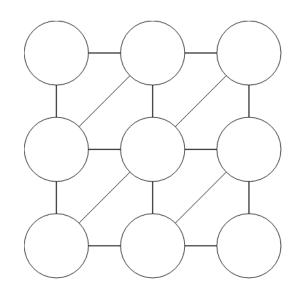
## Warm-up as You Walk In

Assign Red, Green, or Blue Neighbors must be different



#### Sudoku

| 1 |   |   |   |
|---|---|---|---|
|   | 2 | 1 |   |
|   |   | 3 |   |
|   |   |   | 4 |

- 1) What is your brain doing to solve these?
- 2) How would you solve these with search (BFS, DFS, etc.)?

### Plan

#### **Last Time**

- A\* search
- Adversarial search
  - Minimax
  - Evaluation functions
  - Pruning

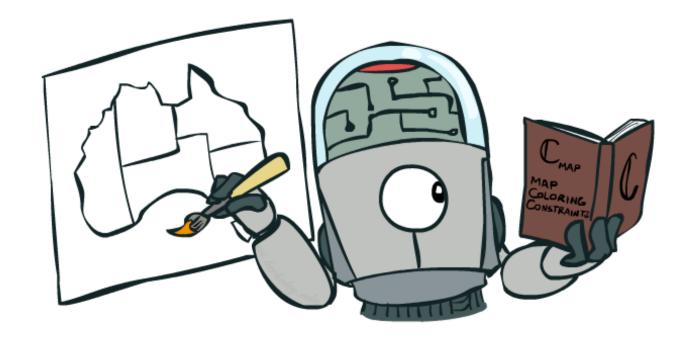
#### Today

- Adversarial search: Expectimax
- Constraint Satisfaction Problems

# Expectimax

Adversarial search slides

# AI: Representation and Problem Solving Constraint Satisfaction Problems (CSPs)



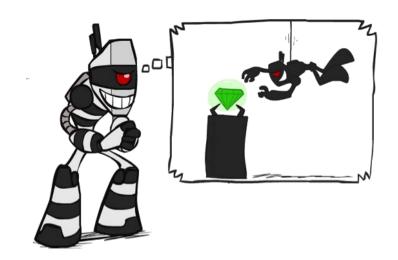
Instructor: Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

#### What is Search For?

- Planning: sequences of actions
  - The path to the goal is the important thing
  - Paths have various costs, depths
  - Heuristics give problem-specific guidance
- Identification: assignments to variables
  - The goal itself is important, not the path
  - All paths at the same depth (for some formulations)

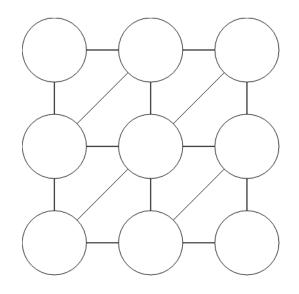
Are the warm-up assignments planning or identification problems?





## Warm-up as You Walk In

Assign Red, Green, or Blue Neighbors must be different



#### Sudoku

| 1 |   |   |   |
|---|---|---|---|
|   | 2 | 1 |   |
|   |   | 3 |   |
|   |   |   | 4 |

#### Constraint Satisfaction Problems

#### CSP is a special class of search problems

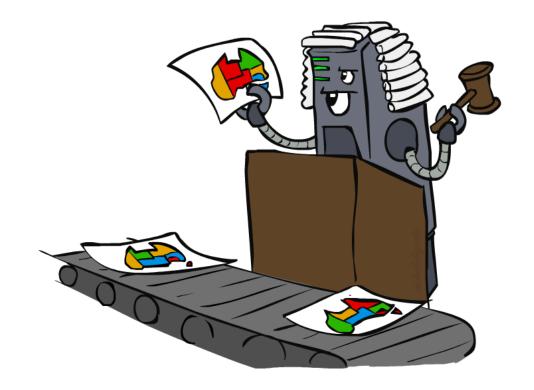
- Mostly identification problems
- Have specialized algorithms for them

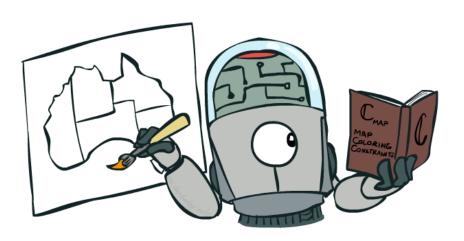
#### Standard search problems:

- State is an arbitrary data structure
- Goal test can be any function over states

#### Constraint satisfaction problems (CSPs):

- State is defined by variables  $X_i$  with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables





## Why study CSPs?

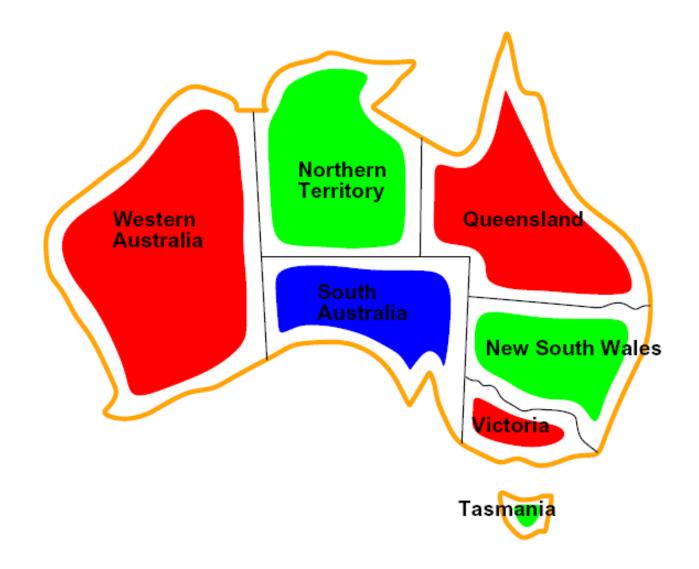
#### Many real-world problems can be formulated as CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

Sometimes involve real-valued variables...



# CSP Examples



## Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains:  $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

