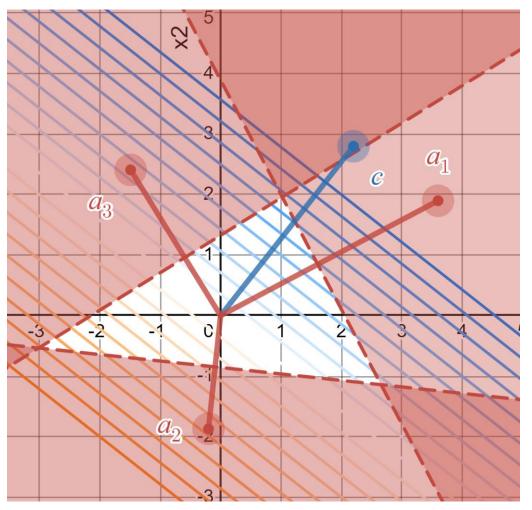
## Warm-up as you walk in

What is the solution to this LP?



https://www.desmos.com/calculator/tnlo7p5plp

### Plan

#### **Last Time**

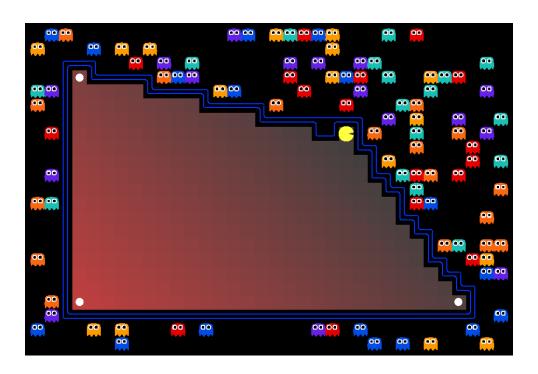
- Linear programming formulation
  - Problem description
  - Graphical representation
  - Optimization representation

### Today

- Solving linear programs
- Higher dimensions than just 2
- Integer programs

# AI: Representation and Problem Solving

# Integer Programming



Instructor: Pat Virtue

Slide credits: CMU AI with drawings from http://ai.berkeley.edu

### Reminder: Cost Contours

Given the cost vector  $[c_1, c_2]^T$  where will

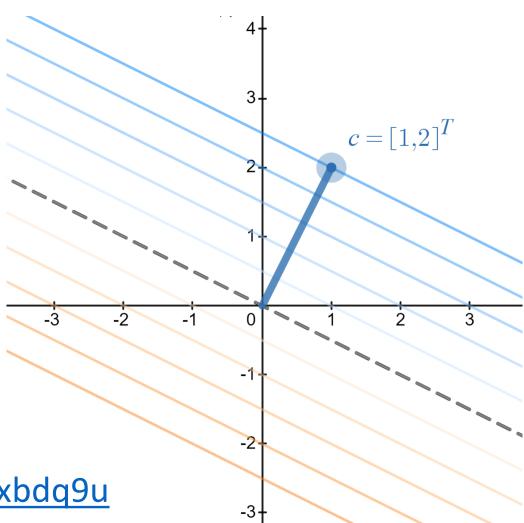
$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 0$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 1$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 2$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = -1$$
?

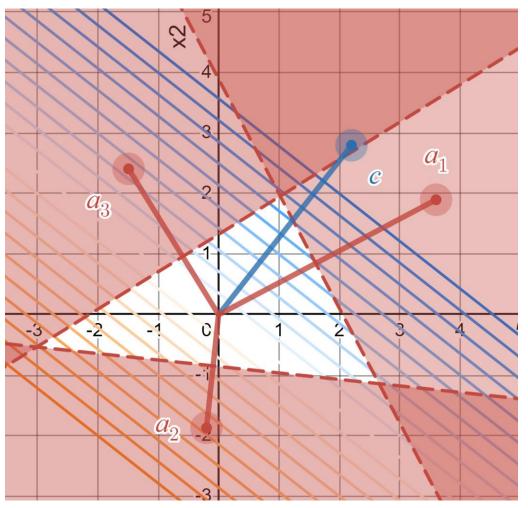
$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = -2$$
 ?



https://www.desmos.com/calculator/8d9kxbdq9u

## Solving a Linear Program

What is the solution to this LP?



https://www.desmos.com/calculator/tnlo7p5plp

## Solving a Linear Program

Inequality form, with no constraints

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

## Solving a Linear Program

Inequality form, with one constraint

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
  
s.t. 
$$a_1 x_1 + a_2 x_2 \le b$$

### Poll 1

True or False: A minimizing LP with exactly on constraint, will always have a minimum objective at  $-\infty$ .

