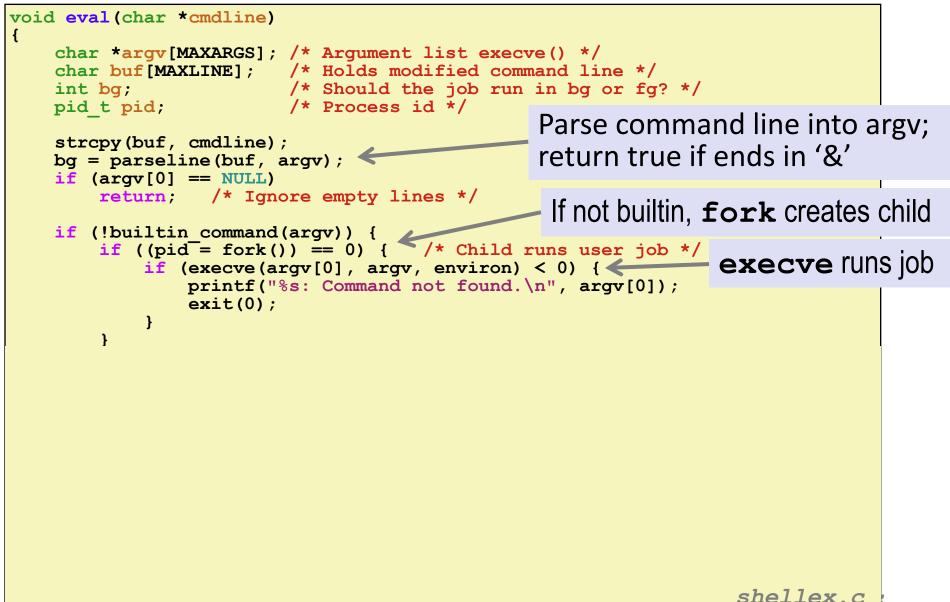
Exceptional Control Flow

15-213/15-513: Introduction to Computer Systems 18th Lecture, October 31, 2024

Recall: Simple Shell Implementation

Basic loop


- Read line from command line
- Execute the requested operation
 - Built-in command (only one implemented is quit)
 - Load and execute program from file

```
int main(int argc, char** argv)
{
    char cmdline[MAXLINE]; /* command line */
    while (1) {
        /* read */
        printf("> ");
        fgets(cmdline, MAXLINE, stdin);
        if (feof(stdin))
            exit(0);
        /* evaluate */
        eval(cmdline);
    }
    ... shellex.c
```

Execution is a sequence of read/evaluate steps

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recall: Simple Shell eval Function

Recall: Simple Shell eval Function

```
void eval(char *cmdline)
   char *argv[MAXARGS]; /* Argument list execve() */
   char buf[MAXLINE]; /* Holds modified command line */
                     /* Should the job run in bg or fg? */
   int bq;
   pid t pid;
                    /* Process id */
                                              Parse command line into argv;
   strcpy(buf, cmdline);
                                              return true if ends in '&'
   bg = parseline(buf, argv);
   if (argv[0] == NULL)
       return; /* Ignore empty lines */
                                               If not builtin, fork creates child
   if (!builtin command(argv)) {
       if ((pid = fork()) == 0) { ^{/*} Child runs user job */
           if (execve(argv[0], argv, environ) < 0) { EXECVE TUNS OD
               printf("%s: Command not found.\n", argv[0]);
               exit(0);
       }
       /* Parent waits for foreground job to terminate */
        if (!bq) {
                                               fg job: waitpid waits for child
           int status;
           if (waitpid(pid, &status, 0) < 0)</pre>
               unix error("waitfg: waitpid error");
       else
           printf("%d %s", pid, cmdline);  bg job: don't wait
                                               (Oops: zombies!)
   return;
```

sh

Problem with Simple Shell Example

Shell designed to run indefinitely

- Should not accumulate unneeded resources
 - Memory
 - Child processes
 - File descriptors

Our example shell correctly waits for & reaps foreground jobs

But what about background jobs?

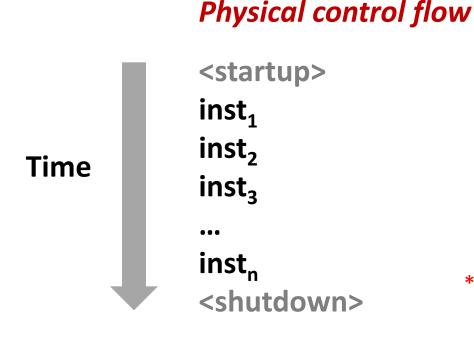
- Will become zombies when they terminate
- Will never be reaped because shell (typically) will not terminate
- Could run the entire computer out of memory
 - More likely, run out of PIDs

Today

Exceptional Control Flow

- Exceptions
- Signals

Printers Used to Catch on Fire


Highly Exceptional Control Flow

```
static int lp check status(int minor)
234
235
     {
236
             int error = 0;
             unsigned int last = lp table[minor].last error;
237
238
             unsigned char status = r str(minor);
             if ((status & LP PERRORP) && !(LP F(minor) & LP CAREFUL))
239
240
                      /* No error. */
                     last = 0;
241
242
             else if ((status & LP POUTPA)) {
243
                     if (last != LP POUTPA) {
244
                              last = LP POUTPA;
245
                              printk(KERN INFO "lp%d out of paper\n", minor);
246
247
                      error = -ENOSPC;
248
             } else if (!(status & LP PSELECD)) {
                     if (last != LP PSELECD) {
249
250
                              last = LP PSELECD;
251
                              printk(KERN INFO "lp%d off-line\n", minor);
252
253
                      error = -EIO;
254
             } else if (!(status & LP PERRORP)) {
255
                      if (last != LP PERRORP) {
256
                              last = LP PERRORP;
257
                              printk(KERN INFO "lp%d on fire\n", minor);
258
259
                      error = -EIO;
260
             } else {
261
                      last = 0; /* Come here if LP CAREFUL is set and no
262
                                   errors are reported. */
263
             }
264
265
             lp table[minor].last error = last;
266
267
             if (last != 0)
268
                     lp error(minor);
269
270
             return error;
271
                             https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3
```

Recall: Control Flow

Processors do only one thing:

- From startup to shutdown, each CPU core simply reads and executes (interprets) a sequence of instructions, one at a time *
- This sequence is the CPU's control flow (or flow of control)

* Externally, from an architectural viewpoint (internally, the CPU may use parallel out-of-order execution)

Altering the Control Flow

Up to now: two mechanisms for changing control flow:

- Jumps and branches
- Call and return

React to changes in *program state*

- Insufficient for a useful system:
 Difficult to react to changes in system state
 - Data arrives from a disk or a network adapter
 - Instruction divides by zero
 - User hits Ctrl-C at the keyboard
 - System timer expires

