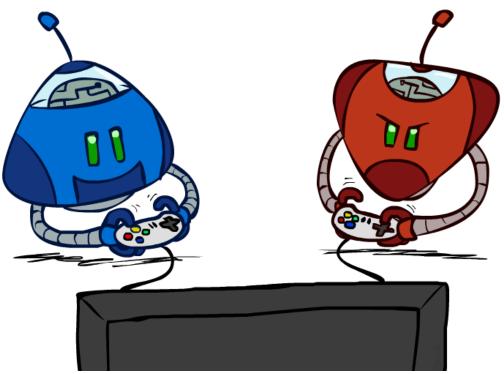
AI: Representation and Problem Solving

Adversarial Search



Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview Zero-Sum Games (Minimax) Evaluation Functions Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece SOLVED! endgame. 2007: Checkers solved! Endgame database of 39 trillion states Heurist **Chess:** 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, EXPERT McCarthy. 1960s onward: gradual improvement under "standard model" 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for HUMAN Magnus Carlsen). Go:

ABRICK

Chess

Checkers

Goo

Pacman

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap.

Game Playing State-of-the-Art

Checkers:

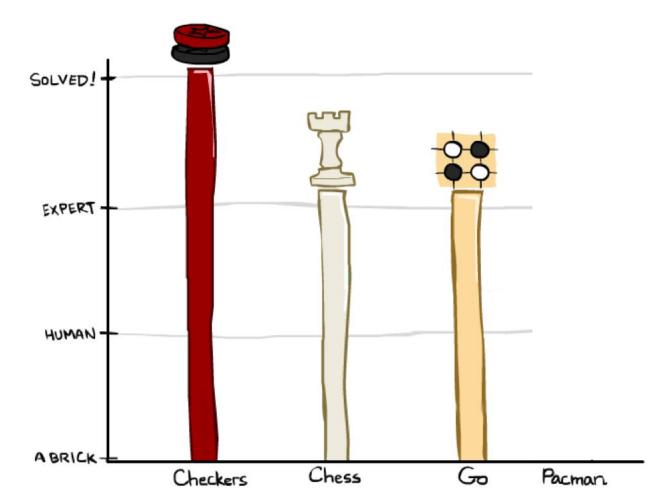
- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame.
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

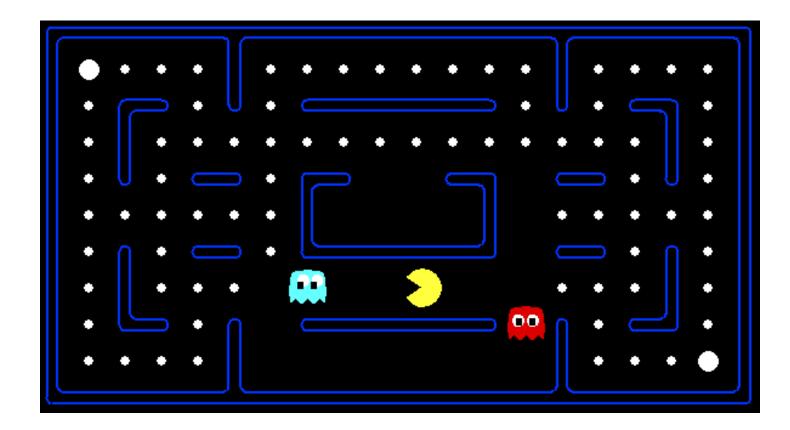
- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement under "standard model"
- 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals with a 3-4 stone handicap.
- 2015: AlphaGo from DeepMind beats Lee Sedol



Behavior from Computation



Types of Games

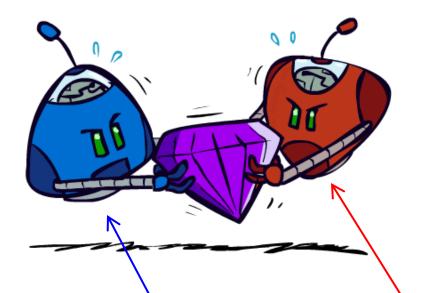
Many different kinds of games!

Axes:

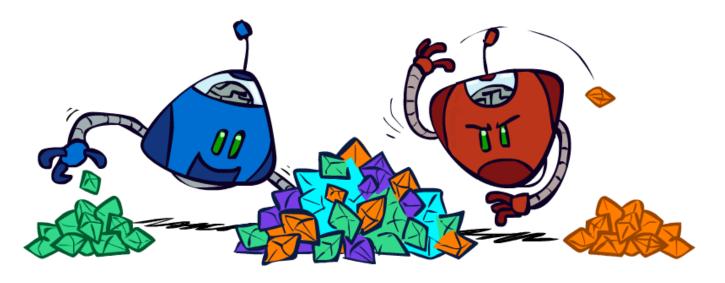
- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

Want algorithms for calculating a *contingent plan* (a.k.a. strategy or policy) which recommends a move for every possible eventuality

Zero-Sum Games



- Zero-Sum Games
 - Agents have opposite utilities
 - Pure competition:
 - One maximizes, the other minimizes



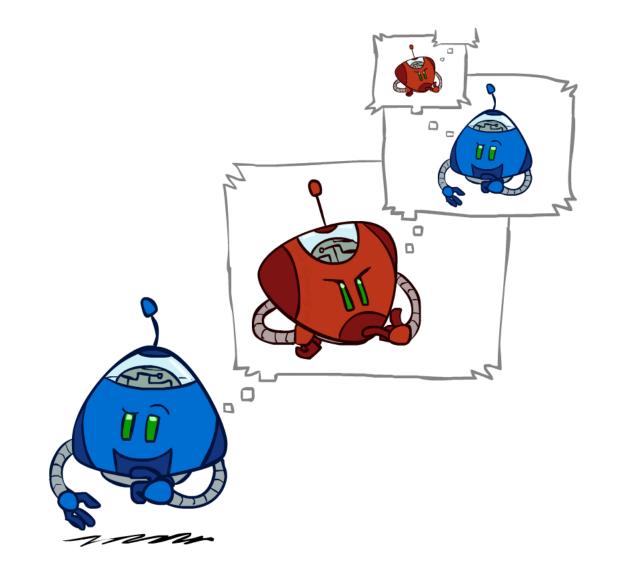
- General Games
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible

"Standard" Games

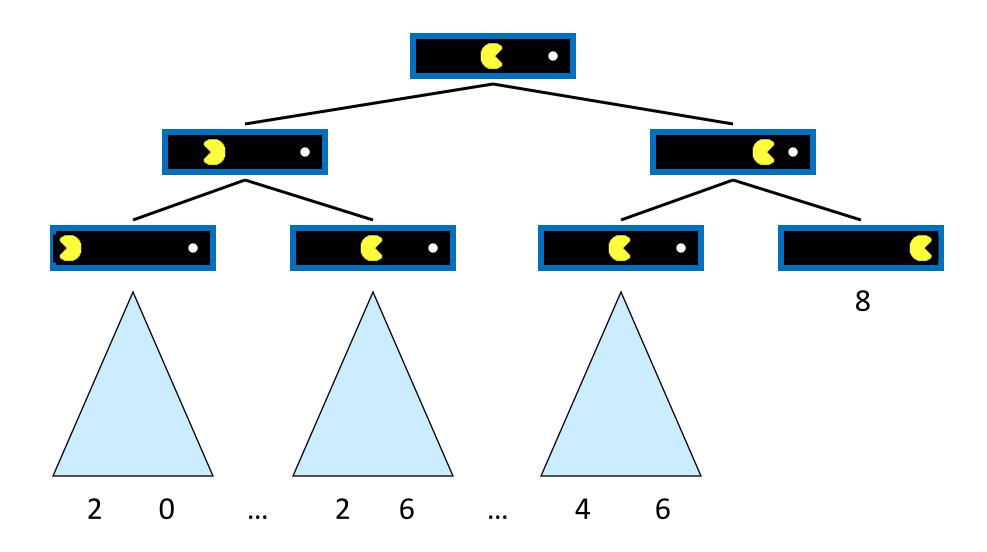
Standard games are deterministic, observable, two-player, turn-taking, zero-sum

- Game formulation:
- Initial state: s₀
- Players: Player(s) indicates whose move it is
- Actions: Actions(s) for player on move
- Transition model: Result(s,a)
- Terminal test: Terminal-Test(s)
- Terminal values: Utility(s,p) for player p
 - Or just Utility(s) for player making the decision at root

