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:

A is an optimal goal nodeB is a suboptimal goal nodeh is admissible



Claim:

A will be chosen for exploration (popped off the frontier) before B

Proof:

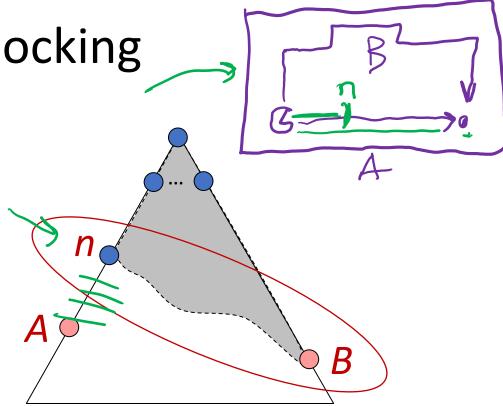
Imagine **B** is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

Claim: *n* will be explored before *B*

1. 2. 3.

All ancestors of *A* are explored before *B A* is explored before *B A** search is optimal



Proof:

Imagine **B** is on the frontier

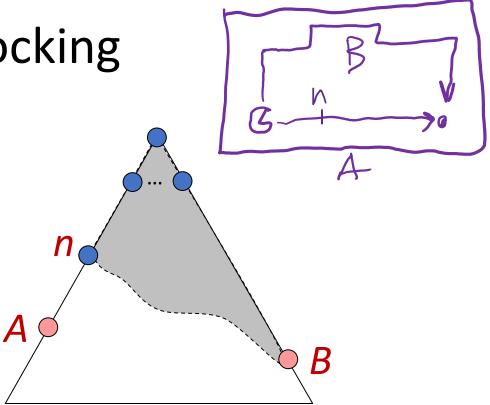
Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

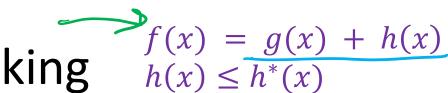
Claim: *n* will be explored before *B*

- 1. $f(n) \leq f(A) \leftarrow \text{TODO}$
- 2. $f(A) < f(B) \leftarrow \text{TODO}$
- 3. $f(n) \leq f(A) < f(B)$ then *n* is explored before *B*

All ancestors of A are explored before B

- A is explored before B
- A* search is optimal





Proof:

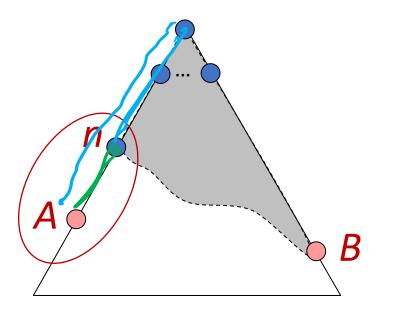
Imagine **B** is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

Claim: *n* will be explored before *B*

1. $f(n) \leq f(A)$ 2. f(A) < f(B)3. $f(n) \leq f(A) < f(B)$ the second second

A* search is optimal



 $\begin{array}{l} f(n) = g(n) + h(n) & \Box \\ f(n) \leq g(n) + h^*(n) & A \\ f(n) \leq \overline{g(A)} & + h(A) & A \\ f(n) \leq \overline{f(A)} & A \\ \end{array}$

Definition of f-cost Admissibility of hn on optimal path to Ah = 0 at a goal

Proof:

Imagine **B** is on the frontier

Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe A itself!)