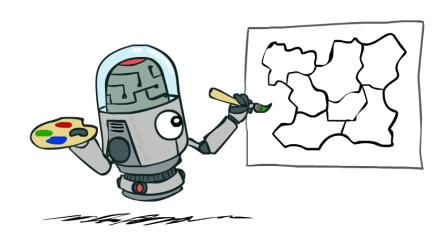
Implicit:  $WA \neq NT$ 

Explicit:  $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$ 

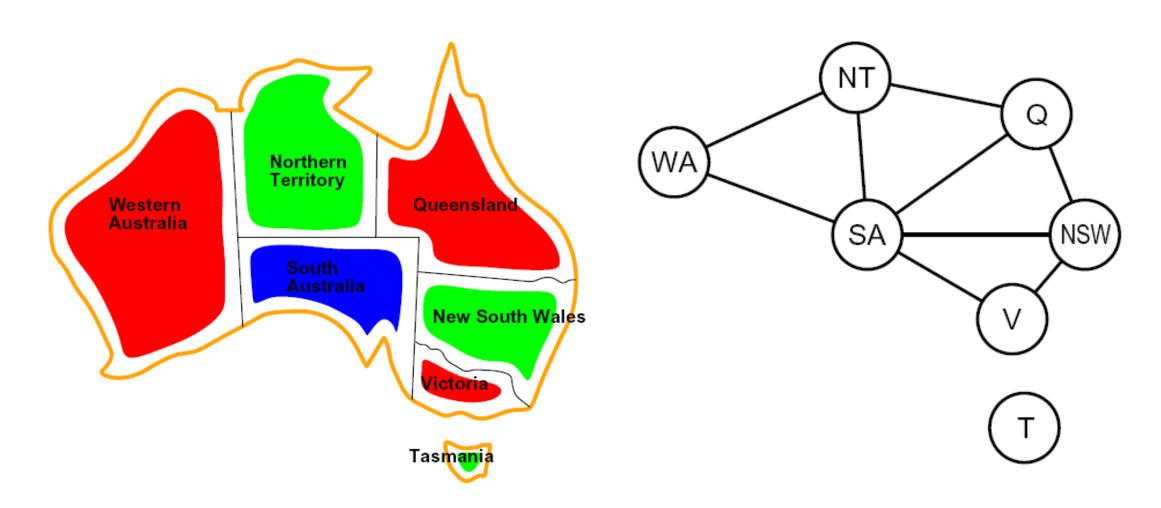
• Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}





# Constraint Graphs

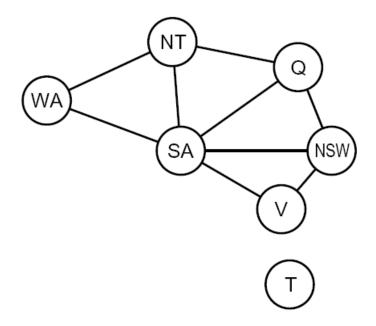


## Constraint Graphs

 Binary CSP: each constraint relates (at most) two variables

 Binary constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



## Varieties of CSPs and Constraints



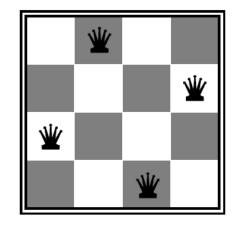
## Example: N-Queens

#### Formulation 1:

ullet Variables:  $X_{ij}$ 

• Domains:  $\{0, 1\}$ 

Constraints





$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$$

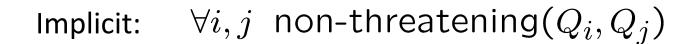
$$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$$

$$\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$$

## Example: N-Queens

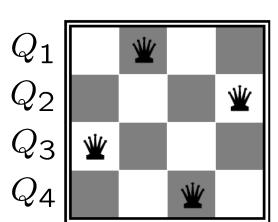
- Formulation 2:
  - ullet Variables:  $Q_k$
  - Domains:  $\{1, 2, 3, ... N\}$



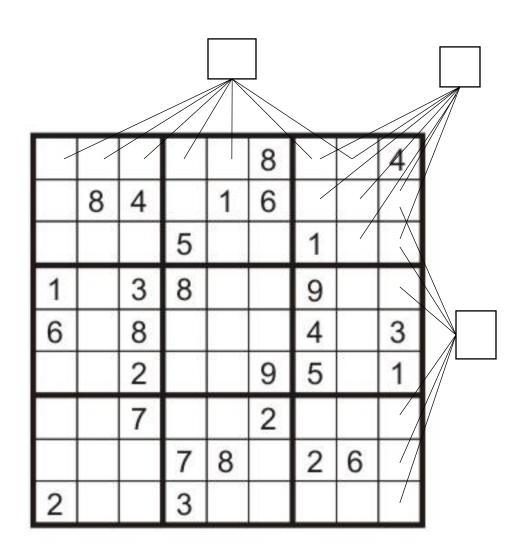


Explicit: 
$$(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$$

• • •



## Example: Sudoku



Variables: Each (open) square

• Domains: {1,2,...,9}

• Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch
of pairwise inequality
constraints)

#### Varieties of CSPs

Discrete Variables

We will cover today

- Finite domains
  - Size d means  $O(d^n)$  complete assignments
  - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

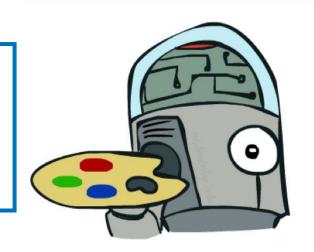


• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

We will cover in a later lecture (linear programming)

- Continuous variables
  - E.g., start/end times for Hubble Telescope observations
  - Linear constraints solvable in polynomial time



#### Varieties of Constraints

- Varieties of Constraints
  - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq green$$

Focus of today

- Binary constraints involve pairs of variables, e.g.:  $SA \neq WA$
- Higher-order constraints involve 3 or more variables:
   e.g., cryptarithmetic column constraints

$$O + O = R + 10 \cdot X_1$$



- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems



# Solving CSPs



#### Standard Search Formulation

Standard search formulation of CSPs

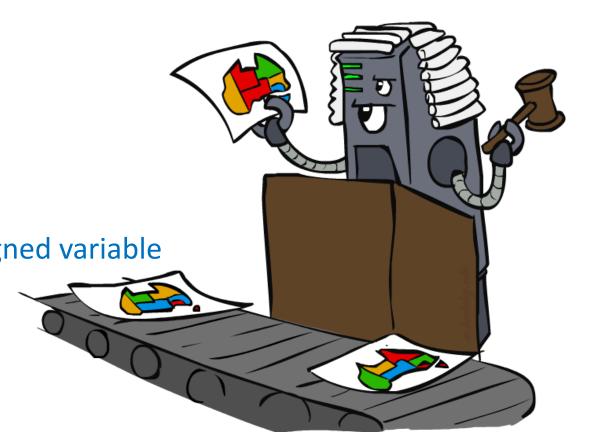
 States defined by the values assigned so far (partial assignments)

Initial state: the empty assignment, {}

 Successor function: assign a value to an unassigned variable →Can be any unassigned variable

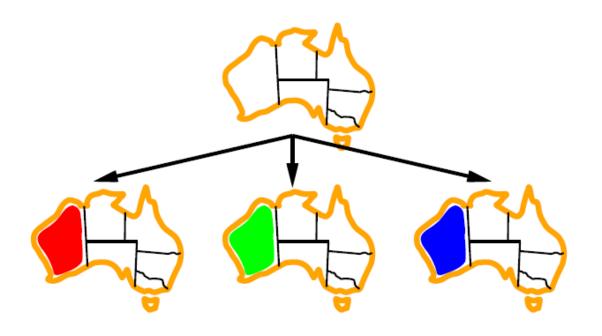
 Goal test: the current assignment is complete and satisfies all constraints

 We'll start with the straightforward, naïve approach, then improve it



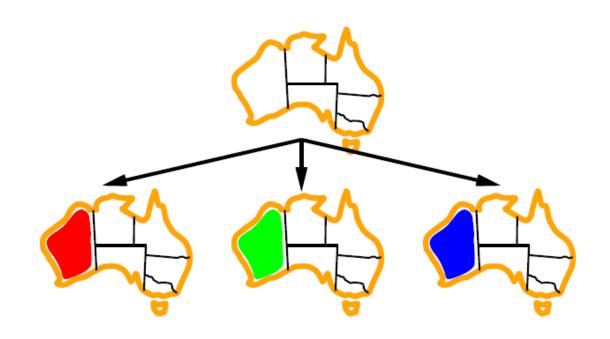
## Poll 1: Search for CSPs

Should we use BFS or DFS?