Adversarial Search

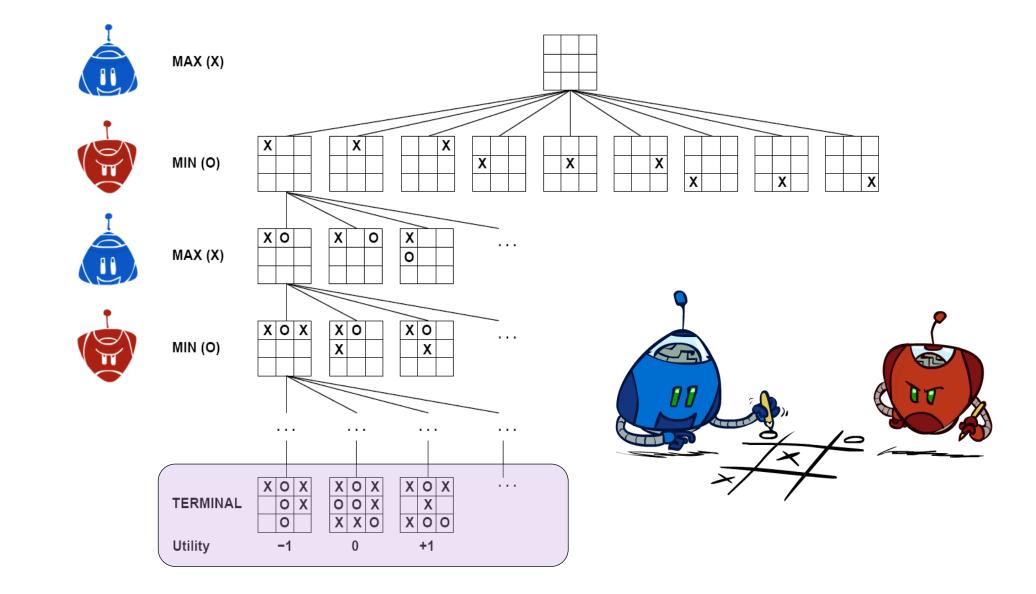


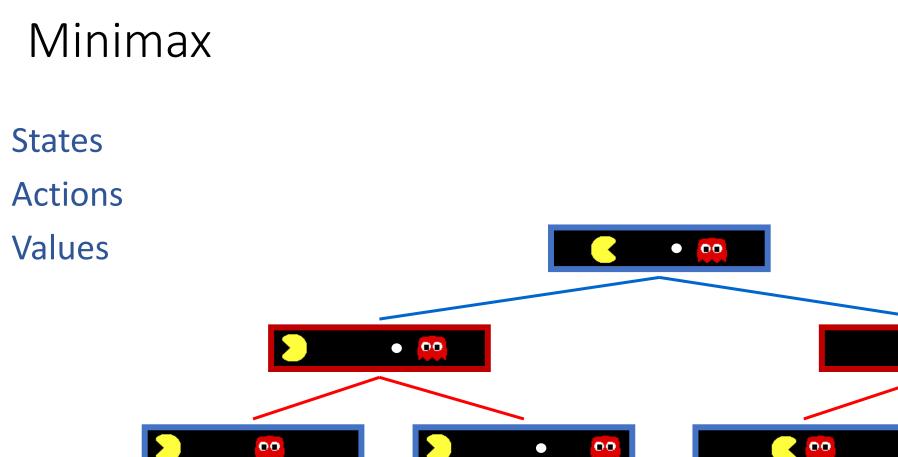
Single-Agent Trees

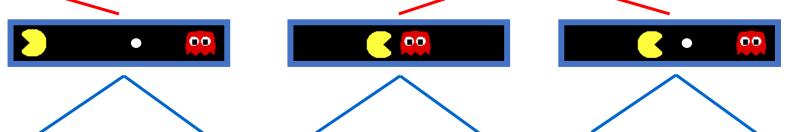


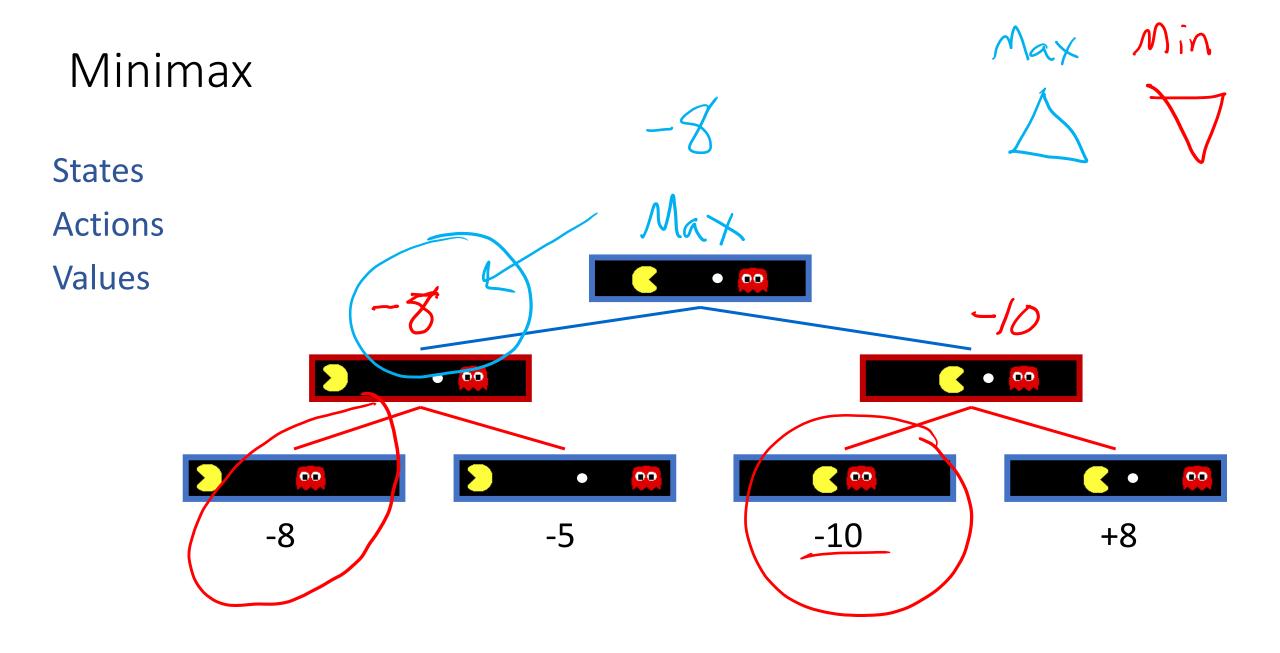
Minimax

States Actions Values



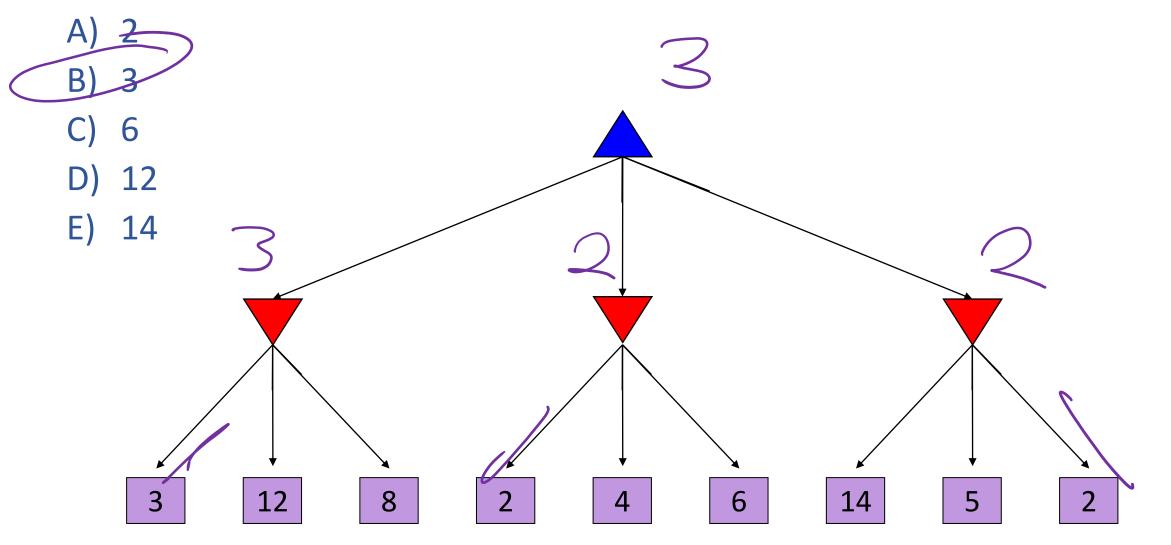






Poll 1

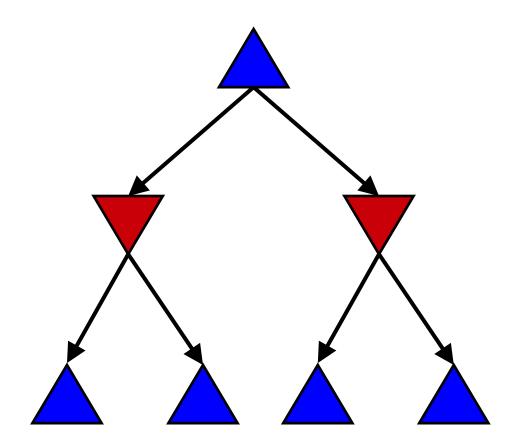
What is the minimax value at the root?