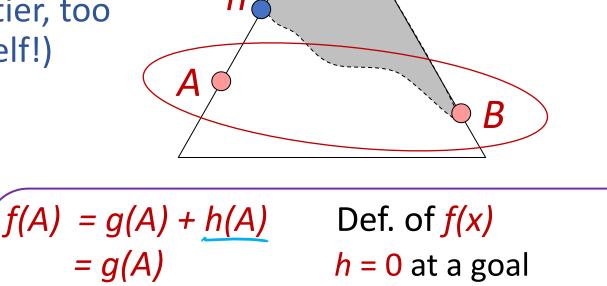
Claim: *n* will be explored before *B*

1. $f(n) \leq f(A)$

2. f(A) < f(B) — 3. $f(n) \leq f(A) < f(B)$ All ancestors of A are explored before f(B) = g(B)g(A) < g(B)

A is explored before B

A* search is optimal

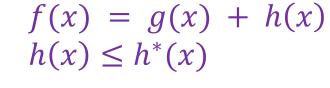


= q(A)

f(A) < f(B)

Suboptimality of **B**

Similarly for **B**



Proof:

Imagine **B** is on the frontier

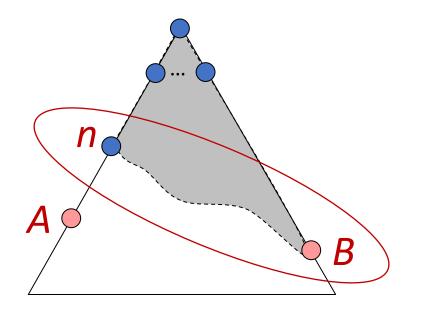
Some ancestor *n* of *A* is on the frontier, too (Maybe the start state; maybe *A* itself!)

Claim: *n* will be explored before *B*

- 1. f(n) is less than or equal to f(A)
- 2. *f*(*A*) is less than *f*(*B*)
- 3. $f(n) \leq f(A) < f(B)$ then *n* is explored before *B*

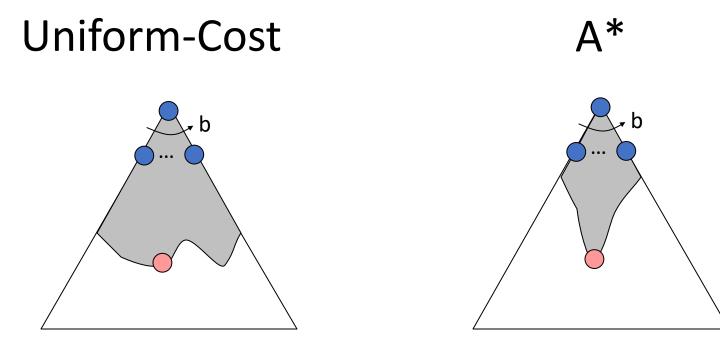
All ancestors of *A* are explored before *B*

- A is explored before B
- A* search is optimal



f(x) = g(x) + h(x)

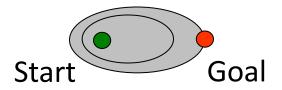
 $h(x) \le h^*(x)$

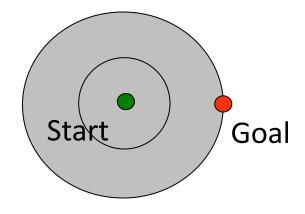


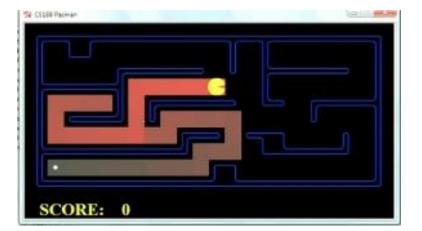
UCS vs A* Contours

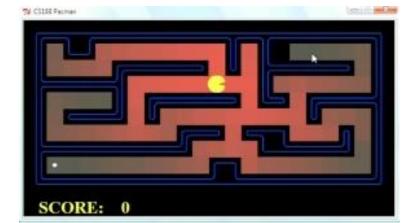
Uniform-cost expands equally in all "directions"

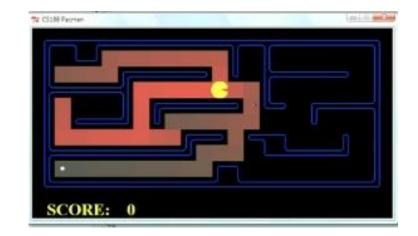
A* expands mainly toward the goal, but does hedge its bets to ensure optimality