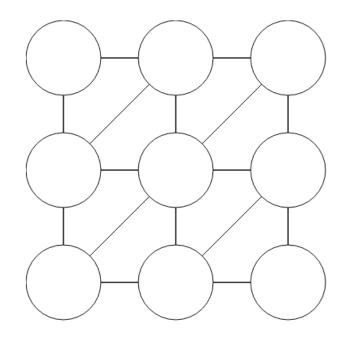


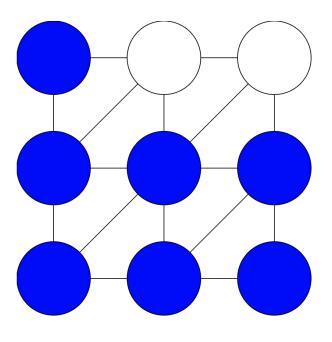
## Depth First Search

- At each node, assign a value from the domain to the variable
- Check feasibility (constraints) when the assignment is complete

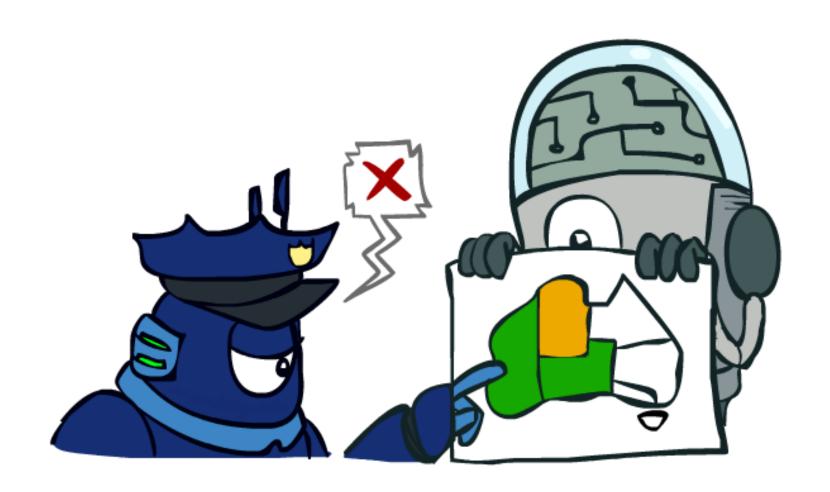


## Demo – Naïve Search





| 15-281: Ar | tificial Intelligence    | ОН      | Schedule | Recitations                 | Exams | Assignments | Policies | Course Notes             |
|------------|--------------------------|---------|----------|-----------------------------|-------|-------------|----------|--------------------------|
| 9/5 Thu    | Adversarial Search       |         |          | AIMA Ch. 5.1-2,             | 5.5   |             |          | pptx (inked) pdf (inked) |
| 9/10 Tue   | Contraint Satisfaction I | Problem |          | AIMA Ch. 6.1-3,<br>CSP Demo | 6.5   |             |          |                          |
|            |                          |         |          |                             |       |             |          |                          |



#### Backtracking search is the basic uninformed algorithm for solving CSPs

Backtracking search = DFS + two improvements

#### Idea 1: One variable at a time

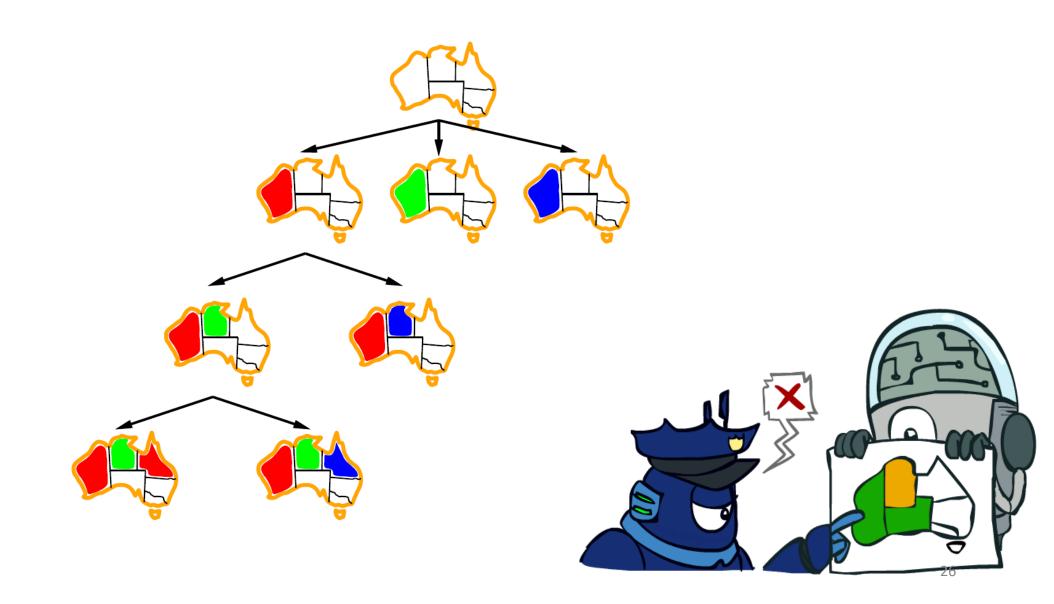
- Variable assignments are commutative
  - [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assign value to a single variable at each step

#### Idea 2: Check constraints as you go

- Consider only values which do not conflict previous assignments
- May need some computation to check the constraints
- "Incremental goal test"



# Backtracking Example



```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
            add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
```

```
function Recursive-Backtracking (assignment, csp) returns soln/failure
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            remove \{var = value\} from assignment
```

```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
            add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
```

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

No need to check constraints for a complete assignment

```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
```