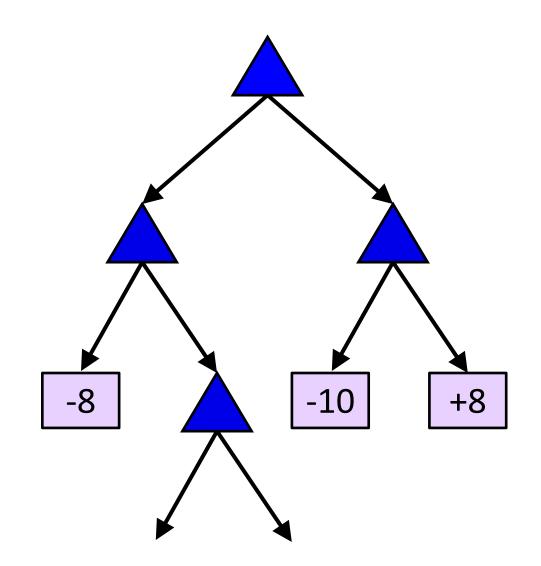
Poll 1

What is the minimax value at the root? A) 2 B) 3 D) E)

Minimax Code



Max Code



Max Code

def max_value(state):

if state.is_leaf: return state.value # TODO Also handle depth limit

best_value = -10000000

for action in state.actions: next_state = state.result(action)

> next_value = max_value(next_state)

*Ω*₁

U z

if next_value > best_value:
 best_value = next_value

return best_value

Minimax Code

def max_value(state):

```
if state.is_leaf:
    return state.value
# TODO Also handle depth limit
best value = -10000000
for action in state.actions:
    next_state = state.result(action)
   next_value = min_value(next_state)
    if next_value > best_value:
        best_value = next_value
return best_value
```

def min_value(state):

 $a \in \{action(5)\}$

Minimax Notation

def max_value(state):

```
if state.is_leaf:
    return state.value
# TODO Also handle depth limit
```

best value = -10000000

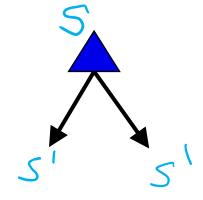
for action in state.actions:
 next_state = state.result(action)

```
next_value = min_value(next_state)
```

```
if next_value > best_value:
    best_value = next_value
```

return best_value

def min_value(state):

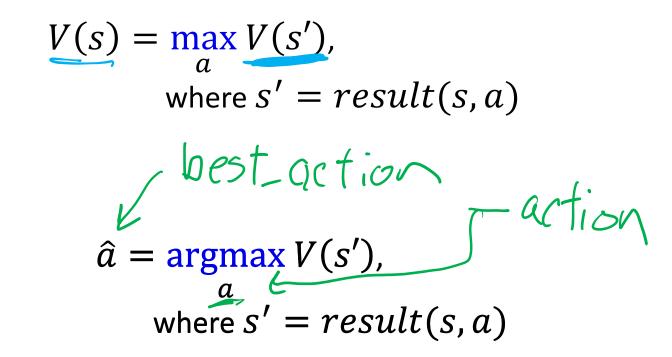


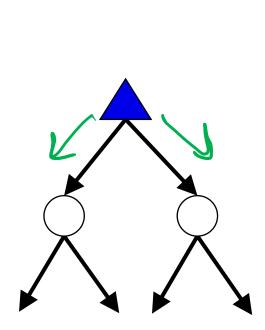
$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

 $V(s) = \min V(s')$ $\alpha = \operatorname{resu}(t(s, a))$

Minimax Notation





Generic Game Tree Pseudocode

function minimax_decision(state)
 return argmax a in state.actions value(state.result(a))

function value(state) if state.is_leaf return state.value

if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

Minimax Efficiency

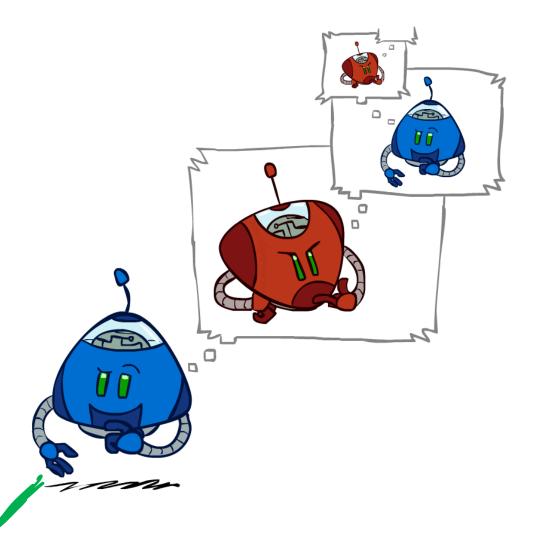
How efficient is minimax?

- Just like (exhaustive) DFS
- Time: O(b^m) <
- Space: O(bm)

Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- Humans can't do this either, so how do we play chess?

Bounded rationality – Herbert Simon



Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead

Search only to a preset *depth limit* or *horizon*

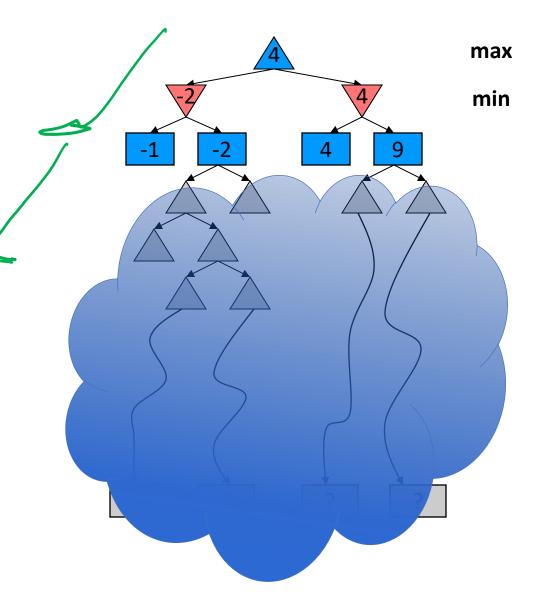
Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- For chess, b=~35 so reaches about depth 4 not so good



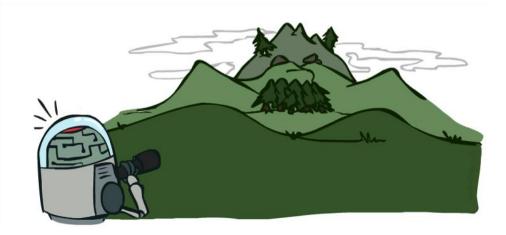
Depth Matters

Evaluation functions are always imperfect

Deeper search => better play (usually)

Or, deeper search gives same quality of play with a less accurate evaluation function

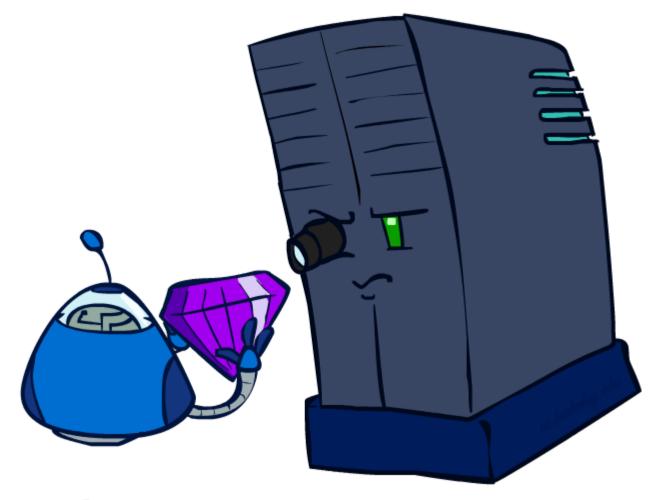
An important example of the tradeoff between complexity of features and complexity of computation



Demo Limited Depth (2)

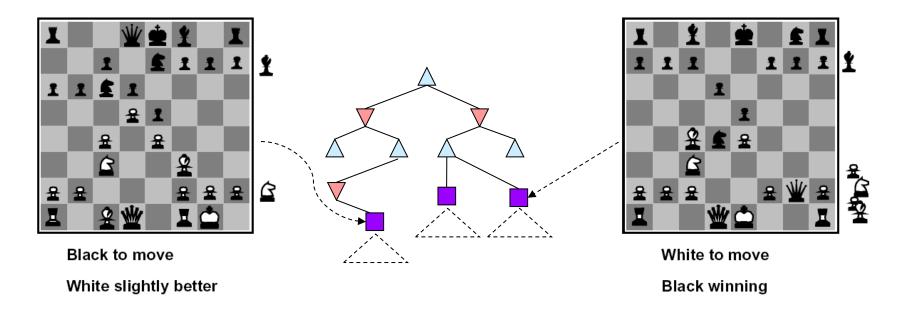
Demo Limited Depth (10)