Greedy

Uniform Cost

A*

A* Search Algorithms

A* Tree Search

Same tree search algorithm as before but with a frontier that is a priority queue using priority f(n) = g(n) + h(n)

A* Graph Search

Same UCS graph search algorithm but with a frontier that is a priority queue using priority f(n) = g(n) + h(n)

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a priority queue using g(n) as the priority add initial state of problem to frontier with priority g(S) = 0loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

else if the child is already in the frontier with higher g(n) then replace that frontier node with child function A-STAR-SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority add initial state of problem to frontier with priority f(S) = 0 + h(S)loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

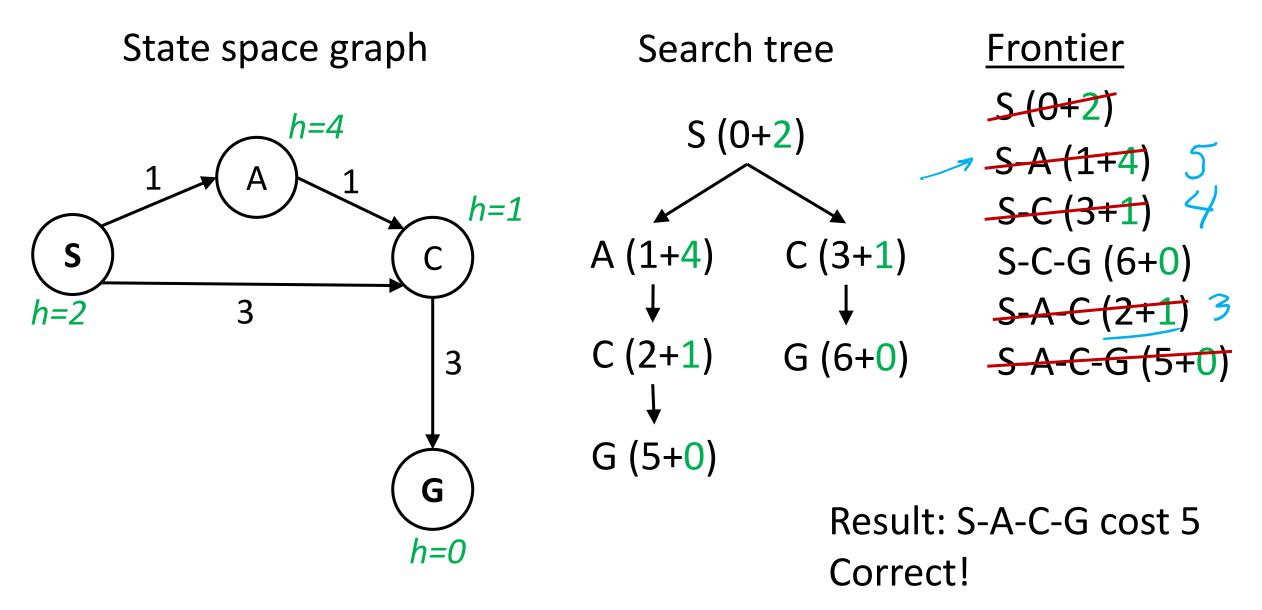
add child to the frontier

else if the child is already in the frontier with higher f(n) then replace that frontier node with child