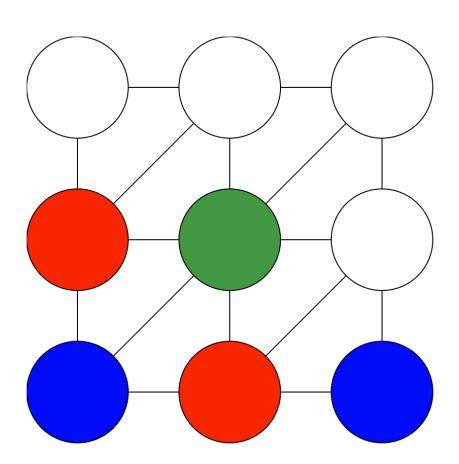
Checks consistency at each assignment

```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking (assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the decision points?

## Demo – Backtracking

https://www.cs.cmu.edu/~15281/demos/csp\_backtracking



## Improving Backtracking

- General-purpose ideas give huge gains in speed
- Filtering: Can we detect inevitable failure early?

- Ordering:
  - Which variable should be assigned next?
  - In what order should its values be tried?
- Structure: Can we exploit the problem structure?



# Filtering



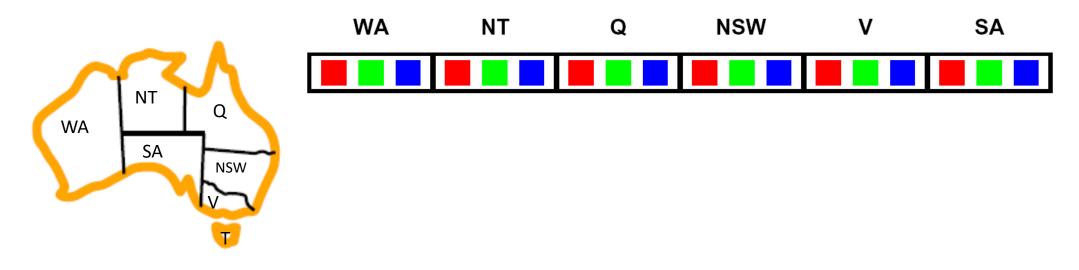
## Filtering: Forward Checking

Filtering: Keep track of domains for unassigned variables and cross off bad options

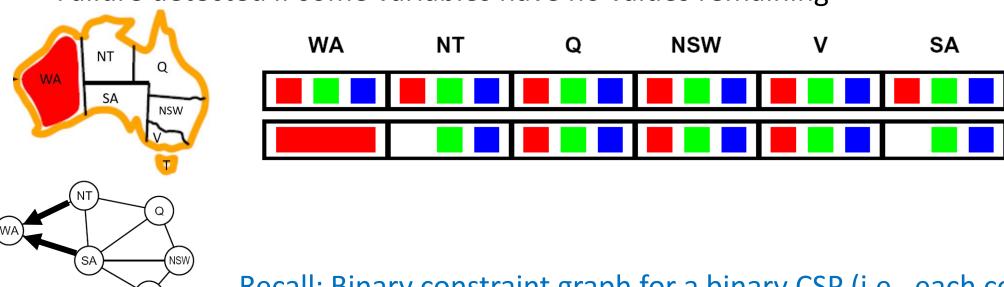
Forward checking: A simple way for filtering

- After a variable is assigned a value, check related constraints and cross off values of unassigned variables which violate the constraints
- Failure detected if some variables have no values remaining

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: A simple way for filtering
  - After a variable is assigned a value, check related constraints and cross off values of unassigned variables which violate the constraints
  - Failure detected if some variables have no values remaining

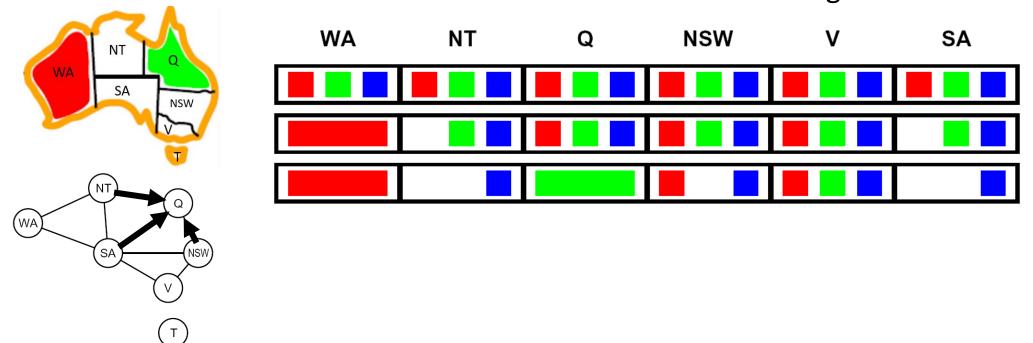


- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: A simple way for filtering
  - After a variable is assigned a value, check related constraints and cross off values of unassigned variables which violate the constraints
  - Failure detected if some variables have no values remaining

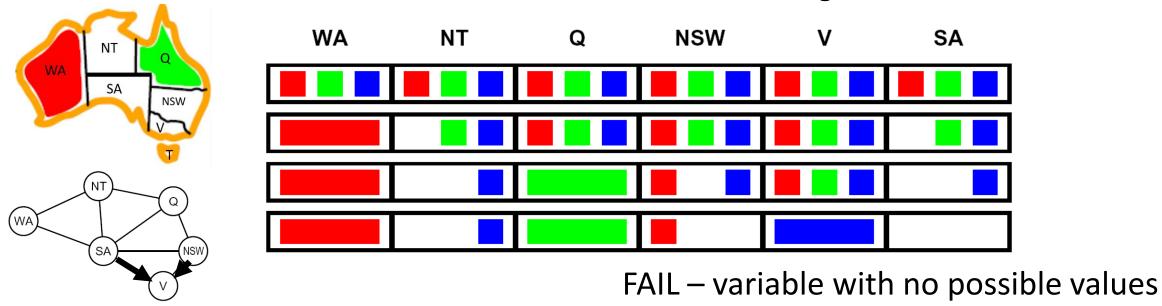


Recall: Binary constraint graph for a binary CSP (i.e., each constraint has most two variables): nodes are variables, edges show constraints 38

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: A simple way for filtering
  - After a variable is assigned a value, check related constraints and cross off values of unassigned variables which violate the constraints
  - Failure detected if some variables have no values remaining

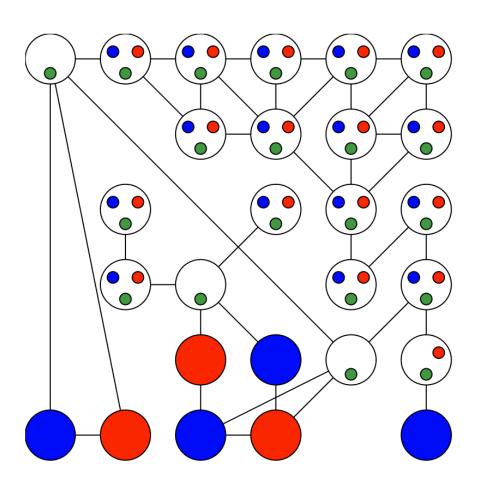