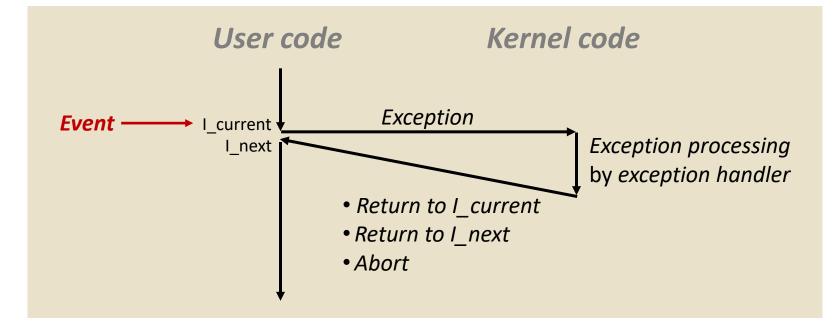
System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - 1. Exceptions
 - Change in control flow in response to a system event (i.e., change in system state)
 - Implemented using combination of hardware and OS software

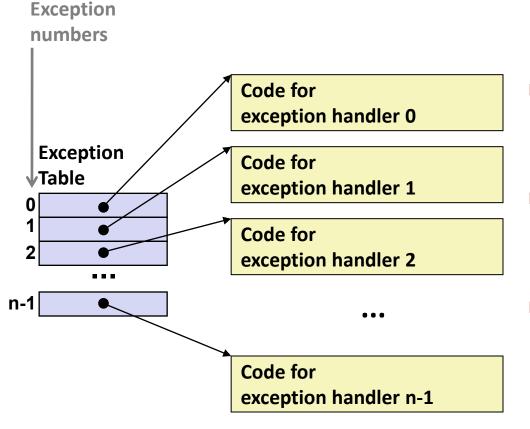
Higher level mechanisms

- 2. Process context switch -- covered last lecture
 - Implemented by OS software and hardware timer
- 3. Signals
 - Implemented by OS software
- 4. Nonlocal jumps: setjmp() and longjmp() -- see Supplemental Slides
 - Implemented by C runtime library

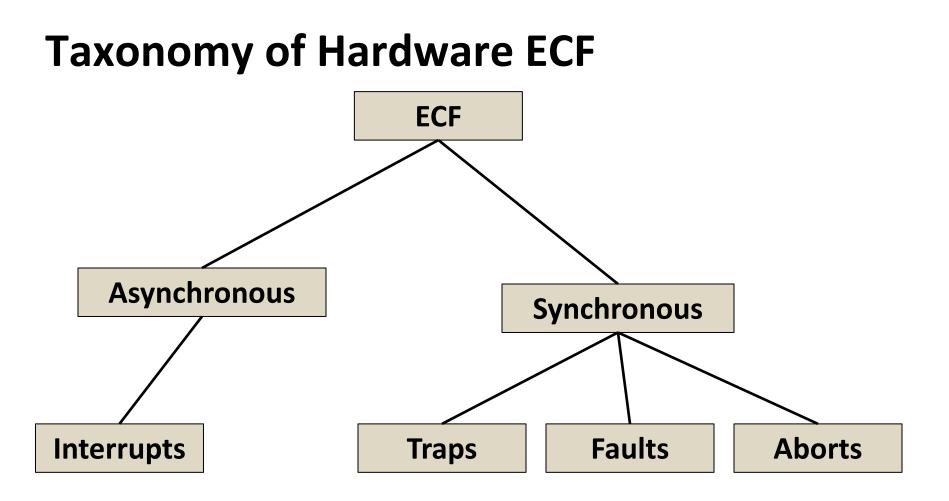

Today

- Exceptional Control Flow
- Exceptions
- Signals

Exceptions


An exception is a transfer of control to the OS kernel in response to some event (i.e., change in processor state)

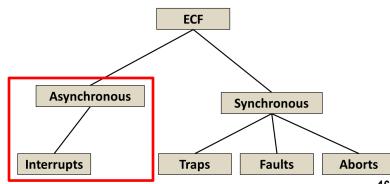
- Kernel is the memory-resident part of the OS
- Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C



Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Exception Tables

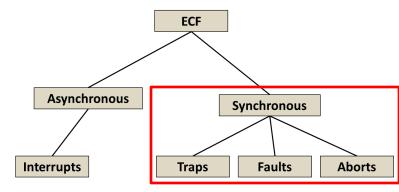
- Each type of event has a unique exception number k
- k = index into exception table (a.k.a. interrupt vector)
- Handler k is called each time exception k occurs


Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:


- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the kernel to take back control from user programs
- I/O interrupt from external device
 - Hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network
 - Arrival of data from a disk

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

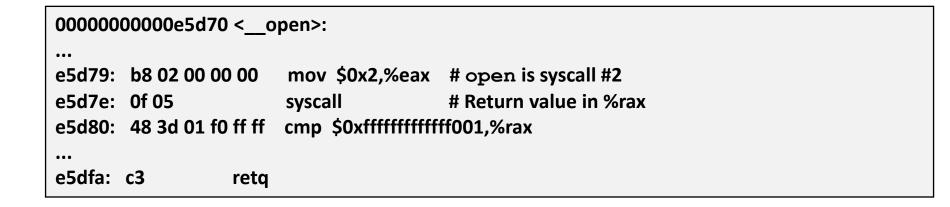
Synchronous Exceptions

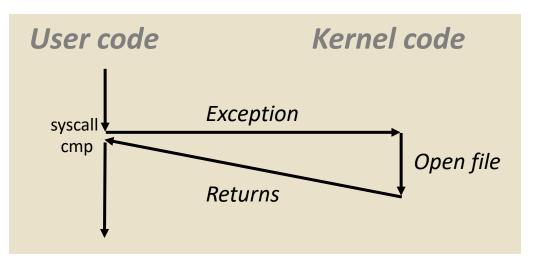
Caused by events that occur as a result of executing an instruction:

- Traps
 - Intentional, set program up to "trip the trap" and do something
 - Examples: *system calls*, gdb breakpoints
 - Returns control to "next" instruction
- Faults
 - Unintentional but possibly recoverable
 - Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
 - Either re-executes faulting ("current") instruction or aborts