Optimality of A* Graph Search

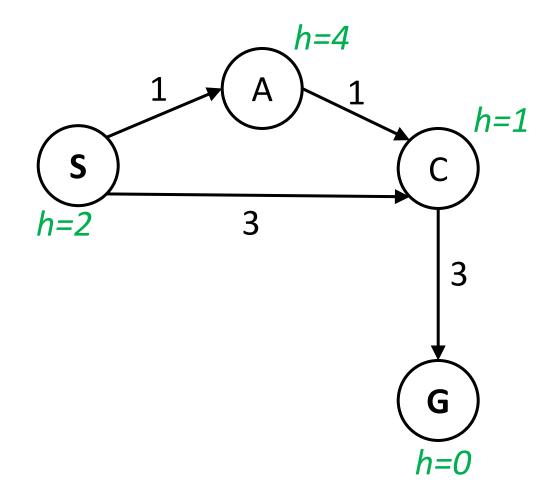


A* Tree Search



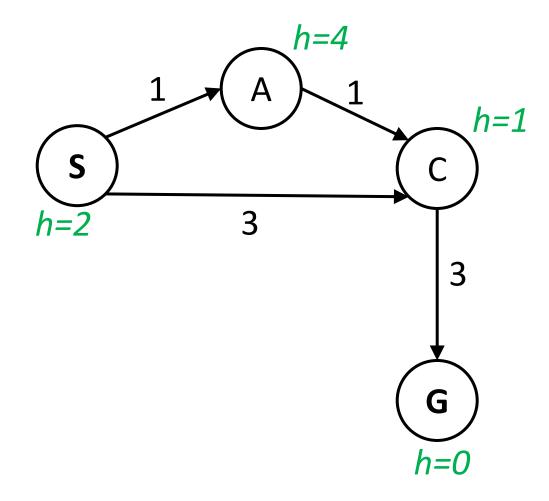
A* Graph Search

What paths does A* graph search consider during its search?



Poll 1: A* Graph Search

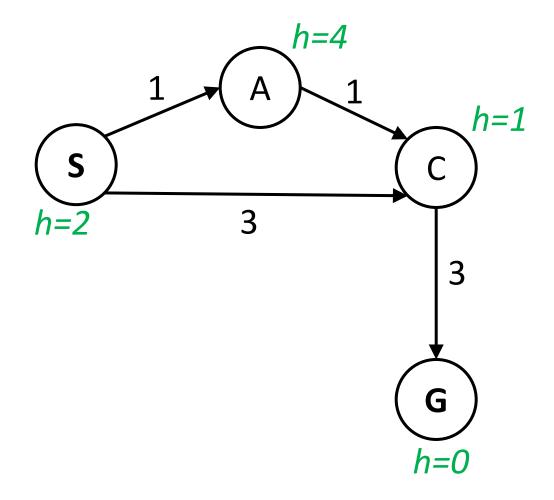
What paths does A* graph search consider during its search? (What does your work for the frontier look like?)



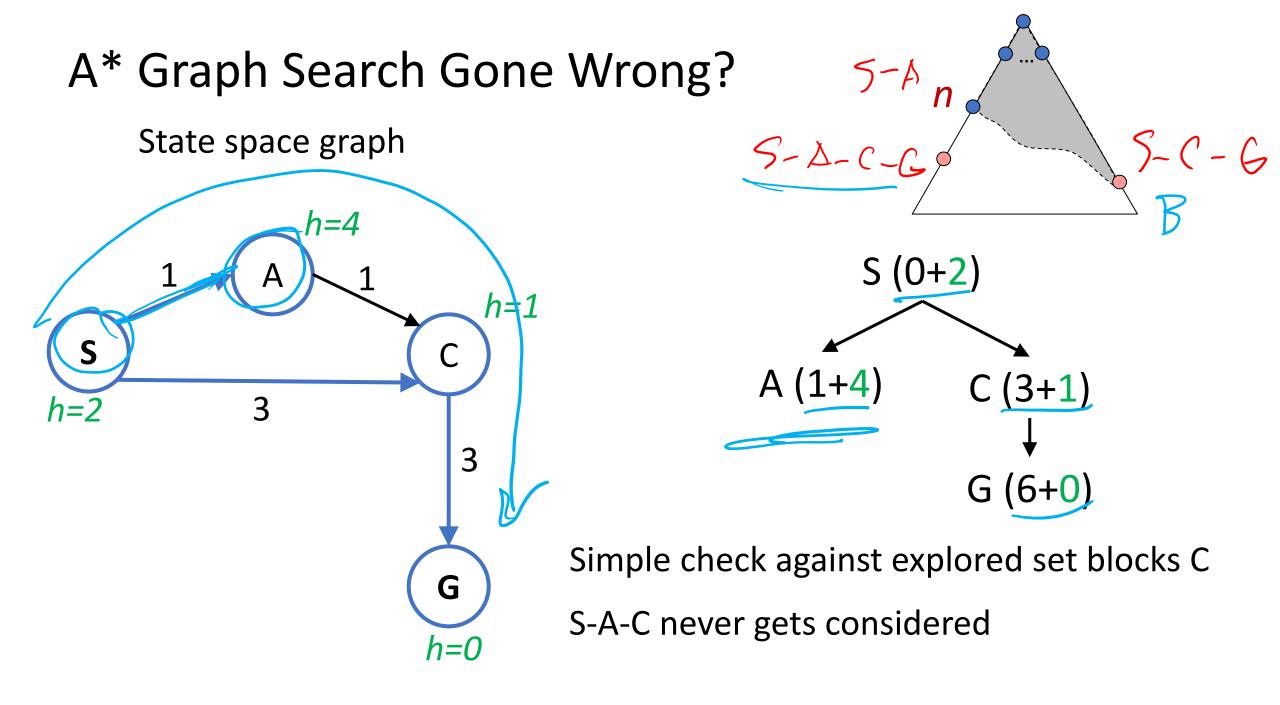
A) *S*, *S*-A, *S*-C, <u>S-C-G</u>
B) *S*, *S*-A, *S*-C, *S*-A-C, <u>S-C-G</u>
C) *S*, *S*-A, *S*-A-C, <u>S-A-C-G</u>
D) *S*, *S*-A, *S*-C, *S*-A-C, *S*-A-C-G