Evaluation Functions



Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

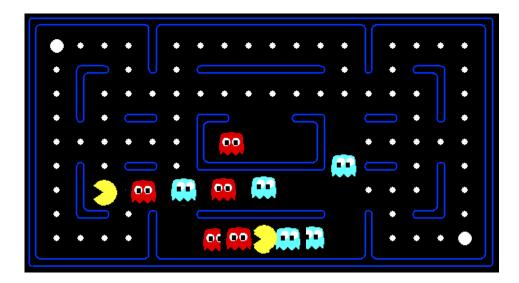


Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:

- = EVAL(s) = $w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$
- E.g., $w_1 = 9$, $f_1(s) = (num white queens num black queens), etc.$

Evaluation for Pacman

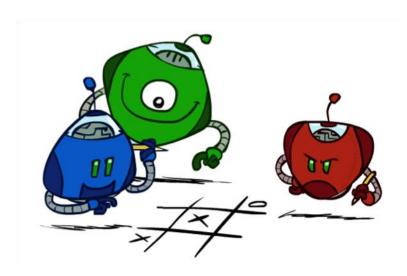


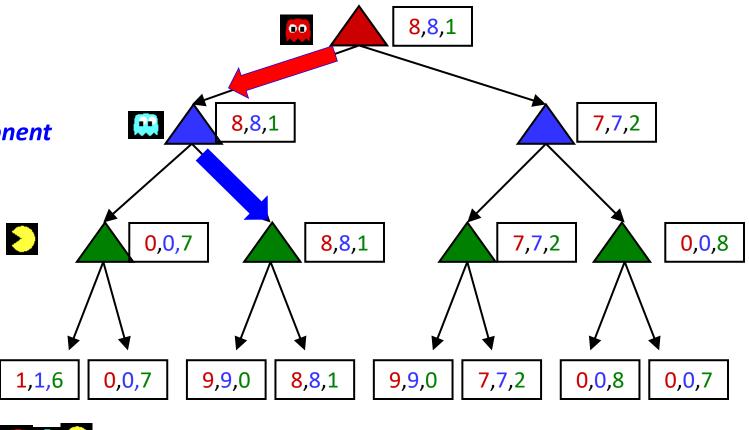
Generalized minimax

What if the game is not zero-sum, or has multiple players?

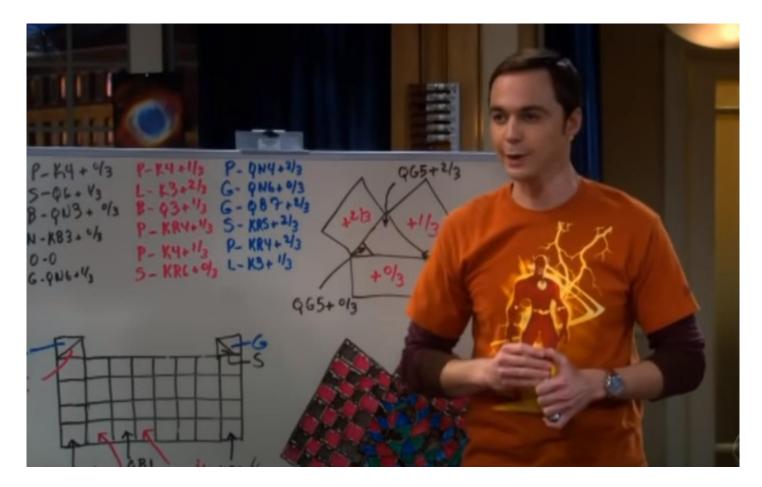
Generalization of minimax:

- Terminals have *utility tuples*
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...





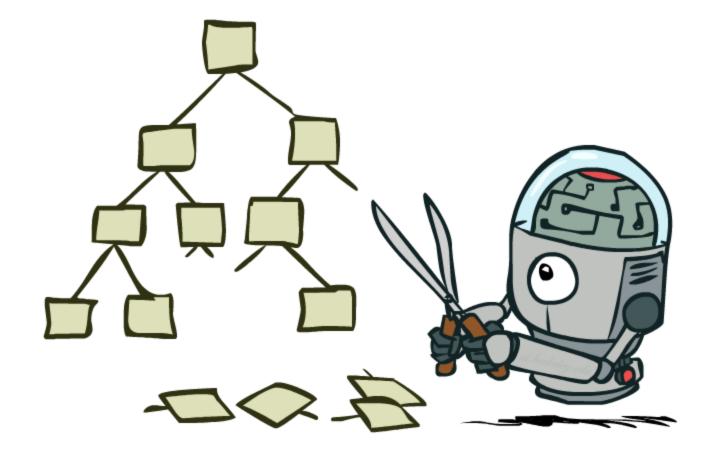
Generalized minimax



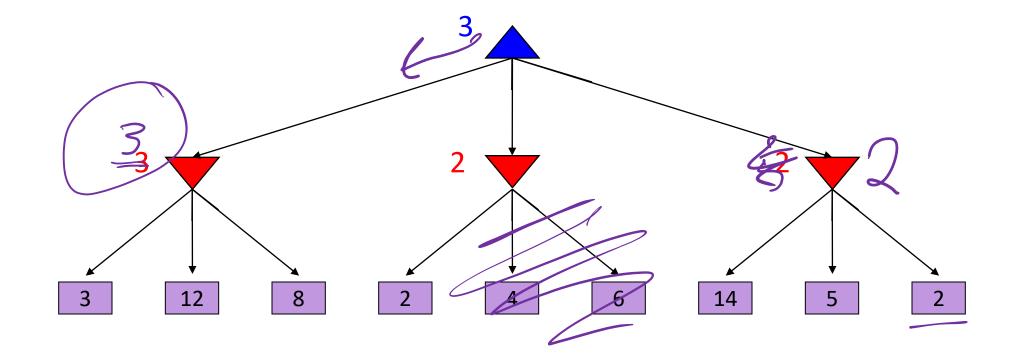
Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