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
  
s.t. 
$$a_1 x_1 + a_2 x_2 \le b$$

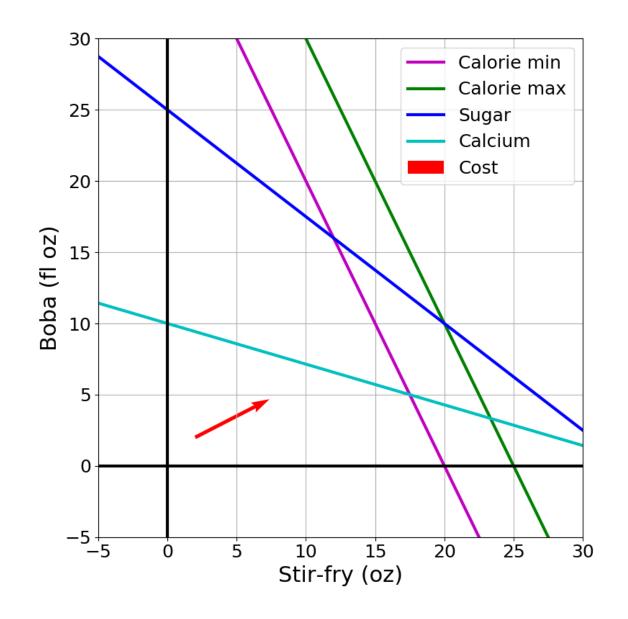
Solutions are at feasible intersections of constraint boundaries!!

#### Algorithms

Check objective at all feasible intersections

#### In more detail:

- 1. Enumerate all intersections
- 2. Keep only those that are feasible (satisfy *all* inequalities)
- 3. Return feasible intersection with the lowest objective value

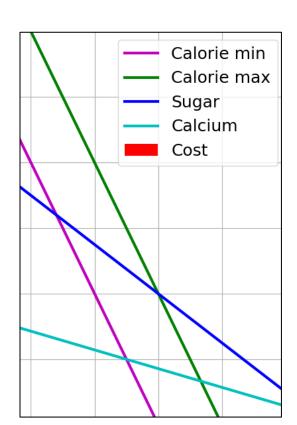


#### But, how do we find the intersection between boundaries?

min 
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
  $A\mathbf{x} \leq \mathbf{b}$   $A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$   $\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$  Calorie min Calorie max Sugar Calcium

$$\boldsymbol{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

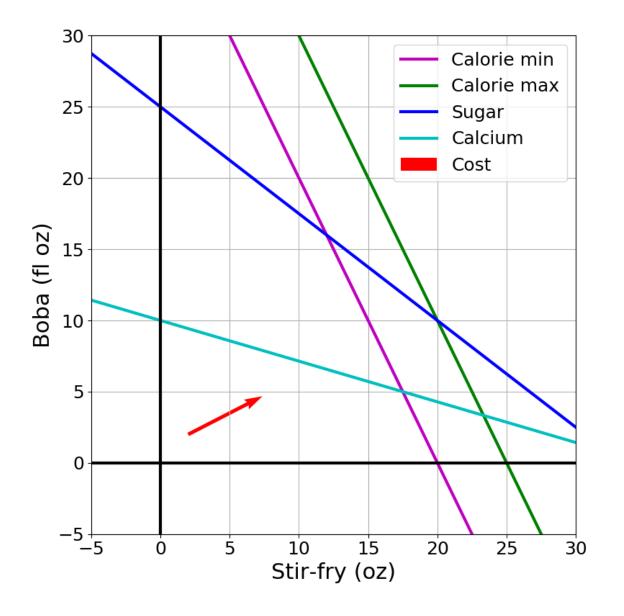
Calorie min Calcium



Solutions are at feasible intersections of constraint boundaries!!