Aborts

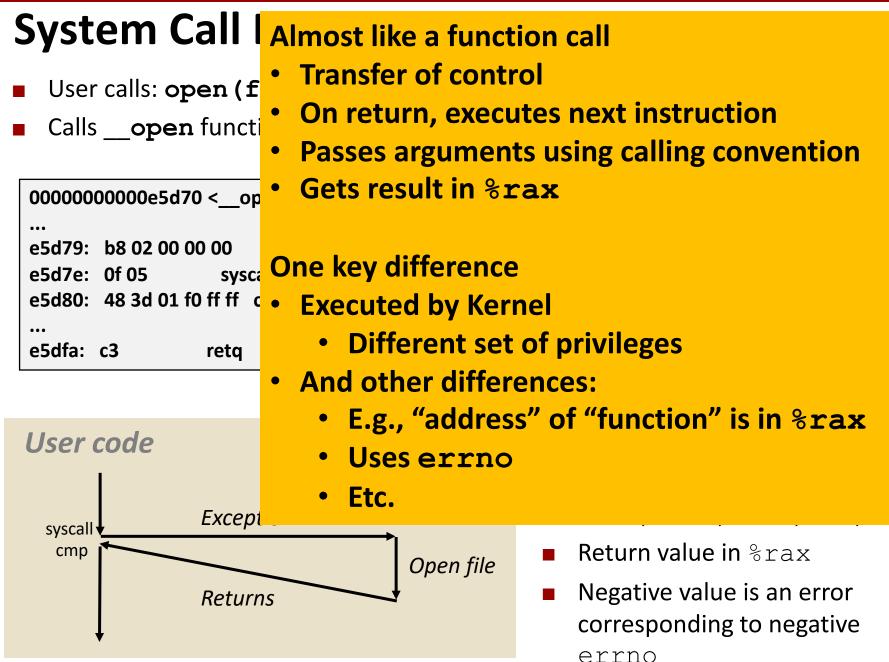
- Unintentional and unrecoverable
- Examples: illegal instruction, parity error, machine check
- Aborts current program


System Calls


- Each x86-64 system call has a unique ID number
- Examples:

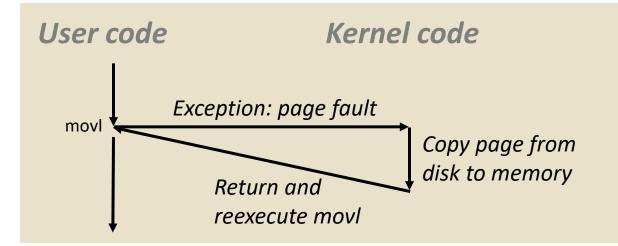
Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

System Call Example: Opening File

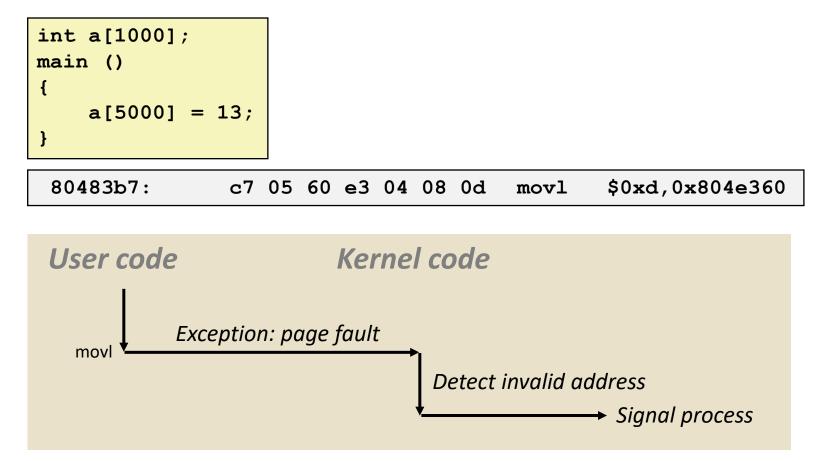

- User calls: open (filename, options)
- Calls __open function, which invokes system call instruction syscall

- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition


Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Fault Example: Page Fault


- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

80483b7:	c7 05	10 9d 04	08 0d	movl	\$0xd,0x8049d10
----------	-------	----------	-------	------	-----------------

Fault Example: Invalid Memory Reference

- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Today

- Exceptional Control Flow
- Exceptions
- Signals

Problem with Simple Shell Example

Background jobs become zombies

- Shell does not wait for background job to complete
- Parent process (shell) needs to learn when a child process (bg job) has completed, so that it can reap the child

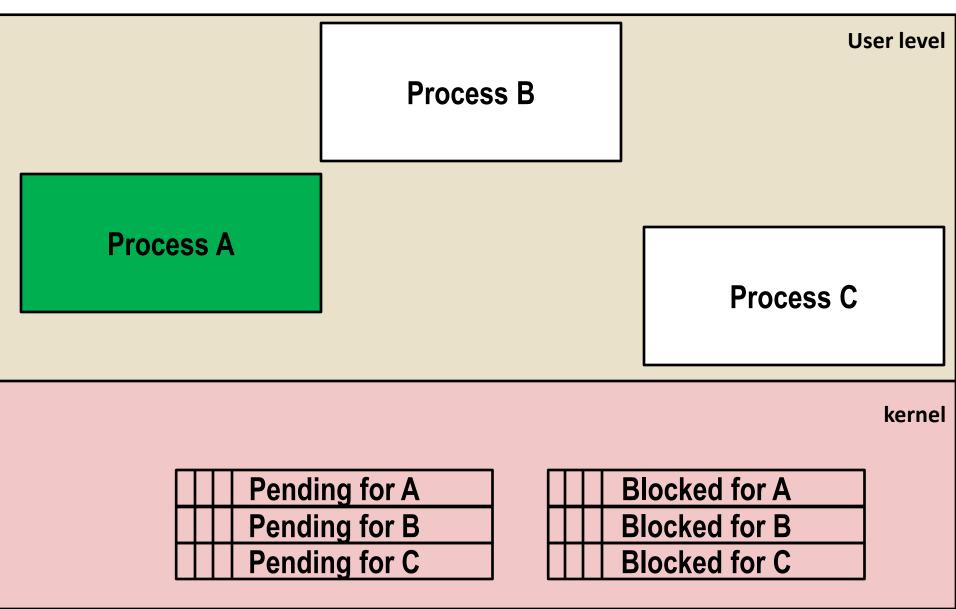
Solution: ECF to the rescue!

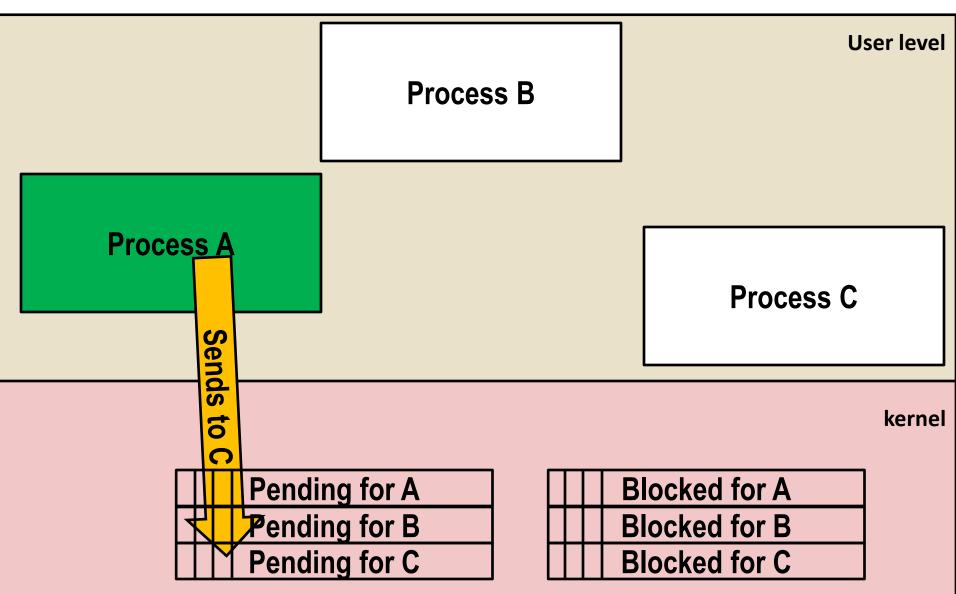
- The kernel will interrupt regular processing to alert us when a background process completes
- In Unix, the alert mechanism is called a signal