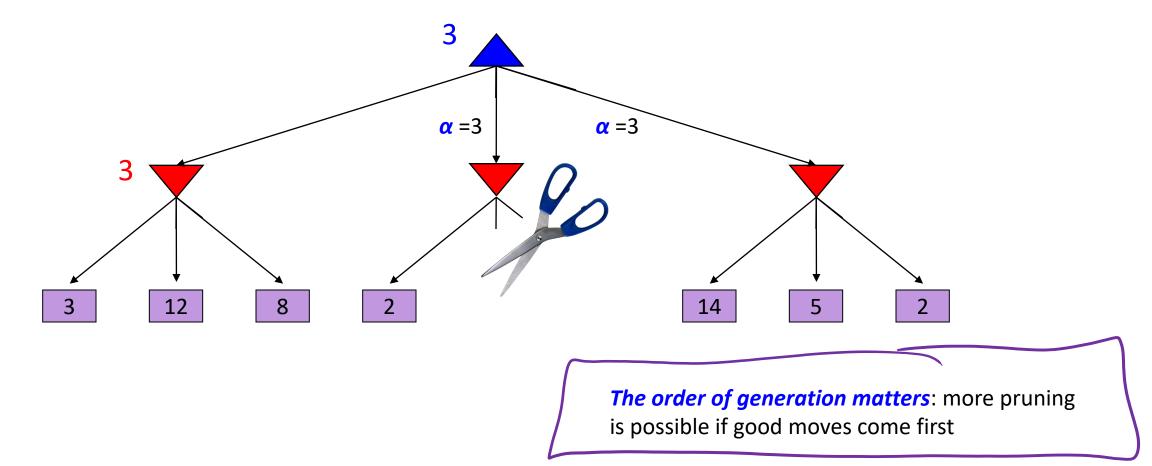


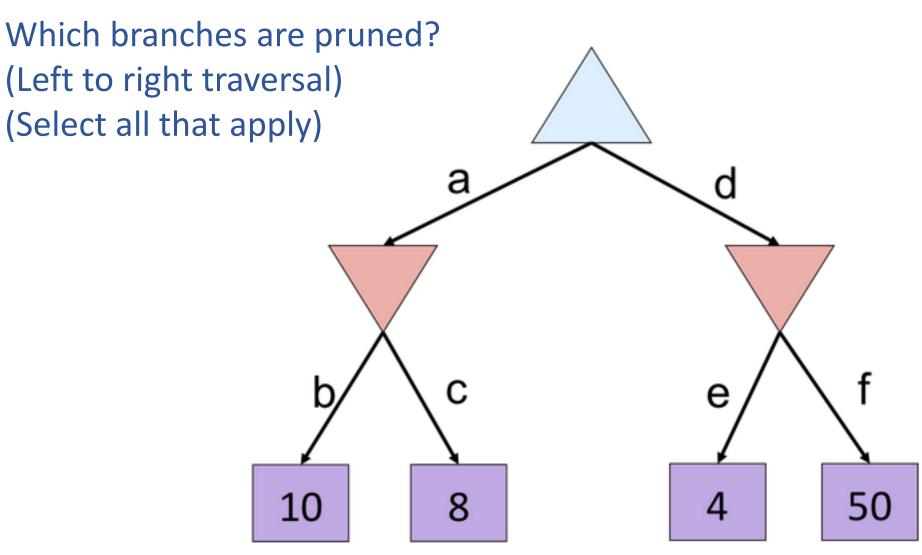
Minimax Example

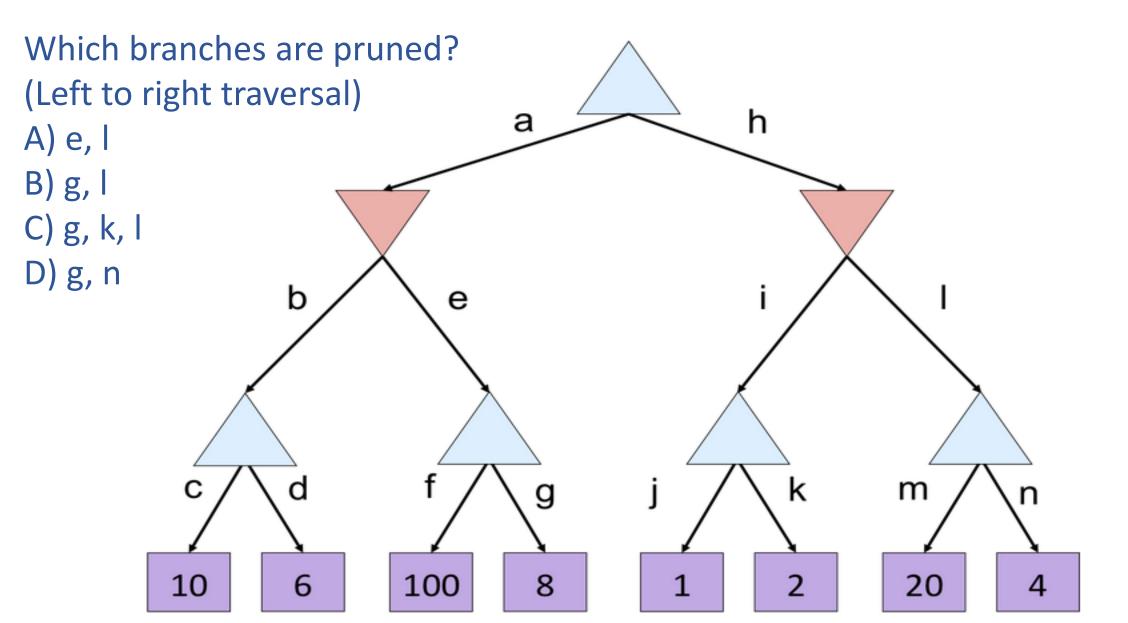


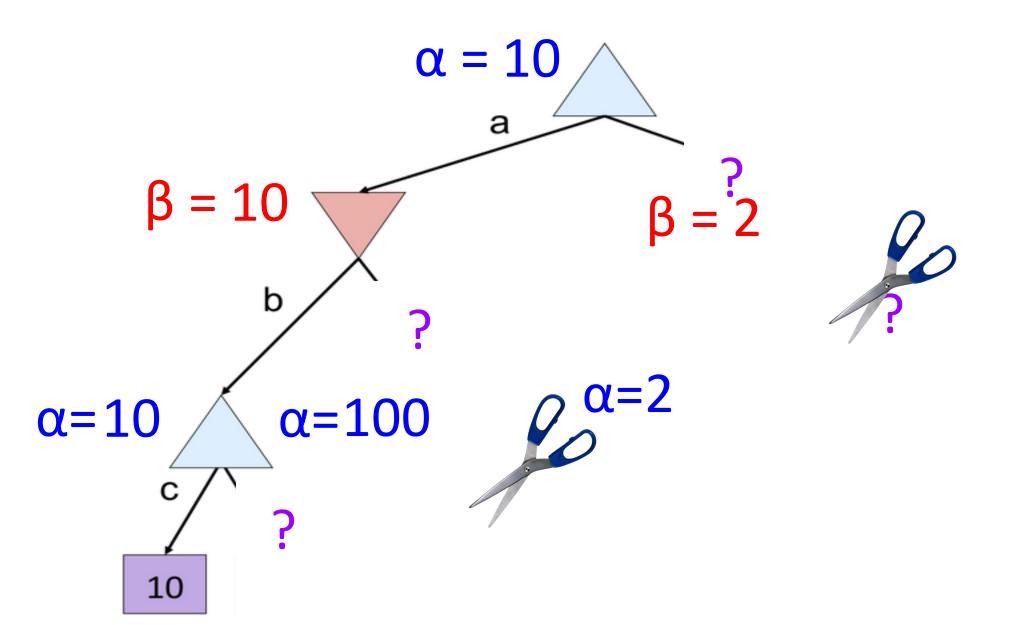
Alpha-Beta Example

α = best option so far from anyMAX node on this path









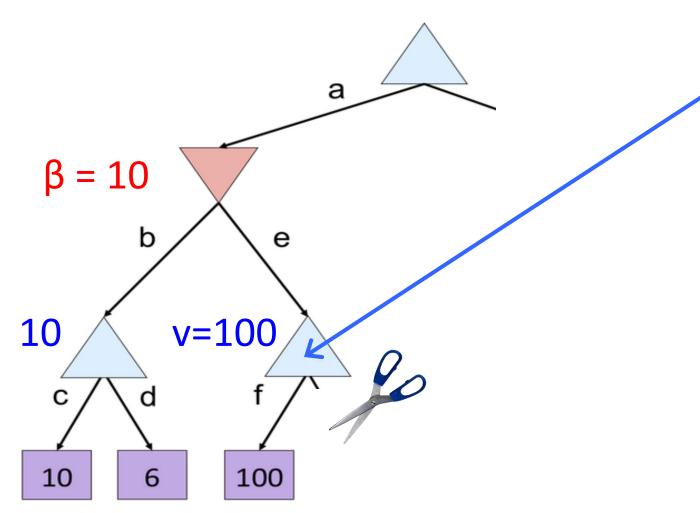
Alpha-Beta Implementation

 α : MAX's best option on path to root β : MIN's best option on path to root

```
\begin{array}{l} \mbox{def max-value(state, } \alpha, \beta): \\ \mbox{initialize } v = -\infty \\ \mbox{for each successor of state:} \\ v = max(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \geq \beta \\ \mbox{return } v \\ \alpha = max(\alpha, v) \\ \mbox{return } v \end{array}
```

 $\begin{array}{l} \mbox{def min-value(state , \alpha, \beta):} \\ \mbox{initialize } v = +\infty \\ \mbox{for each successor of state:} \\ v = min(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \leq \alpha \\ & return v \\ \beta = min(\beta, v) \\ return v \end{array}$

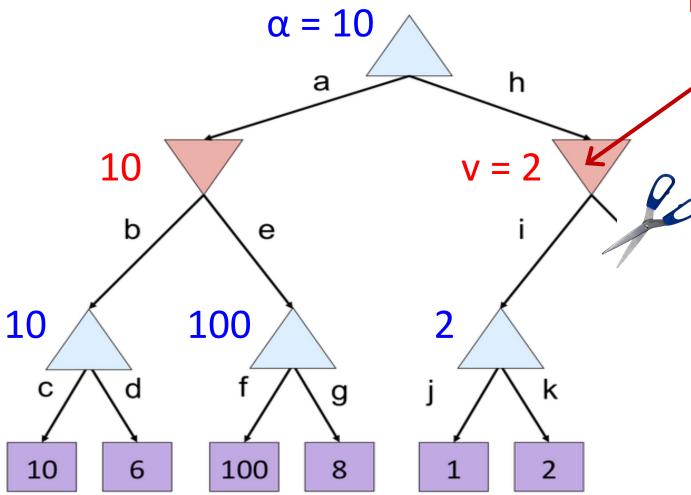
Alpha-Beta Poll 3



 α : MAX's best option on path to root β : MIN's best option on path to root

def max-value(state, α , β): initialize $v = -\infty$ for each successor of state: $v = \max(v, value(successor, \alpha, \beta))$ if $v \ge \beta$ return v $\alpha = \max(\alpha, v)$ return v

Alpha-Beta Poll 3



 α : MAX's best option on path to root β : MIN's best option on path to root

def min-value(state , α , β): initialize $v = +\infty$ for each successor of state: $v = min(v, value(successor, \alpha, \beta))$ if $v \le \alpha$ return v $\beta = min(\beta, v)$ return v

