
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

15-213/15-513: Introduction to Computer Systems
18th Lecture, October 31, 2024

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Simple Shell Implementation
 Basic loop

 Read line from command line
 Execute the requested operation

 Built-in command (only one implemented is quit)
 Load and execute program from file

int main(int argc, char** argv)
{
 char cmdline[MAXLINE]; /* command line */

 while (1) {
 /* read */

printf("> ");
fgets(cmdline, MAXLINE, stdin);

 if (feof(stdin))
 exit(0);

/* evaluate */
eval(cmdline);

}
...

Execution is a
sequence of
read/evaluate
steps

shellex.c

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);

 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }

else
printf("%d %s", pid, cmdline);

}
return;

}

shellex.cshellex.c

Parse command line into argv;
return true if ends in ‘&’

If not builtin, fork creates child
execve runs job

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);

 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }

else
printf("%d %s", pid, cmdline);

}
return;

}

If not builtin, fork creates child

Parse command line into argv;
return true if ends in ‘&’

shellex.c

fg job: waitpid waits for child

bg job: don’t wait
(Oops: zombies!)

execve runs job

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example
 Shell designed to run indefinitely
 Should not accumulate unneeded resources

 Memory
 Child processes
 File descriptors

 Our example shell correctly waits for & reaps foreground jobs

 But what about background jobs?
 Will become zombies when they terminate
 Will never be reaped because shell (typically) will not terminate
 Could run the entire computer out of memory

 More likely, run out of PIDs

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Signals

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Printers Used to Catch on Fire

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Highly Exceptional Control Flow

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

 Processors do only one thing:
 From startup to shutdown, each CPU core simply reads and executes

(interprets) a sequence of instructions, one at a time *
 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

* Externally, from an architectural
 viewpoint (internally, the CPU
 may use parallel out-of-order
 execution)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow
 Up to now: two mechanisms for changing control flow:
 Jumps and branches
 Call and return
React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter
 Instruction divides by zero
 User hits Ctrl-C at the keyboard
 System timer expires

 System needs mechanisms for “exceptional control flow”

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow
 Exists at all levels of a computer system
 Low level mechanisms
 1. Exceptions

 Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

 Higher level mechanisms
 2. Process context switch -- covered last lecture

 Implemented by OS software and hardware timer
 3. Signals

 Implemented by OS software
 4. Nonlocal jumps: setjmp() and longjmp()-- see Supplemental Slides

 Implemented by C runtime library

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Signals

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions
 An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
 Kernel is the memory-resident part of the OS
 Examples of events: Divide by 0, arithmetic overflow, page fault,

I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1
2 ...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Taxonomy of Hardware ECF

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)
 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

 Examples:
 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt
 Used by the kernel to take back control from user programs

 I/O interrupt from external device
 Hitting Ctrl-C at the keyboard
 Arrival of a packet from a network
 Arrival of data from a disk

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a

result of executing an instruction:
 Traps

 Intentional, set program up to “trip the trap” and do something
 Examples: system calls, gdb breakpoints
 Returns control to “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
 Either re-executes faulting (“current”) instruction or aborts

 Aborts
 Unintentional and unrecoverable
 Examples: illegal instruction, parity error, machine check
 Aborts current program

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number
 Examples:

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)
 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)
 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One key difference
• Executed by Kernel

• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location
 That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{
 a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process
 User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Signals

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example
 Background jobs become zombies
 Shell does not wait for background job to complete
 Parent process (shell) needs to learn when a child process (bg job)

has completed, so that it can reap the child

 Solution: ECF to the rescue!
 The kernel will interrupt regular processing to alert us when a

background process completes
 In Unix, the alert mechanism is called a signal

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
 A signal is a small message that notifies a process that an

event of some type has occurred in the system
 Akin to exceptions and interrupts
 Sent from the kernel (sometimes at the request of another process)

to a process
 Signal type is identified by small integer ID’s (1-30)
 Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal
 Kernel sends a signal to a destination process by updating some

state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
 Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)
 Another process has invoked the kill system call to explicitly request

the kernel to send a signal to the destination process

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by

the kernel to react in some way to the signal

 Some possible ways to react:
 Ignore the signal (do nothing)
 Terminate the process (with optional core dump)
 Catch the signal by executing a user-level function called signal handler

 Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received
 There can be at most one pending signal of each type
 Important: Signals are not queued

 If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
 Blocked signals can be sent, but will not be received until the signal is

unblocked
 Some signals cannot be blocked (SIGKILL, SIGSTOP) or can only be

blocked when sent by other processes (SIGSEGV, SIGILL, etc)

 A pending signal is received at most once

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
 pending: represents the set of pending signals

 Kernel sets bit k in pending when a signal of type k is sent
 Kernel clears bit k in pending when a signal of type k is received

 blocked: represents the set of blocked signals
 Can be set and cleared by using the sigprocmask function
 Also referred to as the signal mask.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups
 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see
text for details)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program
 /bin/kill program

sends arbitrary signal to a
process or process group

 Examples
 /bin/kill –9 24818

Send SIGKILL to process 24818

 /bin/kill –9 –24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group
 SIGINT – default action is to terminate each process
 SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

 /* Child: Infinite Loop */
 while(1)
 ;
 }

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
 printf("Child %d terminated abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked
 The set of pending nonblocked signals for process p

 If (pnb == 0)
 Pass control to next instruction in the logical flow for p

 Else
 Choose least nonzero bit k in pnb and force process p to receive

signal k
 The receipt of the signal triggers some action by p
 Repeat for all nonzero k in pnb
 Pass control to next instruction in logical flow for p

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/42532/quizzes/127190

https://canvas.cmu.edu/courses/42532/quizzes/127190

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions
 Each signal type has a predefined default action, which is

one of:
 The process terminates
 The process stops until restarted by a SIGCONT signal
 The process ignores the signal

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
 handler_t *signal(int signum, handler_t *handler)

 Different values for handler:
 SIG_IGN: ignore signals of type signum
 SIG_DFL: revert to the default action on receipt of signals of type signum
 Otherwise, handler is the address of a user-level signal handler

 Called when process receives signal of type signum
 Referred to as “installing” the handler
 Executing handler is called “catching” or “handling” the signal
 When the handler executes its return statement, control passes back

to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");

sleep(2);
 printf("Well...");
 fflush(stdout);

sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main(int argc, char** argv)
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

 But, this flow exists only until returns to main program

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal sent
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers
 Handlers can be interrupted by other handlers

(2) Control passes
to handler S

Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main
program

(7) Main program
resumes

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals
 Implicit blocking mechanism
 Kernel blocks any pending signals of type currently being handled
 e.g., a SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
 sigprocmask function

 Supporting functions
 sigemptyset – Create empty set
 sigfillset – Add every signal number to set
 sigaddset – Add signal number to set
 sigdelset – Delete signal number from set

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling
 Handlers are tricky because they are concurrent with main

program and share the same global data structures
 Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term

 For now here are some guidelines to help you avoid trouble

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers
 G0: Keep your handlers as simple as possible
 e.g., set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
 printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
 So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals
 To prevent possible corruption

 G4: Declare global variables as volatile
 To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
 flag: variable that is only read or written (e.g. flag = 1, not flag++)
 Flag declared this way does not need to be protected like other globals

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety
 Function is async-signal-safe if either reentrant (e.g., all

variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals

 Posix guarantees 117 functions to be async-signal-safe
 Source: “man 7 signal-safety”
 Popular functions on the list:

 _exit, write, wait, waitpid, sleep, kill

 Popular functions that are not on the list:
 printf, sprintf, malloc, exit
 Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers
 ssize_t sio_puts(char s[]) /* Put string */

 ssize_t sio_putl(long v) /* Put long */

 void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{
 sio_puts("So you think you can stop the bomb"
 " with ctrl-c, do you?\n");

sleep(2);
sio_puts("Well...");
sleep(1);
sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf!
 Handles restricted class of printf format strings

