
AI: Representation and Problem Solving

Adversarial Search

Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art
Checkers:
▪ 1950: First computer player.

▪ 1959: Samuel’s self-taught program.

▪ 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

▪ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.

▪ 1960s onward: gradual improvement under “standard model”

▪ 1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)

▪ 2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

Game Playing State-of-the-Art
Checkers:
▪ 1950: First computer player.

▪ 1959: Samuel’s self-taught program.

▪ 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

▪ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.

▪ 1960s onward: gradual improvement under “standard model”

▪ 1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)

▪ 2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

▪ 2015: AlphaGo from DeepMind beats Lee Sedol

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Many different kinds of games!

Axes:
▪ Deterministic or stochastic?

▪ Perfect information (fully observable)?

▪ One, two, or more players?

▪ Turn-taking or simultaneous?

▪ Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

Zero-Sum Games

▪ Zero-Sum Games

▪ Agents have opposite utilities

▪ Pure competition:

▪ One maximizes, the other minimizes

▪ General Games

▪ Agents have independent utilities

▪ Cooperation, indifference,
competition, shifting alliances, and
more are all possible

“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

Game formulation:
▪ Initial state: s0

▪ Players: Player(s) indicates whose move it is

▪ Actions: Actions(s) for player on move

▪ Transition model: Result(s,a)

▪ Terminal test: Terminal-Test(s)

▪ Terminal values: Utility(s,p) for player p

▪ Or just Utility(s) for player making the decision at root

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Minimax

States

Actions

Values

Minimax

States

Actions

Values

Minimax

+8-10-5-8

States

Actions

Values

Poll 1

12 8 5 23 2 144 6

What is the minimax value at the root?

A) 2

B) 3

C) 6

D) 12

E) 14

Poll 1

12 8 5 23 2 144 6

3 2 2

3

What is the minimax value at the root?

A) 2

B) 3

C) 6

D) 12

E) 14

Minimax Code

Max Code

+8-10-8

Max Code

Minimax Code

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Generic Game Tree Pseudocode

function minimax_decision(state)

 return argmax a in state.actions value(state.result(a))

function value(state)
if state.is_leaf
 return state.value

if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

Minimax Efficiency

How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

Example: For chess, b 35, m 100
▪ Exact solution is completely infeasible

▪ Humans can’t do this either, so how do
we play chess?

▪ Bounded rationality – Herbert Simon

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
▪ Search only to a preset depth limit or horizon
▪ Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ For chess, b=~35 so reaches about depth 4 – not so good ? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

Evaluation functions are always
imperfect

Deeper search => better play
(usually)

Or, deeper search gives same quality
of play with a less accurate
evaluation function

An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Demo Limited Depth (2)

Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:
▪ EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
▪ E.g., w1 = 9, f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and
 competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1

Generalized minimax

Three Person Chess
https://www.youtube.com/watch?v=HHVPutfveVs

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3

Poll 2
Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Poll 3

Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n

1

Poll 3

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= α=

β =

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Poll 3

10 v=100

β = 10

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β
 return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Poll 3

10

10 100 2

v = 2

α = 10
def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α
 return v
β = min(β, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties
Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

▪ Iterative deepening helps with this

With “perfect ordering”:

▪ Time complexity drops to O(bm/2)

▪ Doubles solvable depth!

▪ 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Minimax Demo

Fine print
▪ Pacman: uses depth 4 minimax
▪ Ghost: uses depth 2 minimax

Points

+500 win

-500 lose

-1 each move

How well would a minimax Pacman perform against a

ghost that moves randomly?

A. Better than against a minimax ghost

B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Poll 4

Fine print
▪ Pacman: uses depth 4 minimax as before
▪ Ghost: moves randomly

Demo

Assumptions vs. Reality

Minimax
 Ghost

Random
Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 493

Won 5/5

Avg. Score: 464

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Modeling Assumptions

Know your opponent

10091010

Modeling Assumptions

Know your opponent

10091010

Modeling Assumptions
Minimax autonomous vehicle?

Image: https://corporate.ford.com/innovation/autonomous-2021.html

Clip: How I Met Your Mother, CBS

Minimax Driver?

https://youtu.be/5PRrwlkPdNI?t=52

https://youtu.be/5PRrwlkPdNI?t=52

Modeling Assumptions

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Modeling Assumptions

Know your opponent

10091010

Modeling Assumptions

Chance nodes: Expectimax

10091010

Assumptions vs. Reality

Minimax
Ghost

Random
Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 493

Won 5/5

Avg. Score: 464

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

A probability distribution is an assignment of weights
to outcomes

Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution:

 P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

0.25

0.50

0.25

Expected value of a function of a random variable:

Average the values of each outcome,

weighted by the probability of that outcome

Example: How long to get to the airport?