Alpha-Beta Pruning Properties

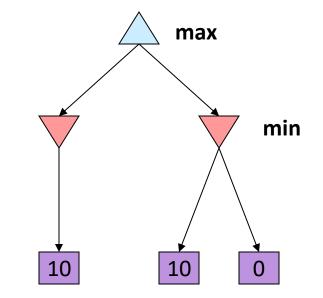
Theorem: This pruning has *no effect* on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

Iterative deepening helps with this

With "perfect ordering":

- Time complexity drops to O(b^{m/2})
- Doubles solvable depth!
- IM nodes/move => depth=8, respectable



This is a simple example of metareasoning (computing about what to compute)

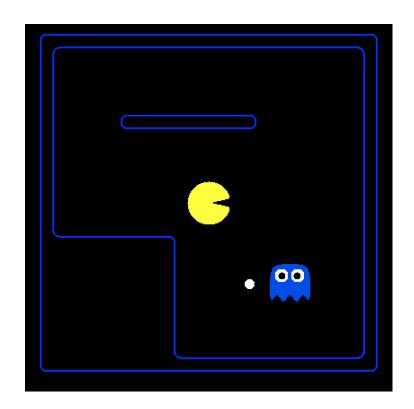
Minimax Demo

Points

+500 win

-500 lose

-1 each move



Fine print

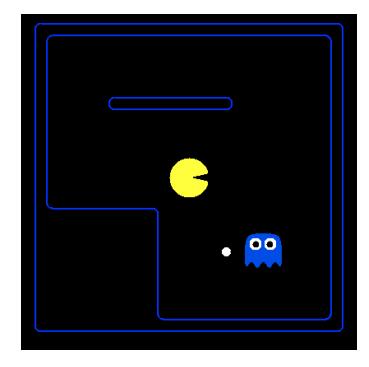
- Pacman: uses depth 4 minimax
- Ghost: uses depth 2 minimax

How well would a minimax Pacman perform against a ghost that moves randomly?

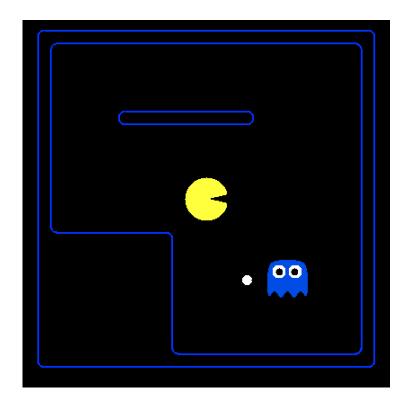
- A. Better than against a minimax ghost
- B. Worse than against a minimax ghost
- C. Same as against a minimax ghost

Fine print

- Pacman: uses depth 4 minimax as before
- Ghost: moves randomly



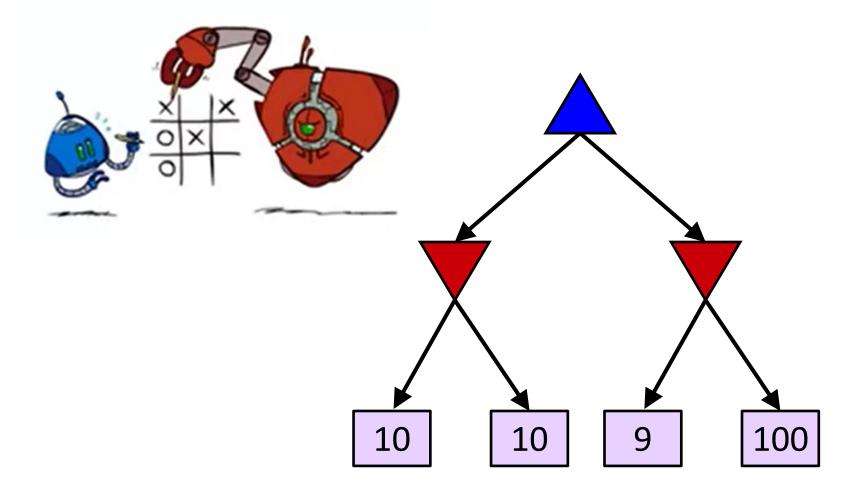
Assumptions vs. Reality



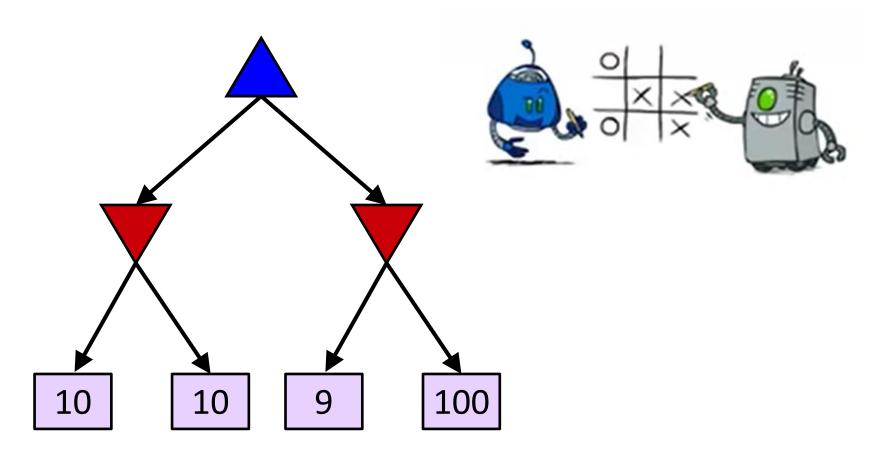
	Minimax Ghost	Random Ghost
Minimax Pacman		

Results from playing 5 games

Know your opponent



Know your opponent



Minimax autonomous vehicle?

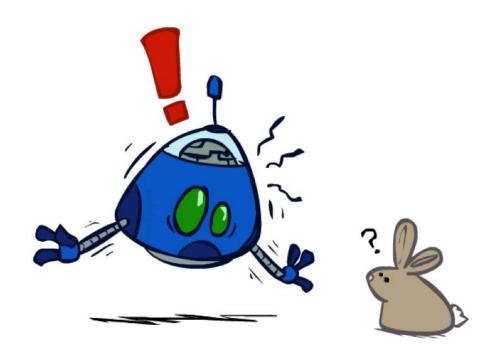
Image: https://corporate.ford.com/innovation/autonomous-2021.html

Minimax Driver?