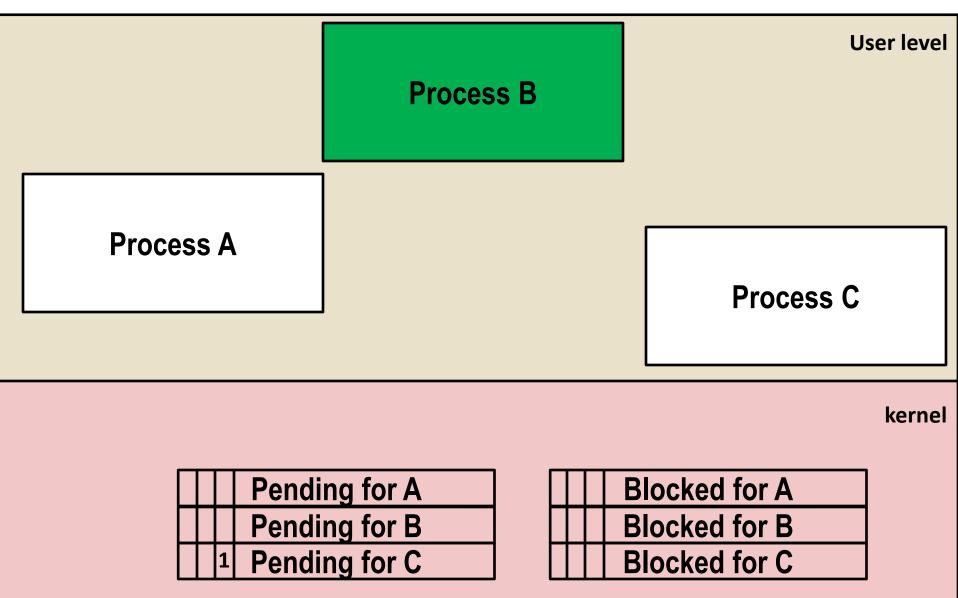
Carnegie Mellon

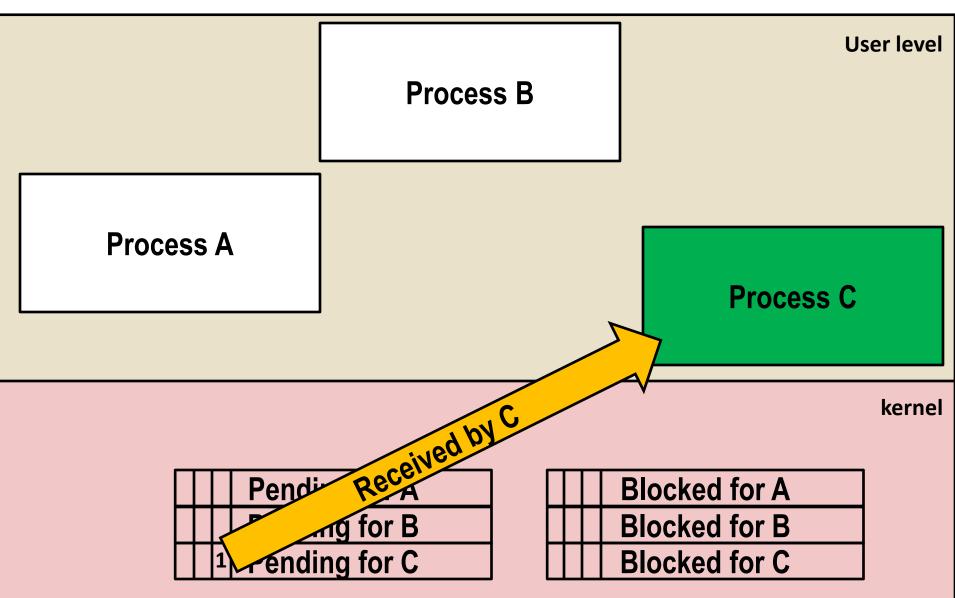
Signals

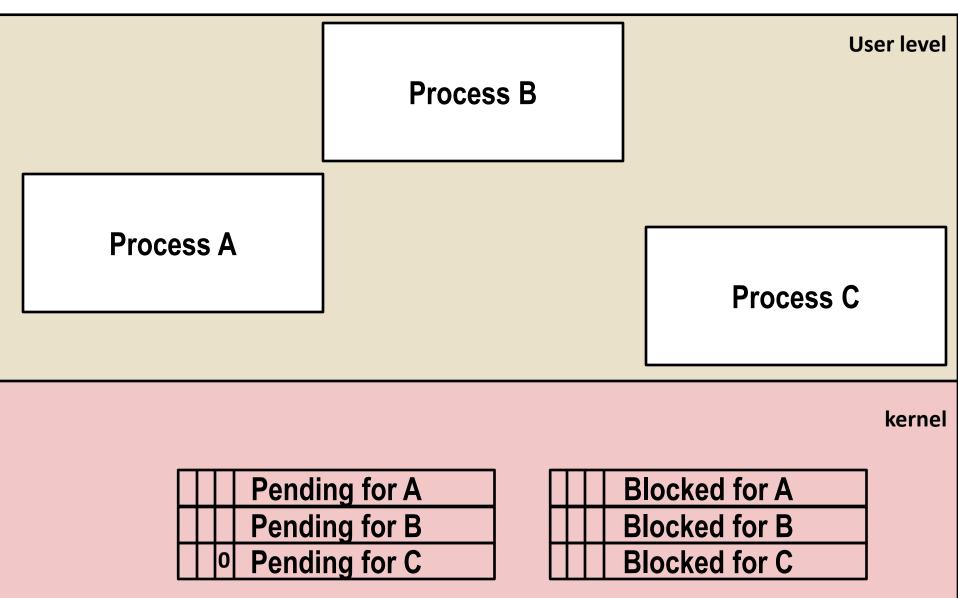
A signal is a small message that notifies a process that an event of some type has occurred in the system

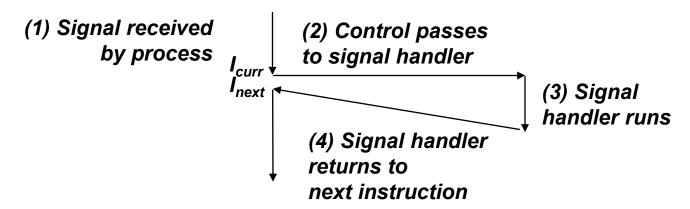

- Akin to exceptions and interrupts
- Sent from the kernel (sometimes at the request of another process) to a process
- Signal type is identified by small integer ID's (1-30)
- Only information in a signal is its ID and the fact that it arrived