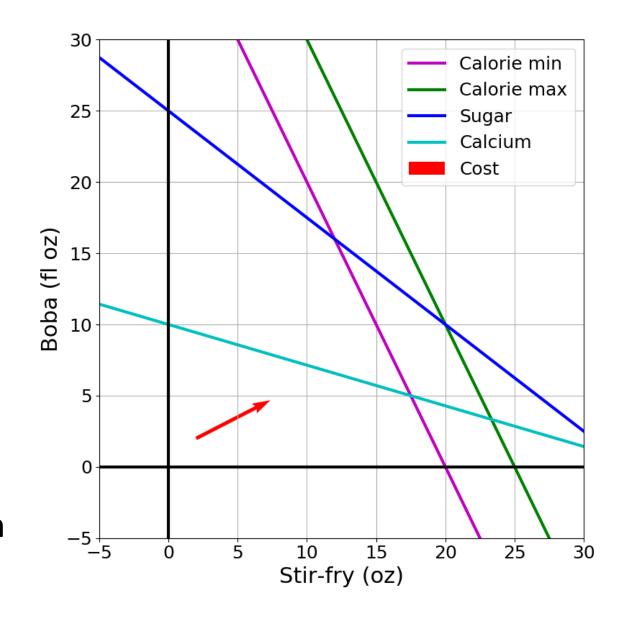
### Algorithms

- Check objective at all feasible intersections
- Simplex



### Simplex algorithm

- Start at a feasible intersection (if not trivial, can solve another LP to find one)
- Define successors as "neighbors" of current intersection
  - i.e., remove one row from our square subset of A, and add another row not in the subset; then check feasibility
- Move to any successor with lower objective than current intersection
  - If no such successors, we are done



Solutions are at feasible intersections

of constraint boundaries!!

### Algorithms

- Check objective at all feasible intersections
- Simplex
- Interior Point

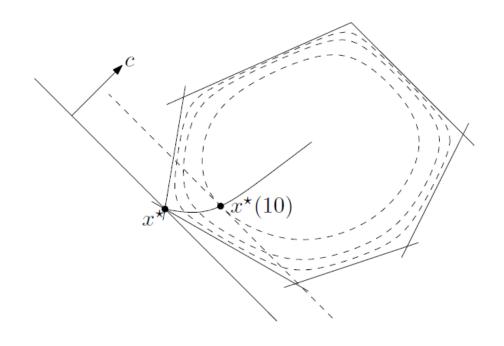


Figure 11.2 from Boyd and Vandenberghe, Convex Optimization

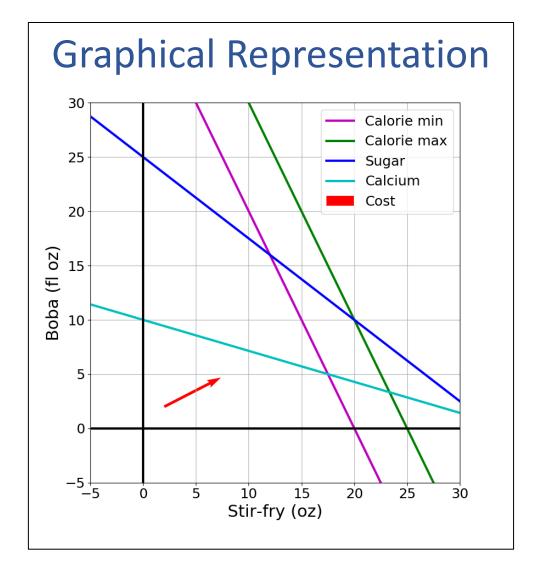
## What about higher dimensions?