https://youtu.be/5PRrwlkPdNI?t=52

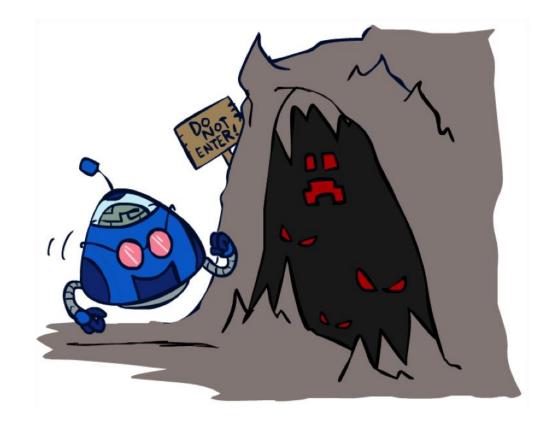
Clip: How I Met Your Mother, CBS

Dangerous Pessimism Assuming the worst case when it's not likely

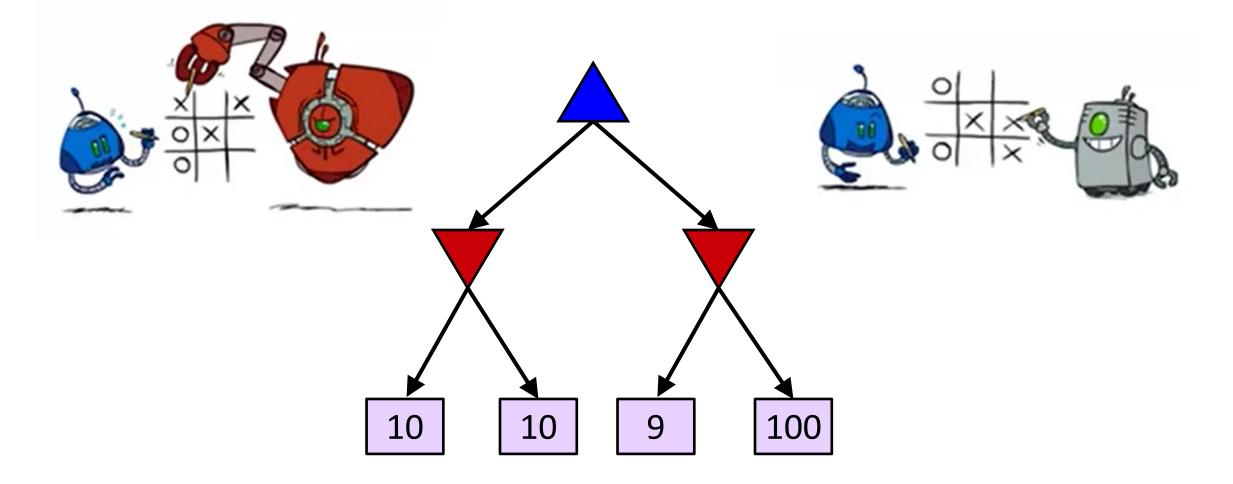


Dangerous Optimism

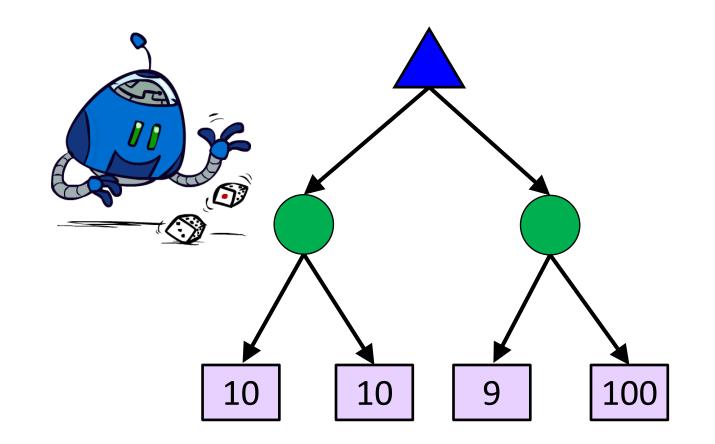
Assuming chance when the world is adversarial



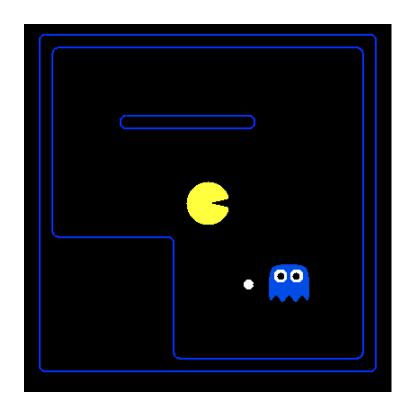
Know your opponent



Chance nodes: Expectimax



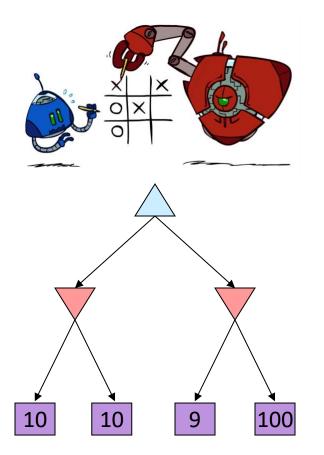
Assumptions vs. Reality



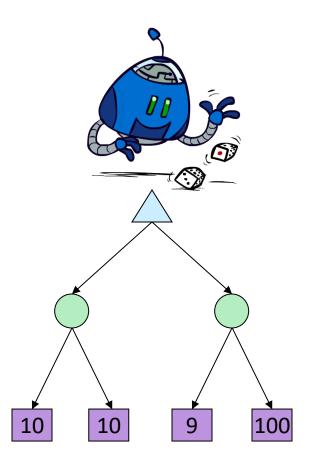
	Minimax Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 493	Won 5/5 Avg. Score: 464
Expectimax Pacman		

Results from playing 5 games

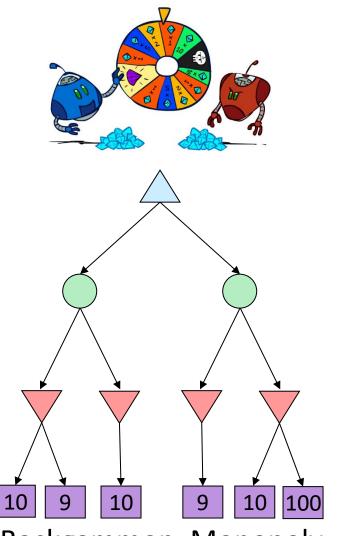
Chance outcomes in trees



Tictactoe, chess *Minimax*

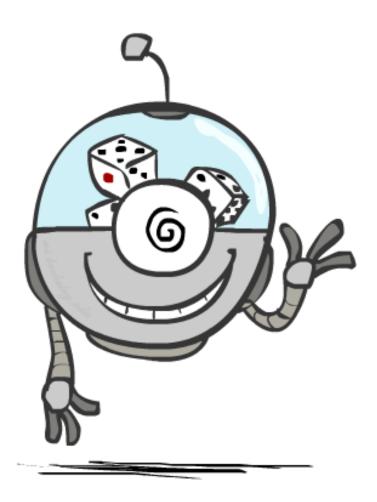


Tetris, investing *Expectimax*



Backgammon, Monopoly *Expectiminimax*

Probabilities



A random variable represents an event whose outcome is unknown

A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway

- Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- Distribution:

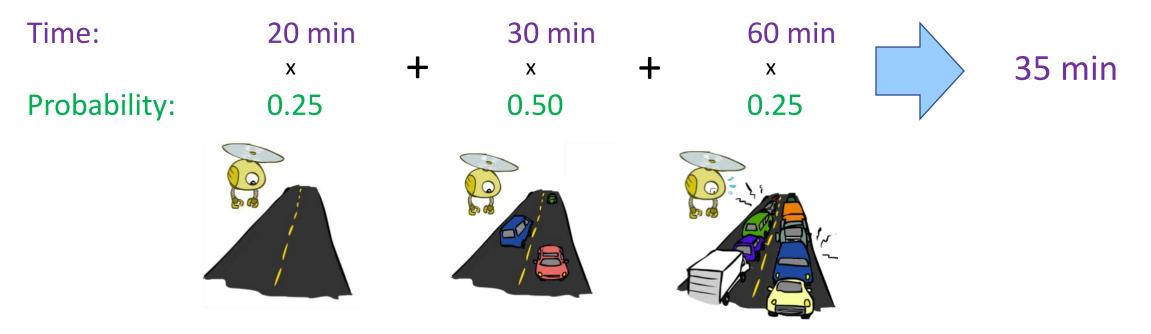
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

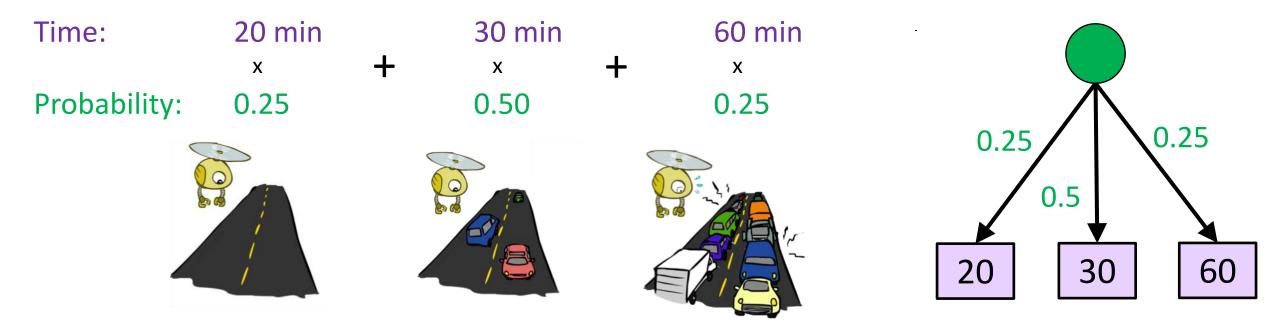
Expected Value

Expected value of a function of a random variable: Average the values of each outcome, weighted by the probability of that outcome

Example: How long to get to the airport?