ID	Name	Default Action	Corresponding Event
2	SIGINT	Terminate	User typed ctrl-c
9	SIGKILL	Terminate	Kill program (cannot override or ignore)
11	SIGSEGV	Terminate	Segmentation violation
14	SIGALRM	Terminate	Timer signal
17	SIGCHLD	Ignore	Child stopped or terminated


Kernel sends a signal to a destination process by updating some state in the context of the destination process


Kernel sends a signal for one of the following reasons:


- Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a child process (SIGCHLD)
- Another process has invoked the kill system call to explicitly request the kernel to send a signal to the destination process



Signal Concepts: Receiving a Signal

A destination process receives a signal when it is forced by the kernel to react in some way to the signal

Some possible ways to react:

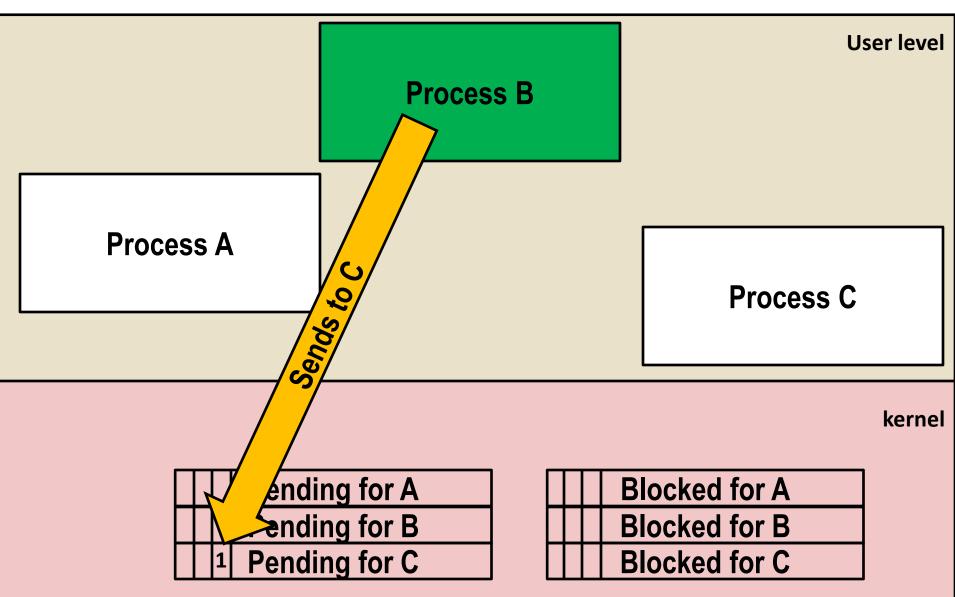
- Ignore the signal (do nothing)
- Terminate the process (with optional core dump)
- *Catch* the signal by executing a user-level function called *signal handler*
 - Akin to a hardware exception handler being called in response to an asynchronous interrupt:

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

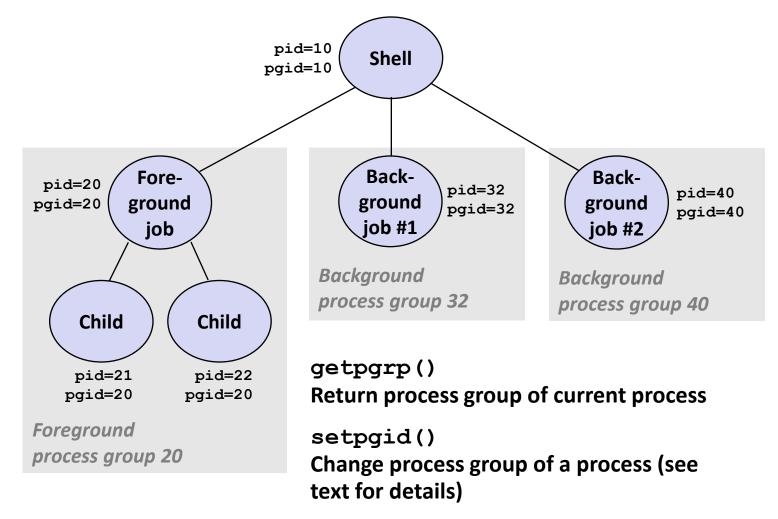
A signal is *pending* if sent but not yet received

- There can be at most one pending signal of each type
- Important: Signals are not queued
 - If a process has a pending signal of type k, then subsequent signals of type k that are sent to that process are discarded


• A process can *block* the receipt of certain signals

- Blocked signals can be sent, but will not be received until the signal is unblocked
- Some signals cannot be blocked (SIGKILL, SIGSTOP) or can only be blocked when sent by other processes (SIGSEGV, SIGILL, etc)

A pending signal is received at most once


Signal Concepts: Pending/Blocked Bits

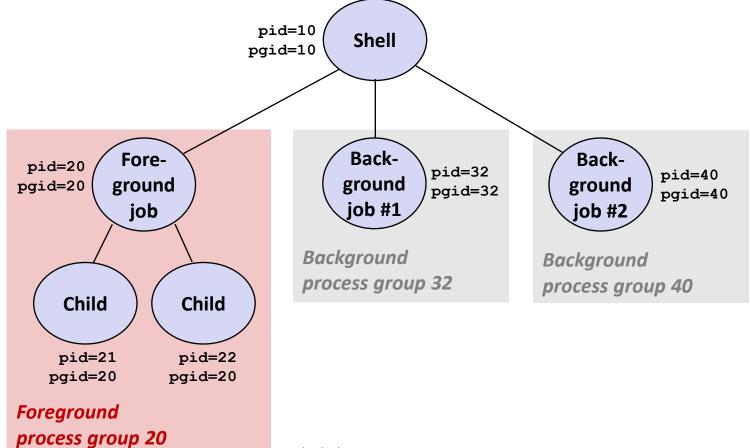
- Kernel maintains pending and blocked bit vectors in the context of each process
 - **pending**: represents the set of pending signals
 - Kernel sets bit k in **pending** when a signal of type k is sent
 - Kernel clears bit k in **pending** when a signal of type k is received
 - **blocked**: represents the set of blocked signals
 - Can be set and cleared by using the sigprocmask function
 - Also referred to as the *signal mask*.