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}}\mathbf{x}$ 

s.t.  $A\mathbf{x} \leq \mathbf{b}$ 



# "Marty, you're not thinking fourth-dimensionally"



https://www.youtube.com/watch?v=CUcNM7OsdsY

## Shapes in higher dimensions

How do these linear shapes extend to 3-D, N-D?

$$a_1 x_1 + a_2 x_2 = b_1$$

$$a_1 x_1 + a_2 x_2 \le b_1$$

$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$a_{4,1} x_1 + a_{4,2} x_2 \le b_4$$

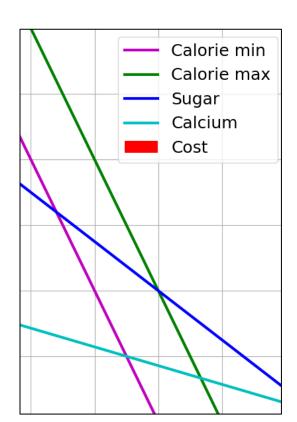
## What are intersections in higher dimensions?

#### How do these linear shapes extend to 3-D, N-D?

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$$
  $\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$  Calorie Sugar Calcium

$$\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

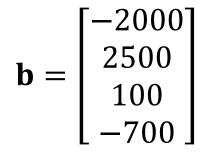
Calorie min Calorie max Calcium



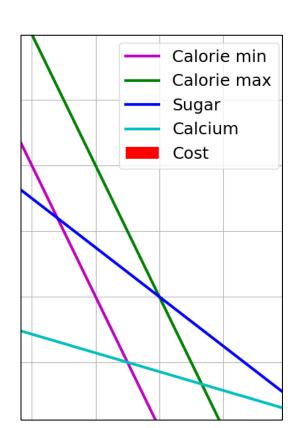
# How do we find intersections in higher dimensions?

#### Still looking at subsets of A matrix

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \qquad \begin{array}{c} \text{Calorie} \\ \text{Sugar} \\ \text{Calcium} \\ \text{Calcium} \\ \end{array}$$



Calorie min Calorie max Calcium



### Linear Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

### **Healthy Squad Goals**

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium  $\geq$  700 mg

| Food              | Cost | Calories | Sugar | Calcium |
|-------------------|------|----------|-------|---------|
| Stir-fry (per oz) | 1    | 100      | 3     | 20      |
| Boba (per fl oz)  | 0.5  | 50       | 4     | 70      |

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

# Linear Programming -> Integer Programming

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (bowls) and boba (glasses).

### **Healthy Squad Goals**

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium  $\geq$  700 mg

| Food                | Cost | Calories | Sugar | Calcium |
|---------------------|------|----------|-------|---------|
| Stir-fry (per bowl) | 1    | 100      | 3     | 20      |
| Boba (per glass)    | 0.5  | 50       | 4     | 70      |

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

### Linear Programming vs Integer Programming

Linear objective with linear constraints, but now with additional constraint that all values in x must be integers

$$\begin{array}{lll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} & \min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & A \mathbf{x} \leq \mathbf{b} & \text{s.t.} & A \mathbf{x} \leq \mathbf{b} \\
& & \mathbf{x} \in \mathbb{Z}^{N}
\end{array}$$

#### We could also do:

- Even more constrained: Binary Integer Programming
- A hybrid: Mixed Integer Linear Programming

#### **Notation Alert!**

### Integer Programming: Graphical Representation

Just add a grid of integer points onto our LP representation

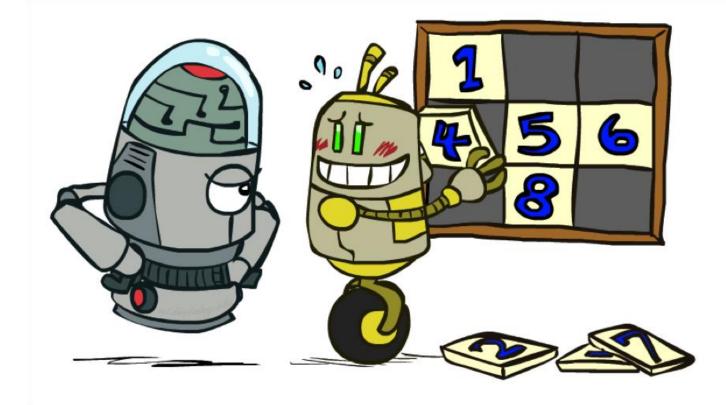
```
\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & A\mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \in \mathbb{Z}^N
\end{array}
```