Expected Value

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
𝑎

 𝑉 𝑠′ ,

 where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 =

𝑠′

𝑃 𝑠′ 𝑉(𝑠′)

Poll 5

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

Poll 5

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right

Expectimax Pruning?

12 93 2

Expectimax Code

function value(state)
if state.is_leaf
 return state.value

if state.player is MAX
 return max a in state.actions value(state.result(a))

if state.player is MIN
 return min a in state.actions value(state.result(a))

if state.player is CHANCE
 return sum s in state.next_states P(s) * value(s)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃(𝑠′) 𝑉(𝑠′)

Preview: MDP/Reinforcement Learning Notation

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Why Expectimax?

Pretty great model for an agent in the world

Choose the action that has the: highest expected value

Bonus Question
Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly
otherwise

Question: What tree search should you use?

A: Minimax

B: Expectimax

C: Something completely different

Summary
Games require decisions when optimality is impossible
▪ Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
▪ Alpha-beta pruning

Game playing has produced important research ideas
▪ Reinforcement learning (checkers)

▪ Iterative deepening (chess)

▪ Monte Carlo tree search (Go)

▪ Solution methods for partial-information games in economics (poker)

Video games present much greater challenges – lots to do!
▪ b = 10500, |S| = 104000, m = 10,000

	Slide 1: AI: Representation and Problem Solving
	Slide 2: Outline
	Slide 3: Game Playing State-of-the-Art
	Slide 4: Game Playing State-of-the-Art
	Slide 5: Behavior from Computation
	Slide 6: Types of Games
	Slide 7: Zero-Sum Games
	Slide 8: “Standard” Games
	Slide 9: Adversarial Search
	Slide 10: Single-Agent Trees
	Slide 11: Minimax
	Slide 12: Minimax
	Slide 13: Minimax
	Slide 14: Poll 1
	Slide 15: Poll 1
	Slide 16: Minimax Code
	Slide 17: Max Code
	Slide 18: Max Code
	Slide 19: Minimax Code
	Slide 20: Minimax Notation
	Slide 21: Minimax Notation
	Slide 22: Generic Game Tree Pseudocode
	Slide 23: Minimax Efficiency
	Slide 24: Resource Limits
	Slide 25: Resource Limits
	Slide 26: Depth Matters
	Slide 27: Demo Limited Depth (2)
	Slide 28: Demo Limited Depth (10)
	Slide 29: Evaluation Functions
	Slide 30: Evaluation Functions
	Slide 31: Evaluation for Pacman
	Slide 32: Generalized minimax
	Slide 33: Generalized minimax
	Slide 34: Game Tree Pruning
	Slide 35: Minimax Example
	Slide 36: Alpha-Beta Example
	Slide 37: Poll 2
	Slide 38: Poll 3
	Slide 39: Poll 3
	Slide 40: Alpha-Beta Implementation
	Slide 41: Alpha-Beta Poll 3
	Slide 42: Alpha-Beta Poll 3
	Slide 43: Alpha-Beta Pruning Properties
	Slide 44: Minimax Demo
	Slide 45: Poll 4
	Slide 46: Demo
	Slide 47: Assumptions vs. Reality
	Slide 48: Modeling Assumptions
	Slide 49: Modeling Assumptions
	Slide 50: Modeling Assumptions
	Slide 51: Minimax Driver?
	Slide 52: Modeling Assumptions
	Slide 53: Modeling Assumptions
	Slide 54: Modeling Assumptions
	Slide 55: Assumptions vs. Reality
	Slide 56: Chance outcomes in trees
	Slide 57: Probabilities
	Slide 58: Probabilities
	Slide 59: Expected Value
	Slide 60: Expectations
	Slide 61: Poll 5
	Slide 62: Poll 5
	Slide 63: Expectimax Pruning?
	Slide 64: Expectimax Code
	Slide 65: Preview: MDP/Reinforcement Learning Notation
	Slide 66: Preview: MDP/Reinforcement Learning Notation
	Slide 67: Preview: MDP/Reinforcement Learning Notation
	Slide 68: Why Expectimax?
	Slide 69: Bonus Question
	Slide 70: Summary