Sending Signals: Process Groups

Every process belongs to exactly one process group

Sending Signals with /bin/kill Program

/bin/kill program sends arbitrary signal to a process or process group


Examples

- /bin/kill -9 24818 Send SIGKILL to process 24818
- /bin/kill -9 -24817
 Send SIGKILL to every process in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Sending Signals from the Keyboard

- Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the foreground process group
 - SIGINT default action is to terminate each process
 - SIGTSTP default action is to stop (suspend) each process

Example of ctrl-c and ctrl-z

bluefish> ./forks 17 Child: pid=28108 pgrp=28107 Parent: pid=28107 pgrp=28107 <types ctrl-z> Suspended bluefish> ps w PID TTY STAT TIME COMMAND 27699 pts/8 Ss 0:00 - tcsh28107 pts/8 0:01 ./forks 17 Т 28108 pts/8 Т 0:01 ./forks 17 28109 pts/8 R+ 0:00 ps w bluefish> fq ./forks 17 <types ctrl-c> bluefish> ps w PID TTY STAT TIME COMMAND 27699 pts/8 Ss 0:00 - tcsh28110 pts/8 0:00 ps w R+

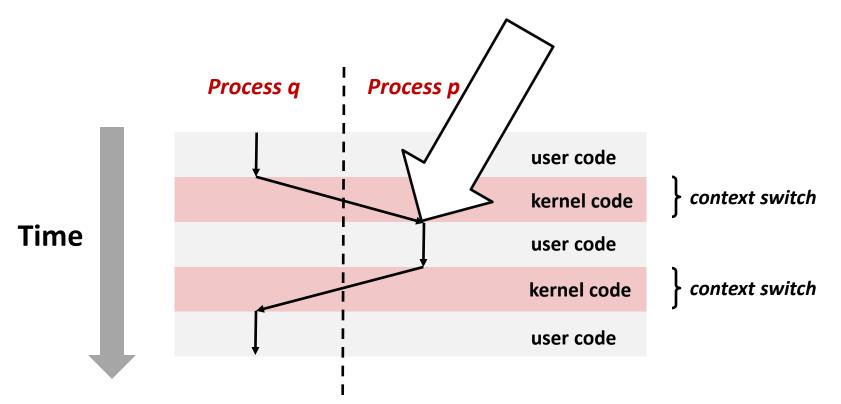
STAT (process state) Legend:

First letter:

S: sleeping T: stopped R: running

Second letter:

- s: session leader
- +: foreground proc group


See "man ps" for more details

Sending Signals with kill Function

```
void fork12()
{
   pid t pid[N];
    int i;
    int child status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0) {
            /* Child: Infinite Loop */
            while(1)
        }
    for (i = 0; i < N; i++) {
        printf("Killing process %d\n", pid[i]);
       kill(pid[i], SIGINT);
    }
    for (i = 0; i < N; i++) {
        pid t wpid = wait(&child status);
        if (WIFEXITED(child status))
            printf("Child %d terminated with exit status %d\n",
                   wpid, WEXITSTATUS(child status));
        else
            printf("Child %d terminated abnormally\n", wpid);
    }
                                                               forks.c
```

Receiving Signals

 Suppose kernel is returning from an exception handler and is ready to pass control to process p

Receiving Signals

- Suppose kernel is returning from an exception handler and is ready to pass control to process p
- Kernel computes pnb = pending & ~blocked
 - The set of pending nonblocked signals for process p
- If (pnb == 0)
 - Pass control to next instruction in the logical flow for p
- Else
 - Choose least nonzero bit k in **pnb** and force process p to receive signal k
 - The receipt of the signal triggers some *action* by *p*
 - Repeat for all nonzero k in pnb
 - Pass control to next instruction in logical flow for p

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/42532/quizzes/127190

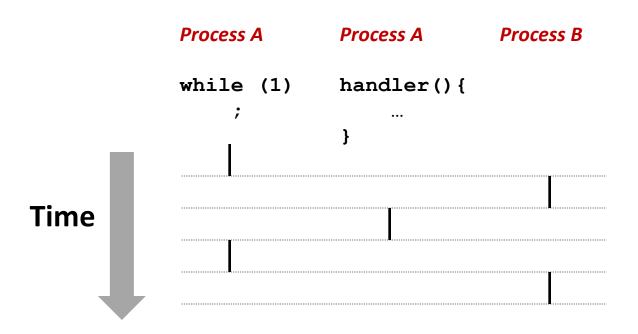
Default Actions

- Each signal type has a predefined *default action*, which is one of:
 - The process terminates
 - The process stops until restarted by a SIGCONT signal
 - The process ignores the signal

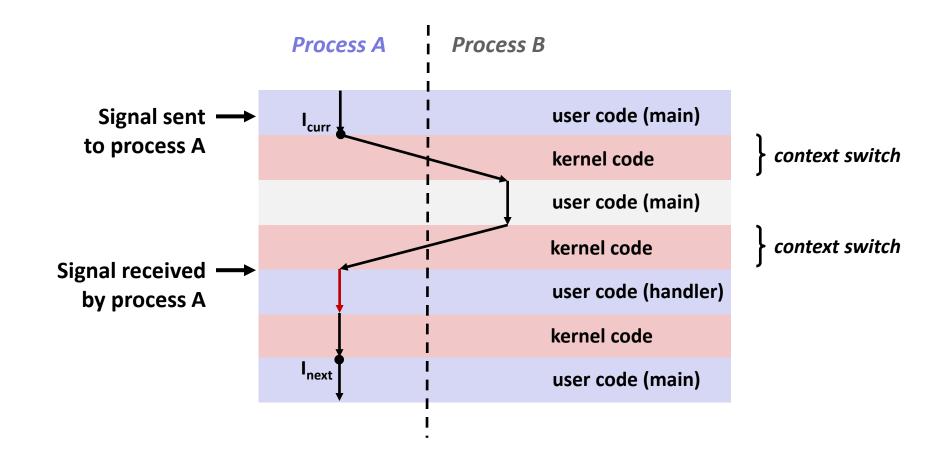
Installing Signal Handlers

- The signal function modifies the default action associated with the receipt of signal signum:
 - handler_t *signal(int signum, handler_t *handler)

Different values for handler:

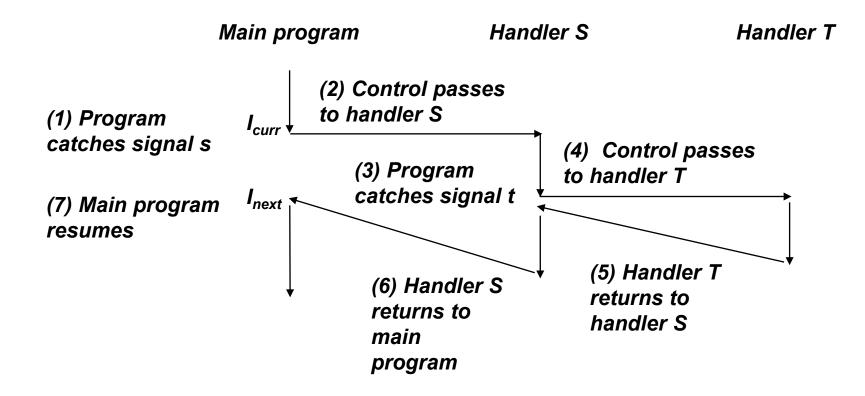

- SIG_IGN: ignore signals of type signum
- SIG_DFL: revert to the default action on receipt of signals of type signum
- Otherwise, handler is the address of a user-level signal handler
 - Called when process receives signal of type signum
 - Referred to as *"installing"* the handler
 - Executing handler is called "catching" or "handling" the signal
 - When the handler executes its return statement, control passes back to instruction in the control flow of the process that was interrupted by receipt of the signal