Poll 1: A* Graph Search

What paths does A* graph search consider during its search?



A) *S*, *S*-A, *S*-C, <u>S</u>-C-G
B) *S*, *S*-A, *S*-C, *S*-A-C, <u>S</u>-C-G
C) *S*, *S*-A, *S*-A-C, <u>S</u>-A-C-G
D) *S*, *S*-A, *S*-C, *S*-A-C, <u>S</u>-A-C-G

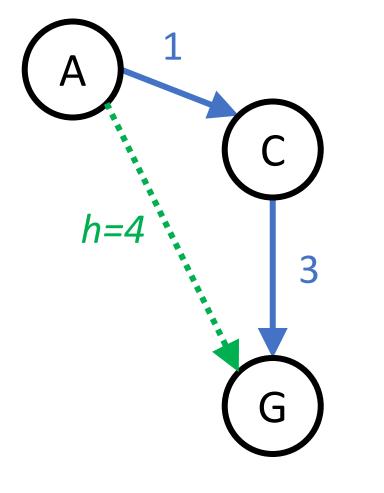


Admissibility of Heuristics

Main idea: Estimated heuristic values ≤ actual costs

Admissibility:

heuristic value \leq actual cost to goal h(A) \leq actual cost from A to G



Consistency of Heuristics $\mathcal{L}(\mathcal{A}) : \mathcal{O} \neq \mathcal{U}$ Main idea:

h=1

Main idea: Estimated heuristic costs ≤ actual costs ■ Admissibility:

heuristic cost ≤ actual cost to goal h(A) ≤ actual cost from A to G

Consistency:

"heuristic step cost" \leq actual cost for each step h(A) - h(C) \leq cost(A to C)

triangle inequality

 $h(A) \leq cost(A to C) + h(C)$

Consequences of consistency:

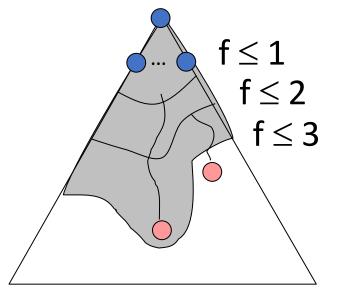
The f value along a path never decreases

A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are explored before nodes that reach s suboptimally
- Result: A* graph search is optimal