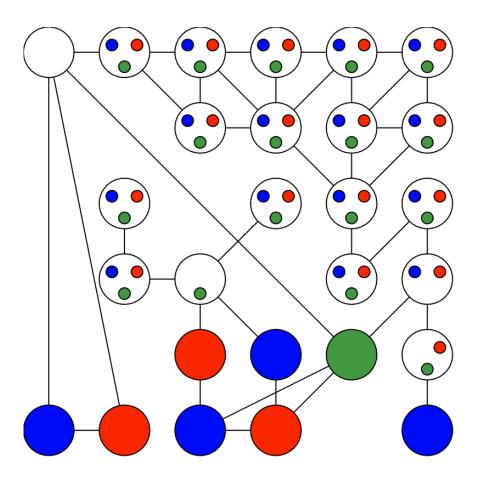
- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: A simple way for filtering
  - After a variable is assigned a value, check related constraints and cross off values of unassigned variables which violate the constraints
  - Failure detected if some variables have no values remaining



## Demo – Backtracking with Forward Checking

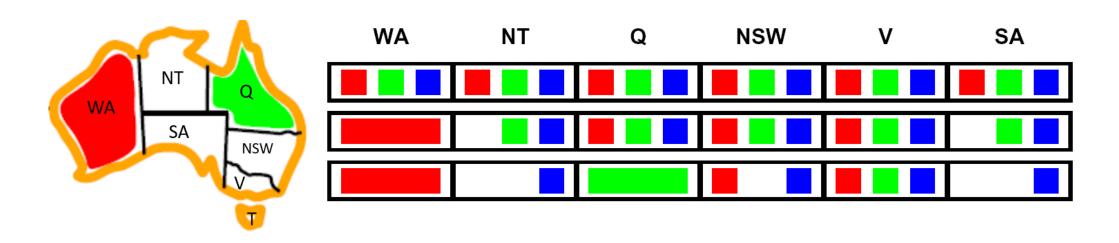
https://www.cs.cmu.edu/~15281/demos/csp\_backtracking





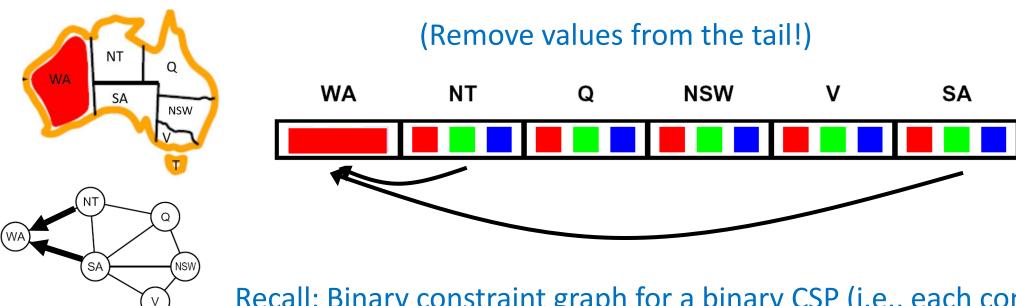
#### Filtering: Constraint Propagation

- Limitations of simple forward checking: propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures
  - NT and SA cannot both be blue! Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint



#### Consistency of A Single Arc

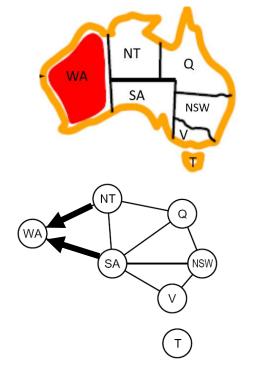
- An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint
- Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists
- Forward checking: Only enforce  $X \to Y$ ,  $\forall (X,Y) \in E$  and Y newly assigned

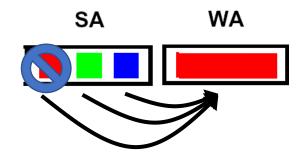


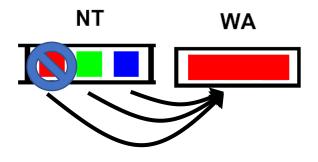
Recall: Binary constraint graph for a binary CSP (i.e., each constraint has most two variables): nodes are variables, edges show constraints 43

#### Consistency of A Single Arc

- An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint
- Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists
- Forward checking: Only enforce  $X \to Y$ ,  $\forall (X,Y) \in E$  and Y newly assigned

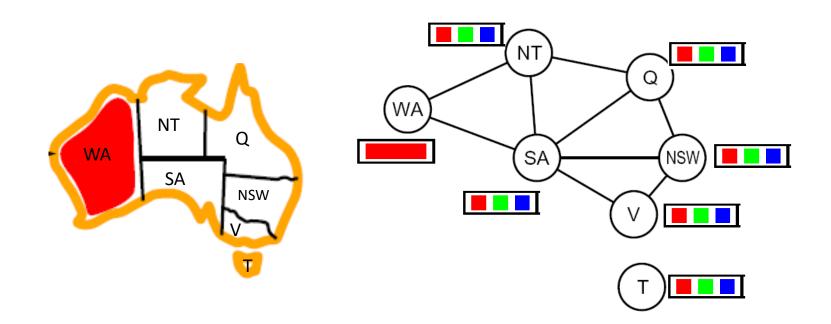






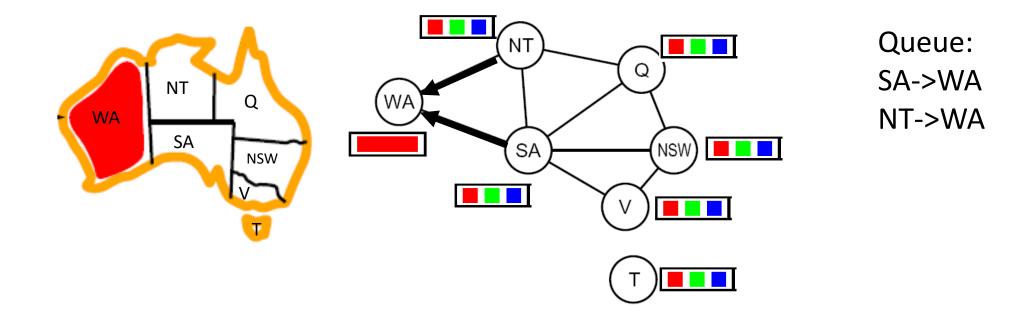
#### How to Enforce Arc Consistency of Entire CSP

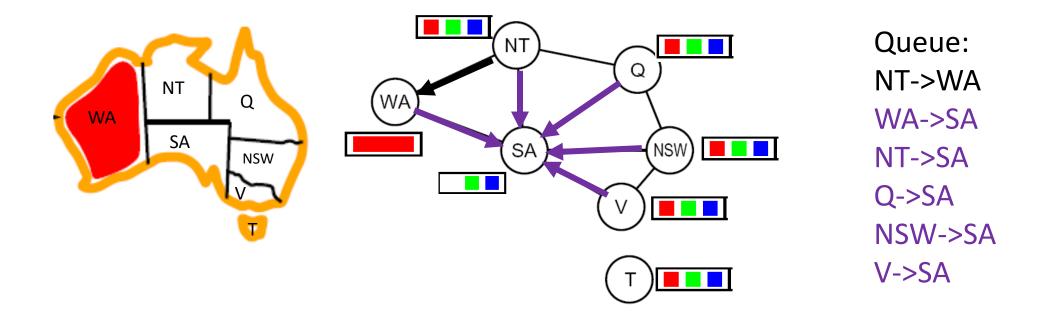
- A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency, repeating the cycle until no domains change for a whole cycle
- AC-3 (short for <u>Arc Consistency Algorithm #3</u>): A more efficient algorithm ignoring constraints that have not been modified since they were last analyzed

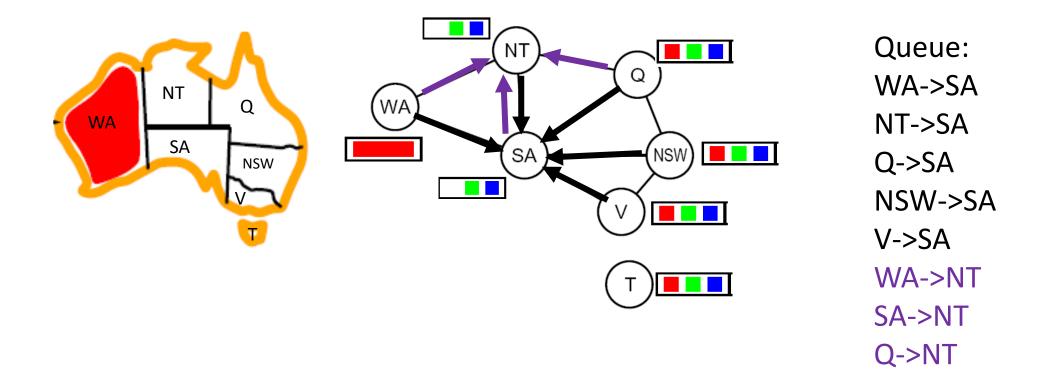


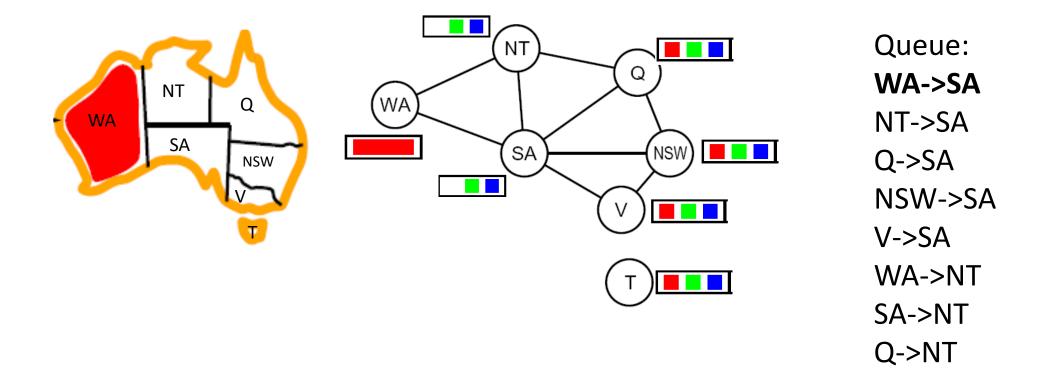
```
function AC-3( csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
     if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