Signal Handling Example


```
void sigint handler(int sig) /* SIGINT handler */
{
    printf("So you think you can stop the bomb with ctrl-c, do you?\n");
    sleep(2);
    printf("Well...");
    fflush(stdout);
    sleep(1);
    printf("OK. :-)\n");
    exit(0);
}
int main(int argc, char** argv)
{
    /* Install the SIGINT handler */
    if (signal(SIGINT, sigint handler) == SIG ERR)
        unix error("signal error");
    /* Wait for the receipt of a signal */
    pause();
    return 0;
}
                                                                     sigint.c
```

Signals Handlers as Concurrent Flows

- A signal handler is a separate logical flow (not process) that runs concurrently with the main program
- But, this flow exists only until returns to main program



Another View of Signal Handlers as Concurrent Flows

Nested Signal Handlers

Handlers can be interrupted by other handlers

Blocking and Unblocking Signals

Implicit blocking mechanism

- Kernel blocks any pending signals of type currently being handled
- e.g., a SIGINT handler can't be interrupted by another SIGINT

Explicit blocking and unblocking mechanism

sigprocmask function

Supporting functions

- sigemptyset Create empty set
- sigfillset Add every signal number to set
- sigaddset Add signal number to set
- sigdelset Delete signal number from set

Temporarily Blocking Signals

Safe Signal Handling

- Handlers are tricky because they are concurrent with main program and share the same global data structures
 - Shared data structures can become corrupted.
- We'll explore concurrency issues later in the term
- For now here are some guidelines to help you avoid trouble

Guidelines for Writing Safe Handlers

- G0: Keep your handlers as simple as possible
 - e.g., set a global flag and return
- G1: Call only async-signal-safe functions in your handlers
 - printf, sprintf, malloc, and exit are not safe!
- G2: Save and restore errno on entry and exit
 - So that other handlers don't overwrite your value of errno
- G3: Protect accesses to shared data structures by temporarily blocking all signals
 - To prevent possible corruption
- G4: Declare global variables as volatile
 - To prevent compiler from storing them in a register
- G5: Declare global flags as volatile sig_atomic_t
 - flag: variable that is only read or written (e.g. flag = 1, not flag++)
 - Flag declared this way does not need to be protected like other globals

Async-Signal-Safety

- Function is async-signal-safe if either reentrant (e.g., all variables stored on stack frame, CS:APP3e 12.7.2) or noninterruptible by signals
- Posix guarantees 117 functions to be async-signal-safe
 - Source: "man 7 signal-safety"
 - Popular functions on the list:
 - _exit, write, wait, waitpid, sleep, kill
 - Popular functions that are **not** on the list:
 - printf, sprintf, malloc, exit
 - Unfortunate fact: write is the only async-signal-safe output function

Safe Formatted Output: Option #1

- Use the reentrant SIO (Safe I/O library) from csapp.c in your handlers
 - ssize_t sio_puts(char s[]) /* Put string */
 - ssize_t sio_putl(long v) /* Put long */
 - void sio_error(char s[]) /* Put msg & exit */

```
void sigint_handler(int sig) /* Safe SIGINT handler */
{
    sio_puts("So you think you can stop the bomb"
               " with ctrl-c, do you?\n");
    sleep(2);
    sio_puts("Well...");
    sleep(1);
    sio_puts("OK. :-)\n");
    _exit(0);
}
```

Safe Formatted Output: Option #2

Use the new & improved reentrant sio_printf!

Handles restricted class of printf format strings

- Recognizes: %c %s %d %u %x %%
- Size designators 'l' and 'z'

sigintsafe.c

```
volatile int ccount = 0;
void child handler(int sig) {
    int olderrno = errno;
    pid t pid;
    if ((pid = wait(NULL)) < 0)</pre>
        Sio error("wait error");
    ccount--;
    sio puts("Handler reaped child ");
    sio putl((long)pid);
    sio puts(" \n");
    sleep(1);
    errno = olderrno;
}
                           This code is incorrect!
void fork14() {
    pid t pid[N];
    int i;
                        N == 5
    ccount = N;
    signal(SIGCHLD, child handler);
    for (i = 0; i < N; i++) {
        if ((pid[i] = fork()) == 0) {
            sleep(1);
```

exit(0); /* Child exits */

while (ccount > 0) /* Parent spins */

}

Incorrect Signal Handling

Pending signals are not queued

- For each signal type, one bit indicates whether or not signal is pending...
- ...thus at most one pending signal of any particular type.
- You can't use signals to count events, such as children terminating.

```
whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
...(hangs)
```

forks.c

Correct Signal Handling

Must wait for all terminated child processes

Put wait in a loop to reap all terminated children

```
void child handler2(int sig)
{
    int olderrno = errno;
    pid t pid;
    while ((pid = wait(NULL)) > 0) {
        ccount--;
        sio puts("Handler reaped child ");
        sio putl((long)pid);
        sio puts(" \n");
    }
    if (errno != ECHILD)
        sio error("wait error");
    errno = olderrno;
                                whaleshark> ./forks 15
}
                                Handler reaped child 23246
                                Handler reaped child 23247
                                Handler reaped child 23248
                                Handler reaped child 23249
                                Handler reaped child 23250
                                whaleshark>
```

Synchronizing Flows to Avoid Races

SIGCHLD handler for a simple shell

Blocks all signals while running critical code

```
void handler(int sig)
{
    int olderrno = errno;
    sigset t mask all, prev all;
    pid t pid;
    sigfillset(&mask all);
    while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
        sigprocmask(SIG BLOCK, &mask all, &prev all);
        deletejob(pid); /* Delete the child from the job list */
        sigprocmask(SIG SETMASK, &prev all, NULL);
    }
    if (pid != 0 && errno != ECHILD)
        sio error("waitpid error");
    errno = olderrno;
                                                         procmask1.c
```

Synchronizing Flows to Avoid Races

Simple shell with a subtle synchronization error because it assumes parent runs before child

```
int main(int argc, char **argv)
ł
    int pid;
    sigset t mask all, prev all;
    int n = N; /* N = 5 */
    sigfillset(&mask all);
    signal(SIGCHLD, handler);
    initjobs(); /* Initialize the job list */
    while (n--) {
        if ((pid = fork()) == 0) { /* Child */
            execve("/bin/date", argv, NULL);
        sigprocmask(SIG BLOCK, &mask all, &prev all); /* Parent */
        addjob(pid); /* Add the child to the job list */
        sigprocmask(SIG SETMASK, &prev all, NULL);
    exit(0);
                                                          procmask1.c
```