### Relaxation

### Relax IP to LP by dropping integer constraints

 $\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^T \mathbf{x} \\
\text{s.t.} & A\mathbf{x} \leq \mathbf{b}
\end{array}$ 

#### Remember heuristics?



### Poll 2:

Let  $y_{IP}^*$  be the optimal objective of an integer program P.

Let  $\mathbf{x}_{IP}^*$  be an optimal point of an integer program P.

Let  $y_{LP}^*$  be the optimal objective of the LP-relaxed version of P.

Let  $\mathbf{x}_{LP}^*$  be an optimal point of the LP-relaxed version of P.

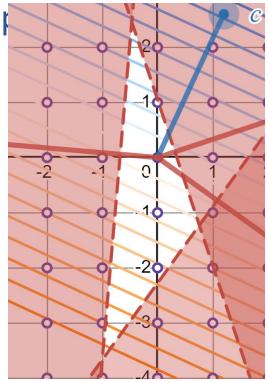
Assume that P is a minimization

Which of the following are true?

A) 
$$\mathbf{x}_{IP}^* = \mathbf{x}_{LP}^*$$

$$B) \quad y_{IP}^* \leq y_{LP}^*$$

$$C) \quad y_{IP}^* \geq y_{LP}^*$$



$$y_{IP}^* = \min_{\mathbf{x}}.$$
  $\mathbf{c}^{\mathsf{T}}\mathbf{x}$  s.t.  $A\mathbf{x} \leq \mathbf{b}$   $\mathbf{x} \in \mathbb{Z}^N$ 

$$y_{LP}^* = \min_{\mathbf{x}}.$$
  $\mathbf{c}^{\mathsf{T}}\mathbf{x}$  s.t.  $A\mathbf{x} \leq \mathbf{b}$ 

### Poll 3:

True/False: It is sufficient to consider the integer points around the corresponding LP solution?

### Branch and Bound algorithm

1. Push LP solution of problem into priority queue, ordered by objective value of LP solution

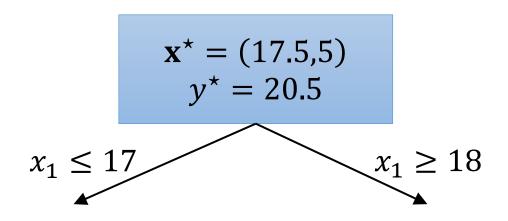
#### 2. Repeat:

- If queue is empty, return IP is infeasible
- Pop candidate solution  $\mathbf{x}_{LP}^{\star}$  from priority queue ()
- If  $\mathbf{x}_{LP}^{\star}$  is all integer valued, we are done; return solution
- Otherwise, select a coordinate  $x_i$  that is not integer valued, and add two additional LPs to the priority queue:

Left branch: Added constraint  $x_i \leq floor(x_i)$ 

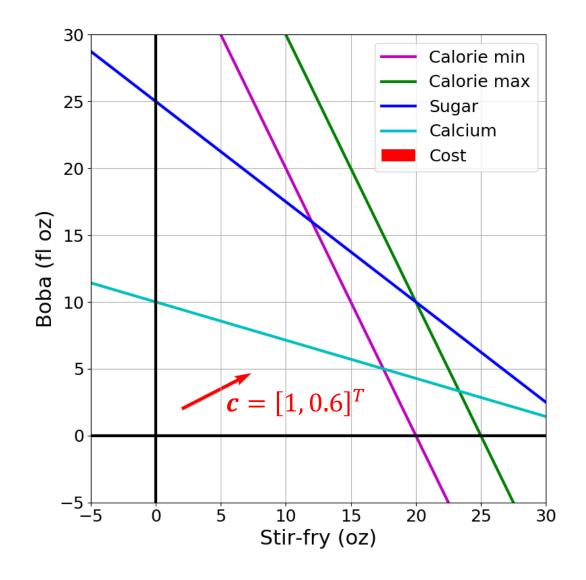
Right branch: Added constraint  $x_i \ge ceil(x_i)$ 