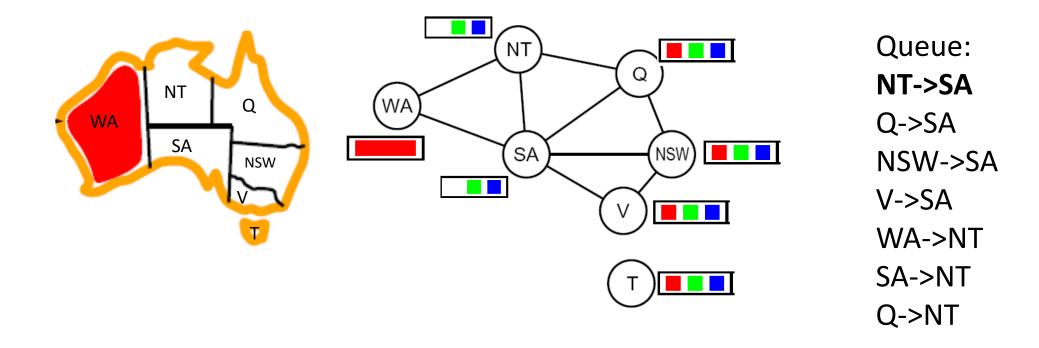
**Constraint Propagation!** 

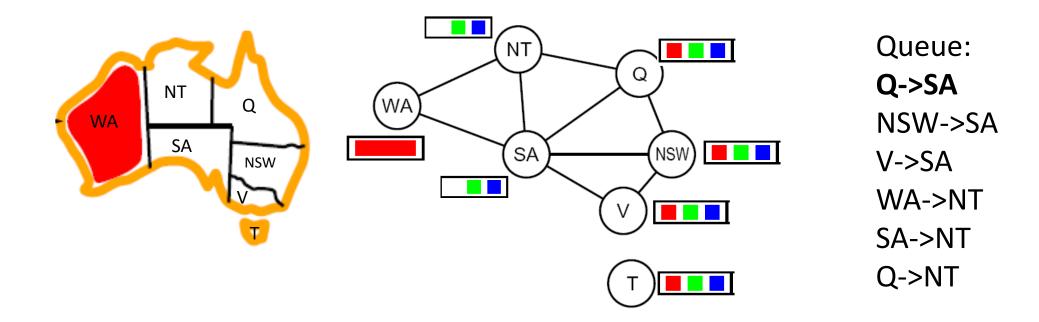


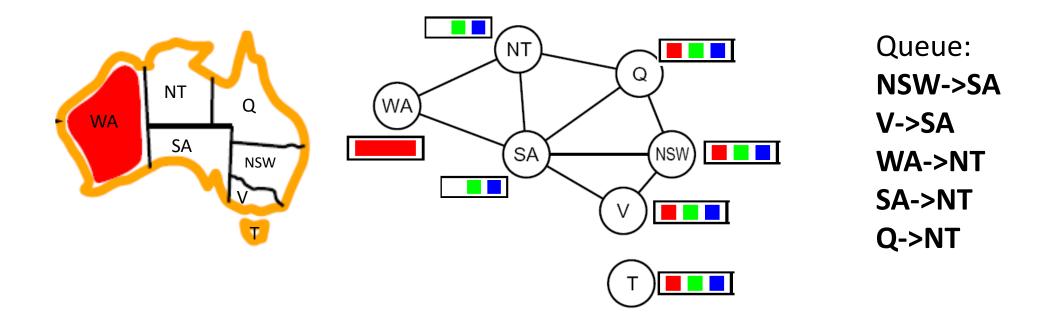


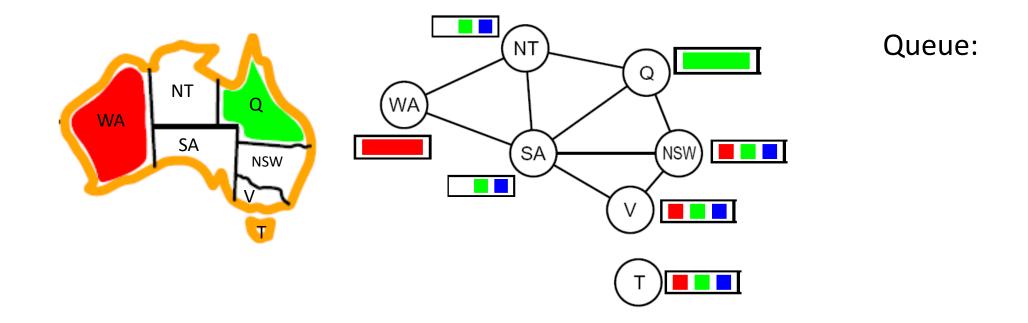




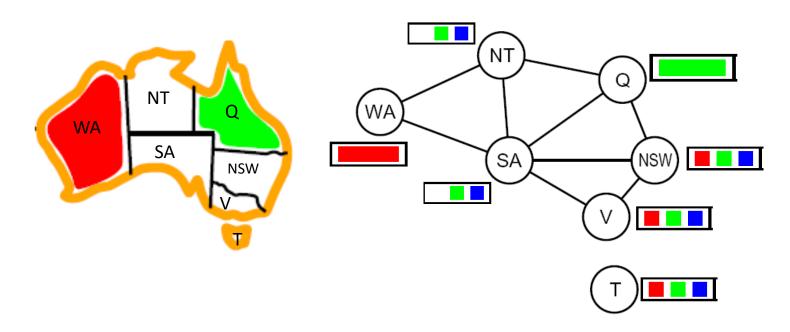








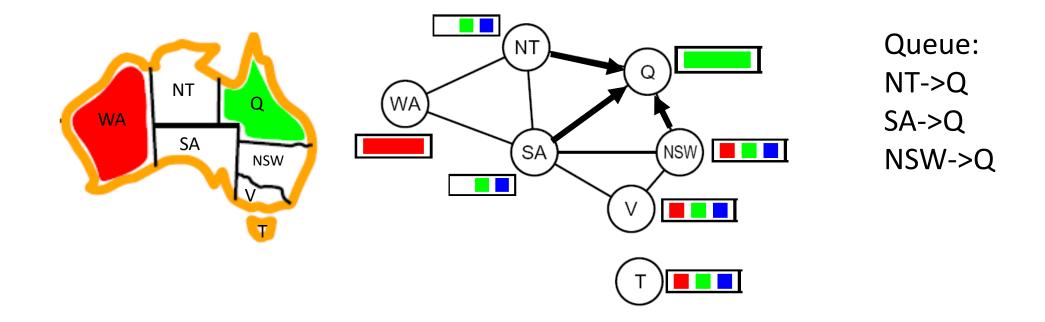