Optimality

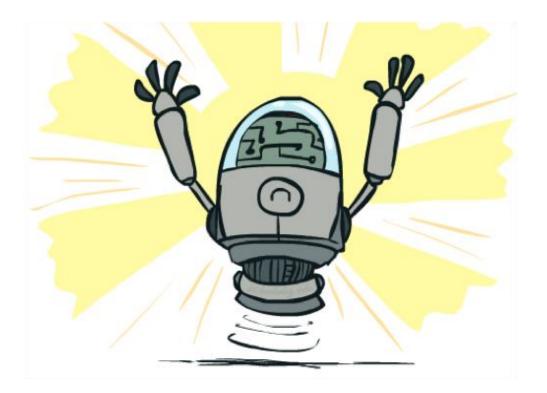
Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)

Graph search:

- A* optimal if heuristic is consistent
- UCS optimal (h = 0 is consistent)

Consistency implies admissibility



In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

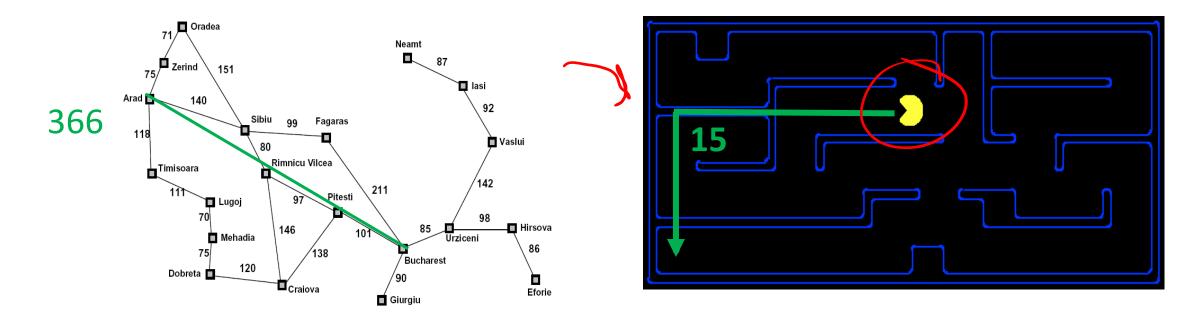
Creating Heuristics



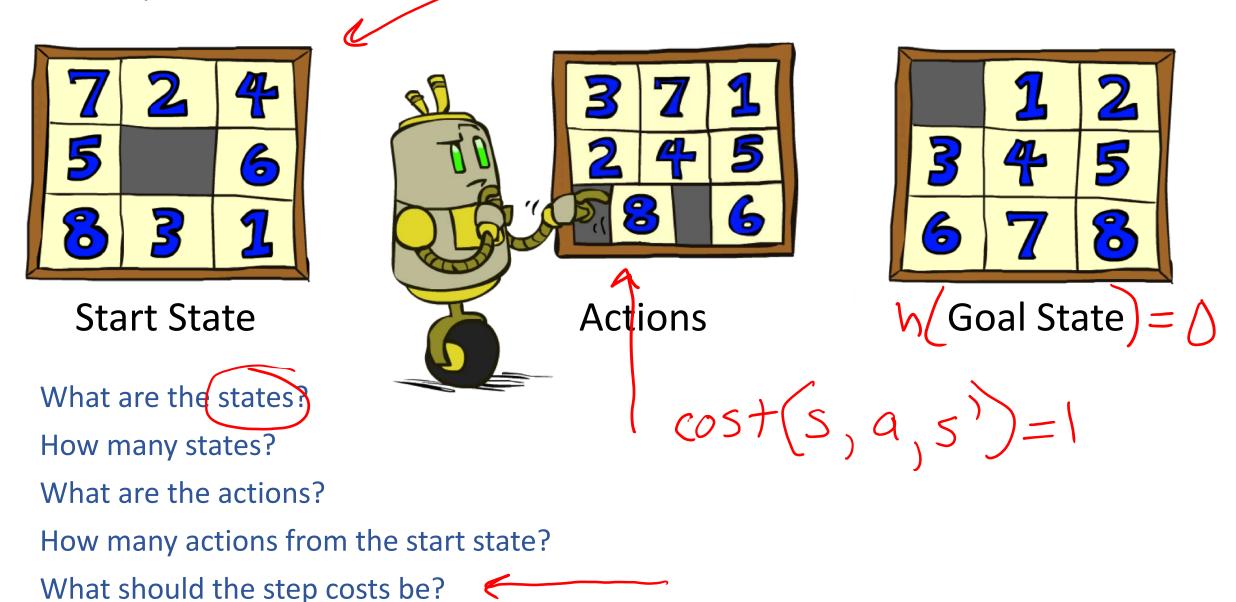
Creating Admissible Heuristics

Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available



Example: 8 Puzzle

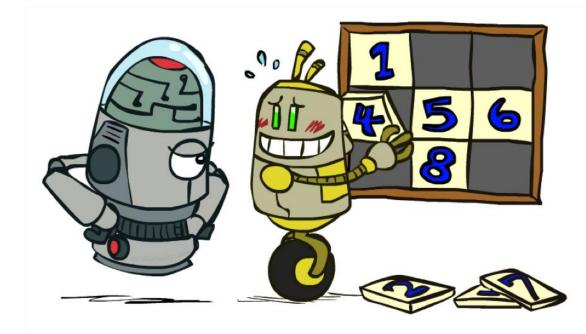


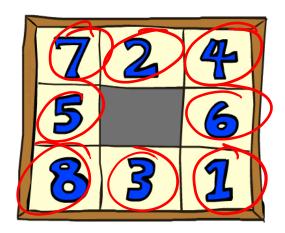
8 Puzzle I

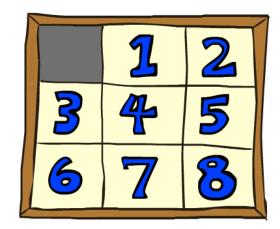
Heuristic: Number of tiles misplaced Why is it admissible?

h(start) = 8

This is a *relaxed-problem* heuristic

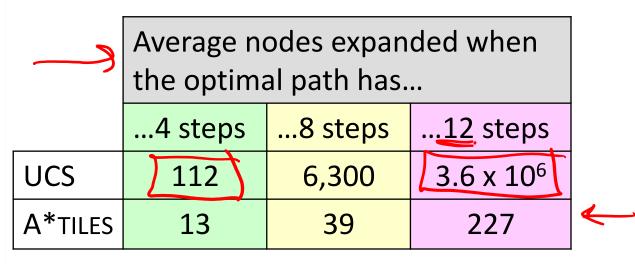






Start State

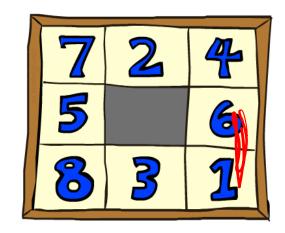
Goal State

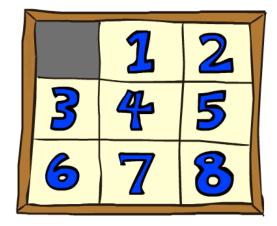


Statistics from Andrew Moore

8 Puzzle II

What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?





Start State

Goal State

Total Manhattan distance

Why is it admissible?

$$h(start) = 3 + 1 + 2 + ... = 18$$

	Average nodes expanded when the optimal path has $\Im \chi 10^6$		
UCS			12 steps
A*TILES	13	39	227
A*MANHATTAN	12	25	73

Combining heuristics

Dominance: $h_a \ge h_c$ if $\forall n \quad h_a(n) \ge h_c(n)$

- Roughly speaking, larger is better as long as both are admissible
- The zero heuristic is pretty bad (what does A* do with h=0?)
- The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?

- Form a new heuristic by taking the max of both: $h(n) = \max(h_a(n), h_b(n))$
- Max of admissible heuristics is admissible and dominates both!

A*: Summary

A*: Summary

A* uses both backward costs and (estimates of) forward costs

A* is optimal with admissible / consistent heuristics Heuristic design is key: often use relaxed problems