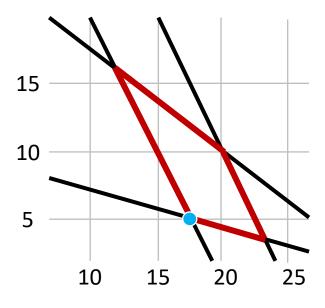
Note: Only add LPs to the queue if they are feasible

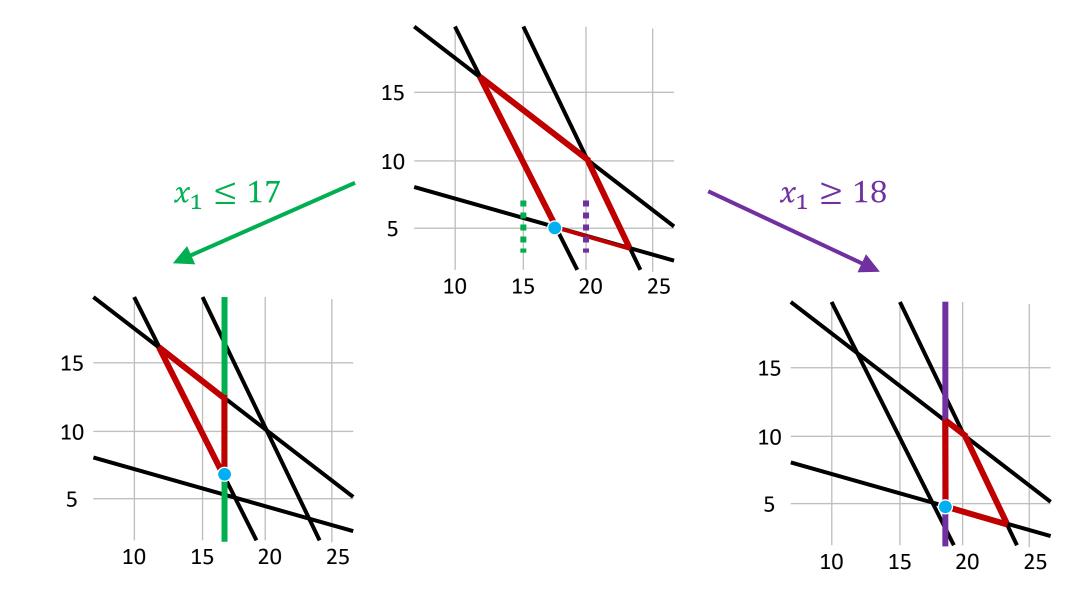


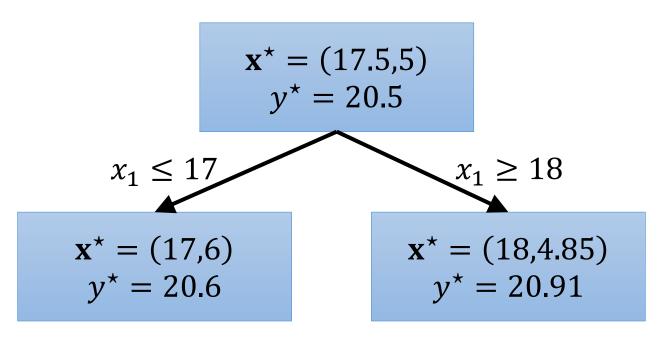
### Priority Queue:

1. 
$$\mathbf{x}^* = (17.5,5), \ y^* = 20.5$$









### **Priority Queue:**

1. 
$$\mathbf{x}^* = (17.6), \quad y^* = 20.6$$

2. 
$$\mathbf{x}^* = (18,4.85), \ y^* = 20.91$$