Expectations



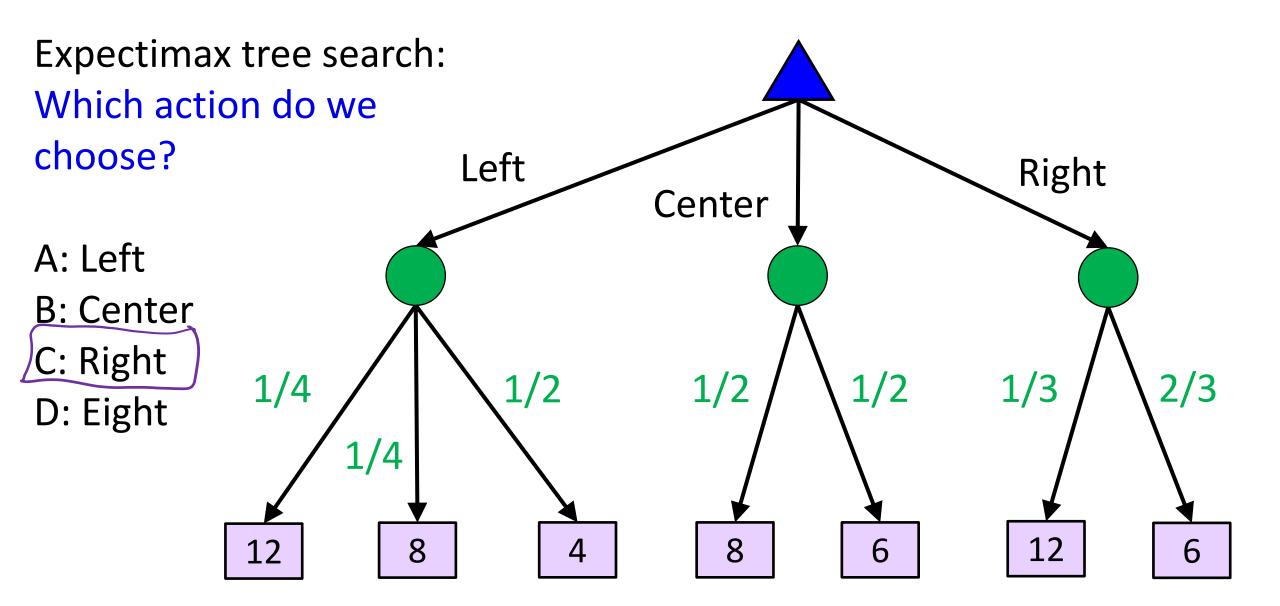
Max node notation

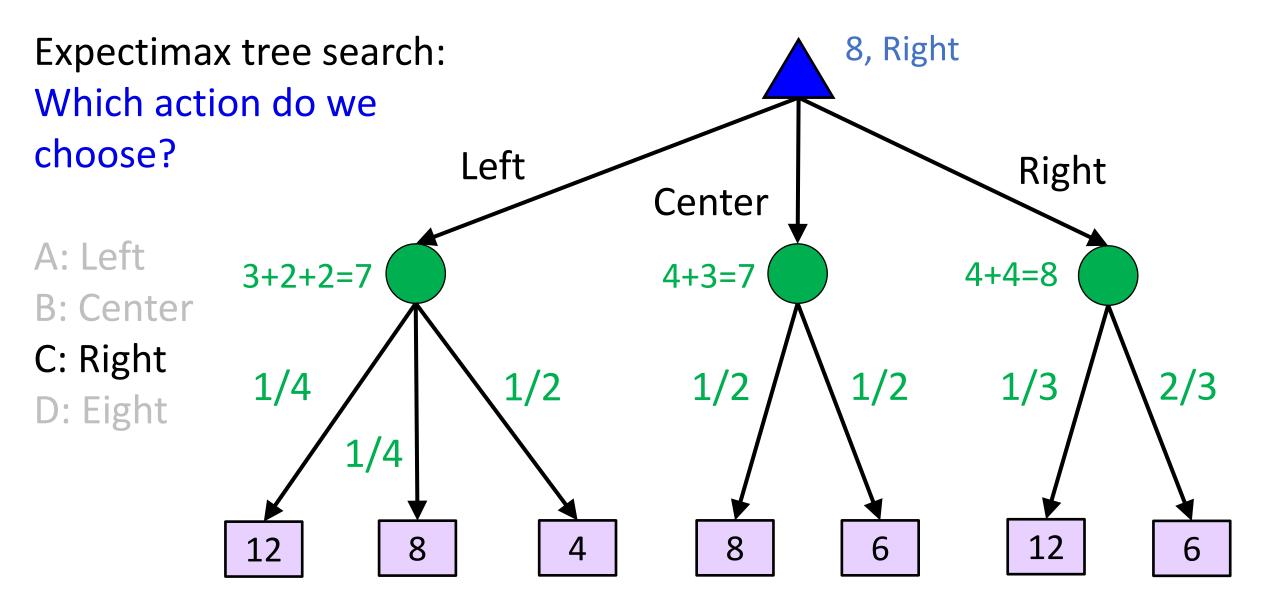
$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

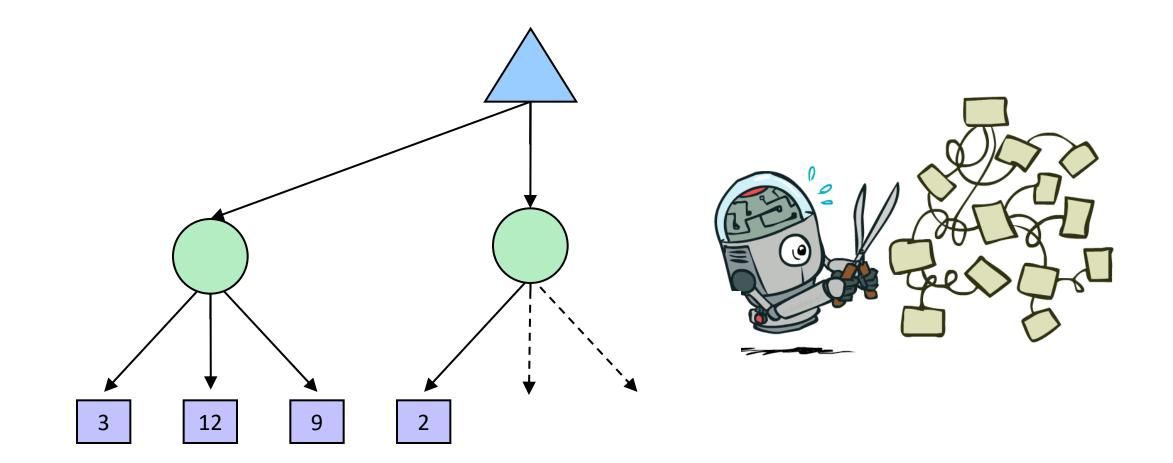
Chance node notation

$$V(s) = \sum_{s'} P(s') V(s')$$





Expectimax Pruning?



Expectimax Code

function value(state) if state.is_leaf return state.value

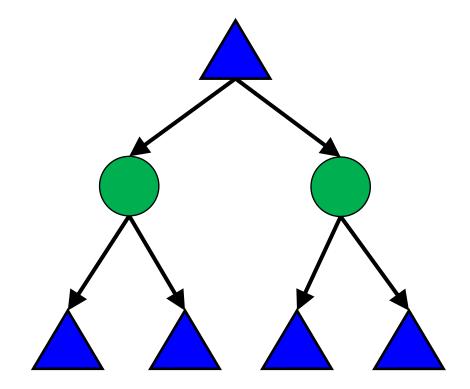
if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

if state.player is CHANCE

return sum s in state.next_states P(s) * value(s)

Preview: MDP/Reinforcement Learning Notation



 $V(s) = \max_{a} \sum P(s') V(s')$ SI

Preview: MDP/Reinforcement Learning Notation

Standard expectimax:

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

$$\begin{split} V(s) &= \max_{a} \sum_{s'} P(s'|s, a) V(s') \\ V(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')] \\ V_{k+1}(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \quad \forall s \\ Q_{k+1}(s, a) &= \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \\ \pi_V(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s \\ V_{k+1}^{\pi}(s) &= \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \pi_{new}(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \end{split}$$

Preview: MDP/Reinforcement Learning Notation

Standard expectimax:

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

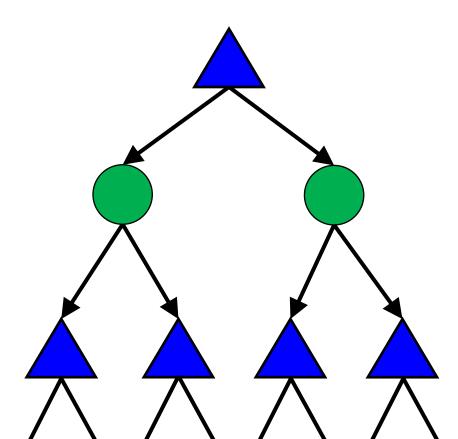
Policy improvement:

$$\begin{split} V(s) &= \max_{a} \sum_{s'} P(s'|s, a) V(s') \\ V(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')] \\ V_{k+1}(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \quad \forall s \\ Q_{k+1}(s, a) &= \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \\ \pi_V(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s \\ V_{k+1}^{\pi}(s) &= \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \pi_{new}(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \end{split}$$

Why Expectimax?

Pretty great model for an agent in the world

Choose the action that has the: highest expected value



Bonus Question

Let's say you know that your opponent is actually running a depth 1 minimax, using the result 80% of the time, and moving randomly otherwise

Question: What tree search should you use?

- A: Minimax
- **B: Expectimax**
- C: Something completely different

Summary

Games require decisions when optimality is impossible

Bounded-depth search and approximate evaluation functions

Games force efficient use of computation

Alpha-beta pruning

Game playing has produced important research ideas

- Reinforcement learning (checkers)
- Iterative deepening (chess)
- Monte Carlo tree search (Go)
- Solution methods for partial-information games in economics (poker)

Video games present much greater challenges – lots to do!

■ b = 10⁵⁰⁰, |S| = 10⁴⁰⁰⁰, m = 10,000