# Poll 2: After assigning Q to Green, what gets added to the Queue?

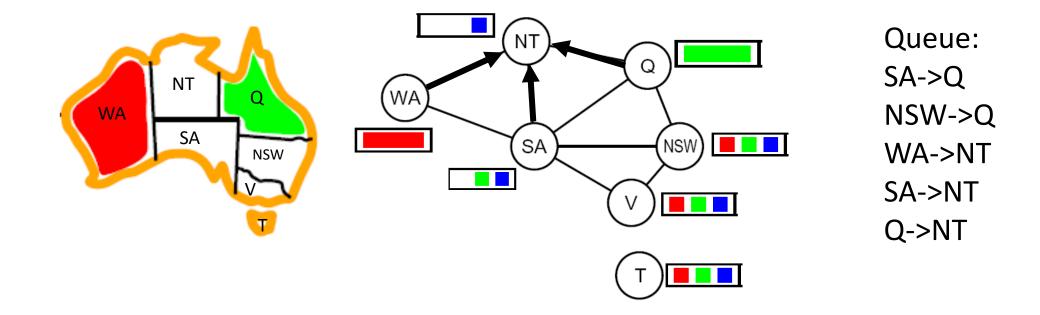


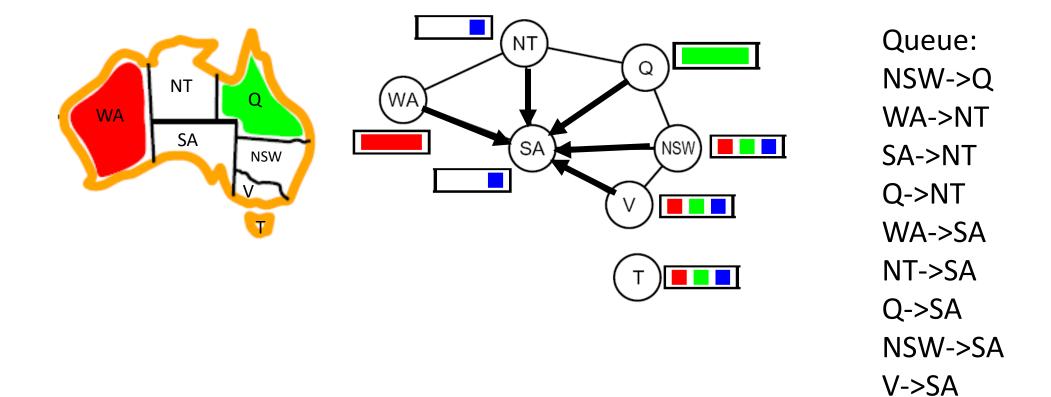
Queue:

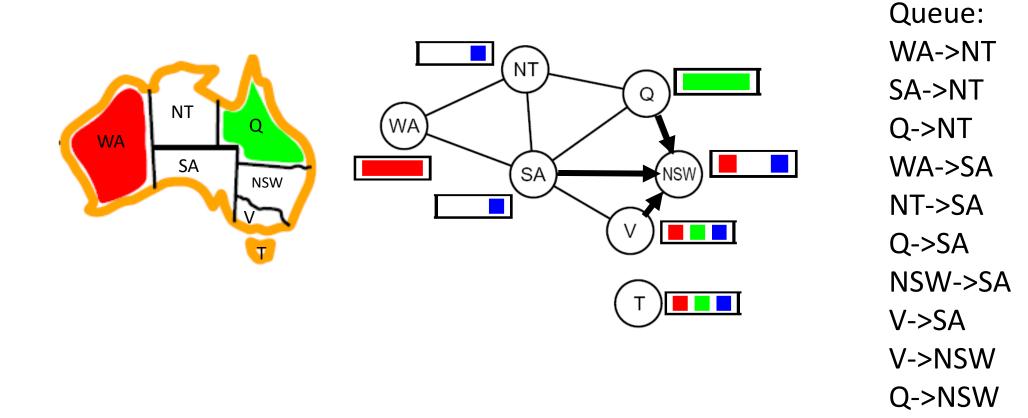
A: NSW->Q, SA->Q, NT->Q

B: Q->NSW, Q->SA, Q->NT



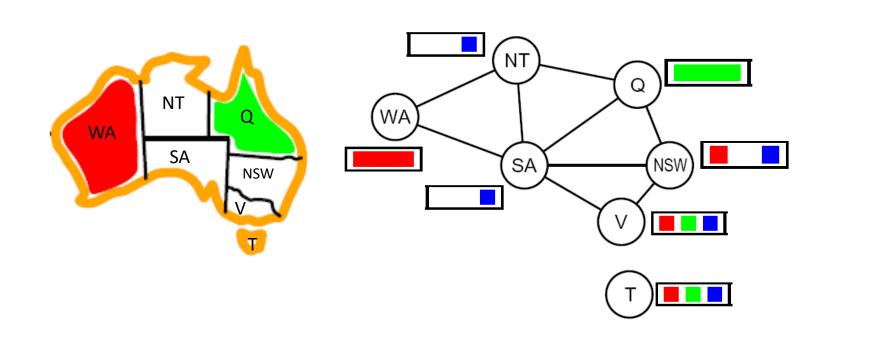






Remember: Delete from the tail!