Corrected Shell Program Without Race

```
int main(int argc, char **argv)
ł
   int pid;
    sigset t mask all, mask one, prev one;
    int n = N; /* N = 5 */
    sigfillset(&mask all);
    sigemptyset(&mask one);
    sigaddset(&mask one, SIGCHLD);
    signal(SIGCHLD, handler);
    initjobs(); /* Initialize the job list */
    while (n--) {
        sigprocmask(SIG BLOCK, &mask one, &prev one); /* Block SIGCHLD */
        if ((pid = fork()) == 0) { /* Child process */
            sigprocmask(SIG SETMASK, &prev one, NULL); /* Unblock SIGCHLD */
            execve("/bin/date", argv, NULL);
        }
        sigprocmask(SIG BLOCK, &mask all, NULL); /* Parent process */
        addjob(pid); /* Add the child to the job list */
        sigprocmask(SIG SETMASK, &prev one, NULL); /* Unblock SIGCHLD */
    exit(0);
```

}

Explicitly Waiting for Signals

Handlers for program explicitly waiting for SIGCHLD to arrive

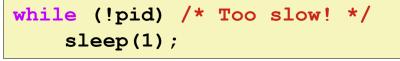
```
volatile sig_atomic_t pid;
void sigchld_handler(int s)
{
    int olderrno = errno;
    pid = waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
    errno = olderrno;
}
void sigint_handler(int s)
{
}
waitforsignal.c
```

Explicitly Waiting for Signals

Bryant a

```
int main(int argc, char **argv) {
                                                   Similar to a shell waiting
    sigset t mask, prev;
    int n = N; /* N = 10 */
                                                   for a foreground job to
    signal(SIGCHLD, sigchld handler);
                                                   terminate.
    signal(SIGINT, sigint handler);
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    while (n--) {
        sigprocmask(SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
        if (fork() == 0) /* Child */
            exit(0);
        /* Parent */
        pid = 0;
        sigprocmask(SIG SETMASK, &prev, NULL); /* Unblock SIGCHLD */
        /* Wait for SIGCHLD to be received (wasteful!) */
        while (!pid)
            ;
        /* Do some work after receiving SIGCHLD */
        printf(".");
   printf("\n");
    exit(0);
                                                           waitforsignal.c
```

Explicitly Waiting for Signals


```
while (!pid)
;
```

- Program is correct, but very wasteful
 - Program in busy-wait loop

while (!pid) /* Race! */
 pause();

Possible race condition

Between checking pid and starting pause, might receive signal

Safe, but slow

Will take up to one second to respond

Waiting for Signals with sigsuspend

- int sigsuspend(const sigset_t *mask)
- Equivalent to atomic (uninterruptable) version of:

```
sigprocmask(SIG_SETMASK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);
```

Waiting for Signals with sigsuspend

```
int main(int argc, char **argv) {
    sigset t mask, prev;
    int n = N; /* N = 10 */
    signal(SIGCHLD, sigchld handler);
    signal(SIGINT, sigint handler);
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
   while (n--) {
        sigprocmask(SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
        if (fork() == 0) /* Child */
            exit(0);
       /* Wait for SIGCHLD to be received */
       pid = 0;
        while (!pid)
            sigsuspend(&prev);
       /* Optionally unblock SIGCHLD */
        sigprocmask(SIG SETMASK, &prev, NULL);
        /* Do some work after receiving SIGCHLD */
        printf(".");
    }
   printf("\n");
   exit(0);
                                                                sigsuspend.c
```

Brv

Supplemental slides

Nonlocal Jumps: setjmp/longjmp

- Powerful (but dangerous) user-level mechanism for transferring control to an arbitrary location
 - Controlled to way to break the procedure call / return discipline
 - Useful for error recovery and signal handling

int setjmp(jmp_buf j)

- Must be called before longjmp
- Identifies a return site for a subsequent longjmp
- Called once, returns one or more times

Implementation:

- Remember where you are by storing the current register context, stack pointer, and PC value in jmp_buf
- Return 0

setjmp/longjmp (cont)

- void longjmp(jmp_buf j, int i)
 - Meaning:
 - return from the setjmp remembered by jump buffer j again ...
 - ... this time returning *i* instead of 0
 - Called after setjmp
 - Called once, but never returns

longjmp Implementation:

- Restore register context (stack pointer, base pointer, PC value) from jump buffer j
- Set %eax (the return value) to i
- Jump to the location indicated by the PC stored in jump buf j

setjmp/longjmp Example

 Goal: return directly to original caller from a deeplynested function

```
/* Deeply nested function foo */
void foo(void)
{
    if (error1)
        longjmp(buf, 1);
    bar();
}
void bar(void)
{
    if (error2)
        longjmp(buf, 2);
}
```

```
jmp buf buf;
                                    setjmp/longjmp
int error 1 = 0;
int error2 = 1;
                                     Example (cont)
void foo(void), bar(void);
int main()
{
   switch(setjmp(buf)) {
   case 0:
       foo();
       break:
    case 1:
       printf("Detected an error1 condition in foo\n");
       break:
    case 2:
       printf("Detected an error2 condition in foo\n");
       break:
   default:
       printf("Unknown error condition in foo\n");
   exit(0);
}
```

Limitations of Nonlocal Jumps

Works within stack discipline

 Can only long jump to environment of function that has been called but not yet completed
 Before longimp After

```
After longjmp
jmp buf env;
                                         env
                                                P1
                                                               P1
P1()
{
                                                P2
  if (setjmp(env)) {
    /* Long Jump to here */
  } else {
                                                P2
    P2();
  }
}
                                                P2
P2()
{ . . . P2(); . . . P3(); }
                                                P3
P3()
{
  longjmp(env, 1);
}
```

```
Bryant and O'Hanaron, computer systems: A programmer's perspective, Third Edition
```

Limitations of Long Jumps (cont.)

Works within stack discipline

Can only long jump to environment of function that has been called but not yet completed

```
P1
         jmp buf env;
         P1()
                                                               P2
         {
                                                      env
           P2(); P3();
                                                              At setimp
         }
                                                               P1
         P2()
         {
             if (setjmp(env)) {
                                                        env
                                                        ....¥...⊾ P2
              /* Long Jump to here */
            }
                                                              P2 returns
         }
         P3()
                                                                        env
                                                                          .....х....▶ РЗ
         {
           longjmp(env, 1);
Bryant and O'Ha
```

P1

At longjmp

Putting It All Together: A Program That Restarts Itself When ctrl-c'd

```
#include "csapp.h"
sigjmp buf buf;
void handler(int sig)
{
    siglongjmp(buf, 1);
}
int main()
{
    if (!sigsetjmp(buf, 1)) {
        Signal(SIGINT, handler);
         Sio puts("starting\n");
    }
    else
        Sio puts("restarting\n");
    while(1) {
         Sleep(1);
         Sio puts("processing...\n");
    exit(0); /* Control never reaches here */
                                         restart.c
```

Brvant

```
greatwhite> ./restart
starting
processing...
processing...
restarting
processing...
restarting
processing...
restarting
processing...
ctrl-c
processing...
```