SA->NSW



Queue:

WA->NT

SA->NT

Q->NT

WA->SA

NT->SA

Q->SA

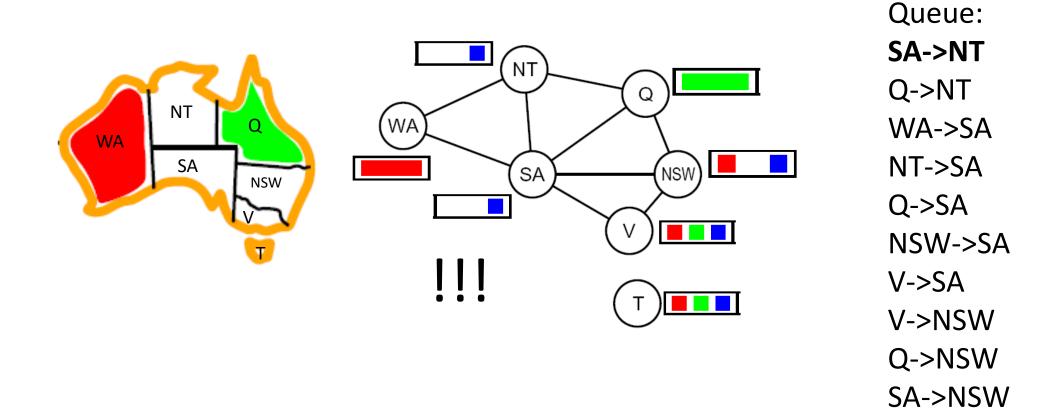
NSW->SA

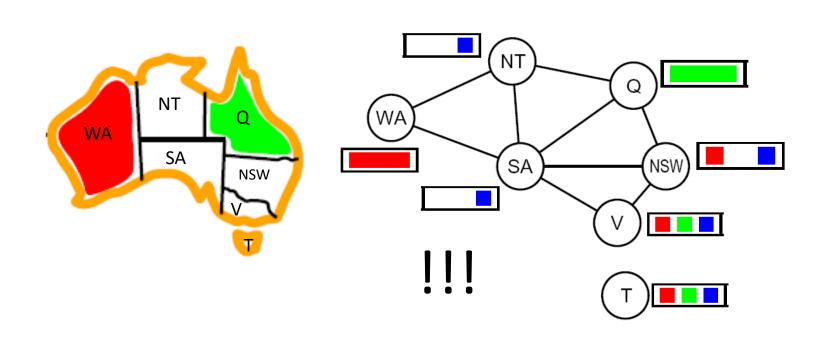
V->SA

V->NSW

Q->NSW

SA->NSW





- Backtrack on the assignment of Q
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Queue:

SA->NT

Q->NT

WA->SA

NT->SA

Q->SA

NSW->SA

V->SA

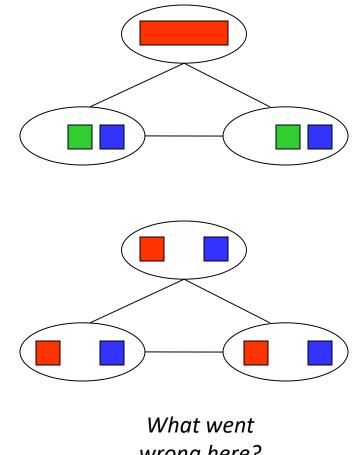
V->NSW

Q->NSW

SA->NSW

#### Limitations of Arc Consistency

- After enforcing arc consistency:
  - Can have one solution left
  - Can have multiple solutions left
  - Can have no solutions left (and not know it)
- Arc consistency only checks local consistency conditions
- Arc consistency still runs inside a backtracking search!



#### Backtracking Search with AC-3

```
function Backtracking-Search(csp) returns solution/failure
   return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
            add \{var = value\} to assignment
                                                              AC-3(csp)
            result \leftarrow \text{Recursive-Backtracking}(assignment, \underbrace{esp})
            if result \neq failure then return result
            remove \{var = value\} from assignment
   return failure
```

Where do you run AC-3?

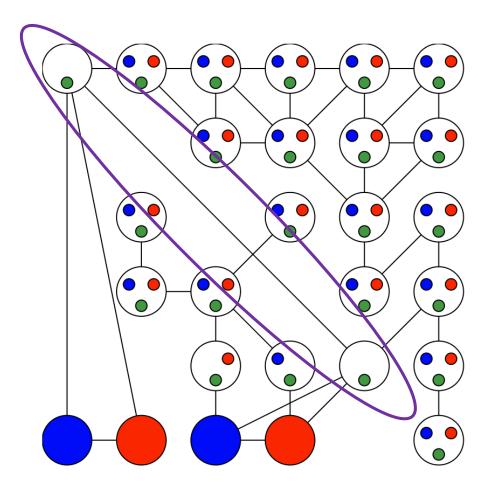
#### Demo – Backtracking with AC-3

#### Compare

- Backtracking with Forward Checking
- Backtracking with AC-3

Forward checking only check arcs connecting variables a variable that we just assigned.

With AC-3, we can find existing problems, such as the arc between these two variables with only green left.



```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
             add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

- An arc is added after a removal of value at a node
- n node in total, each has  $\leq d$  values
- Total times of removal: O(nd)

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] do add (X_k, X_i) to queue
```

```
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds removed \leftarrow false
for each x in Domain[X_i] do
if no value y in Domain[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
then delete x from Domain[X_i]; removed \leftarrow true
return removed
```

- An arc is added after a removal of value at a node
- n node in total, each has  $\leq d$  values
- Total times of removal: O(nd)
- After a removal,  $\leq n$  arcs added
- Total times of adding arcs:  $O(n^2d)$

```
function AC-3( csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
  for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

- An arc is added after a removal of value at a node
- n node in total, each has  $\leq d$  values
- Total times of removal: O(nd)
- After a removal,  $\leq n$  arcs added
- Total times of adding arcs:  $O(n^2d)$

• Check arc consistency per arc:  $O(d^2)$ 

Complexity of a single run of AC-3 is at most  $O(n^2d^3)$ 

(Not required) Zhang&Yap (2001) show that its complexity is  $O(n^2d^2)$ 

## Ordering



## Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
  - Choose the variable with the fewest legal left values in its domain



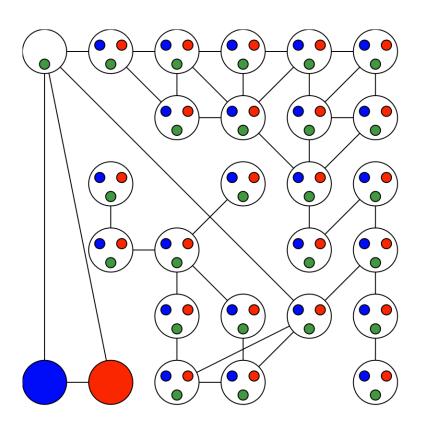
- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering



#### Demo – Coloring with a Complex Graph

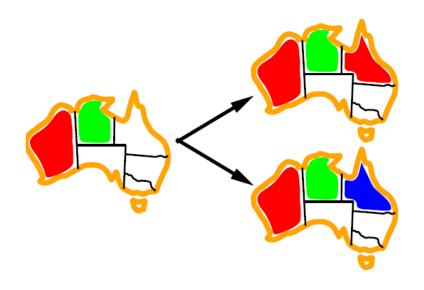
#### Compare

- Backtracking with Forward Checking
- Backtracking with AC-3
- Backtracking + Forward Checking + Minimum Remaining Values (MRV)



#### Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
  - Given a choice of variable, choose the *least* constraining value
  - i.e., the one that rules out the fewest values in the remaining variables
  - Note that it may take some computation to determine this! (E.g., rerunning filtering)



#### Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
  - Given a choice of variable, choose the *least* constraining value
  - i.e., the one that rules out the fewest values in the remaining variables
  - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible



#### Demo – Coloring with a Complex Graph

#### Compare

- Backtracking with Forward Checking
- Backtracking with AC-3
- Backtracking + Forward Checking + Minimum Remaining Values (MRV)
- Backtracking + AC-3 + MRV + LCV

#### Summary: CSPs

- CSPs are a special kind of search problem:
  - States are partial assignments
  - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
  - Ordering
  - Filtering
  - (Structure)