 Recognizes: %c %s %d %u %x %%
 Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */
{
 sio_printf("So you think you can stop the bomb"
 " (process %d) with ctrl-%c, do you?\n",
 (int) getpid(), 'c');

 sleep(2);
 sio_puts("Well...");
 sleep(1);
 sio_puts("OK. :-)\n");
 _exit(0);
}

sigintsafe.c

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
 For each signal type, one

bit indicates whether or
not signal is pending…
 …thus at most one

pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;
void child_handler(int sig) {
 int olderrno = errno;

pid_t pid;
 if ((pid = wait(NULL)) < 0)
 Sio_error("wait error");
 ccount--;
 sio_puts("Handler reaped child ");
 sio_putl((long)pid);
 sio_puts(" \n");

sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;

 ccount = N;
 signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
 if ((pid[i] = fork()) == 0) {

sleep(1);
 exit(0); /* Child exits */
 }
 }
 while (ccount > 0) /* Parent spins */
 ;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

Incorrect Signal Handling

N == 5

This code is incorrect!

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
 Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;

pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 sio_puts("Handler reaped child ");
 sio_putl((long)pid);
 sio_puts(" \n");
 }
 if (errno != ECHILD)
 sio_error("wait error");
 errno = olderrno;
} whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)
{
 int olderrno = errno;
 sigset_t mask_all, prev_all;

pid_t pid;

sigfillset(&mask_all);
 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid); /* Delete the child from the job list */
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 if (pid != 0 && errno != ECHILD)
 sio_error("waitpid error");
 errno = olderrno;
}

 SIGCHLD handler for a simple shell
 Blocks all signals while running critical code

procmask1.c

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;
int n = N; /* N = 5 */
sigfillset(&mask_all);
signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

 while (n--) {
 if ((pid = fork()) == 0) { /* Child */
 execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
 addjob(pid); /* Add the child to the job list */
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

 Simple shell with a subtle synchronization error because it
assumes parent runs before child

procmask1.c

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program Without Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;
int n = N; /* N = 5 */
sigfillset(&mask_all);
sigemptyset(&mask_one);
sigaddset(&mask_one, SIGCHLD);
signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

 while (n--) {
 sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = fork()) == 0) { /* Child process */
 sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
 addjob(pid); /* Add the child to the job list */
 sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
} procmask2.c

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{
 int olderrno = errno;

pid = waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

 Handlers for program explicitly waiting for SIGCHLD to arrive

waitforsignal.c

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {
 sigset_t mask, prev;
 int n = N; /* N = 10 */
 signal(SIGCHLD, sigchld_handler);
 signal(SIGINT, sigint_handler);
 sigemptyset(&mask);
 sigaddset(&mask, SIGCHLD);

 while (n--) {
 sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
 if (fork() == 0) /* Child */
 exit(0);

/* Parent */
pid = 0;
sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */
printf(".");

}
printf("\n");
exit(0);

} waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Program is correct, but very wasteful
 Program in busy-wait loop

 Possible race condition
 Between checking pid and starting pause, might receive signal

 Safe, but slow
 Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid) /* Race! */
 pause();

while (!pid) /* Too slow! */
sleep(1);

while (!pid)
;

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {
 sigset_t mask, prev;
 int n = N; /* N = 10 */
 signal(SIGCHLD, sigchld_handler);
 signal(SIGINT, sigint_handler);
 sigemptyset(&mask);
 sigaddset(&mask, SIGCHLD);
 while (n--) {
 sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
 if (fork() == 0) /* Child */
 exit(0);

 /* Wait for SIGCHLD to be received */

pid = 0;
 while (!pid)

sigsuspend(&prev);
/* Optionally unblock SIGCHLD */
sigprocmask(SIG_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(".");

}
printf("\n");
exit(0);

} sigsuspend.c

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Supplemental slides

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline
 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)
 Must be called before longjmp
 Identifies a return site for a subsequent longjmp
 Called once, returns one or more times

 Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf
 Return 0

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)
 Meaning:

 return from the setjmp remembered by jump buffer j again ...
 … this time returning i instead of 0

 Called after setjmp
 Called once, but never returns

 longjmp Implementation:
 Restore register context (stack pointer, base pointer, PC value) from

jump buffer j
 Set %eax (the return value) to i
 Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo(void)
{
 if (error1)
 longjmp(buf, 1);
 bar();
}

void bar(void)
{
 if (error2)

longjmp(buf, 2);
}

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
 case 0:

foo();
break;

 case 1:
 printf("Detected an error1 condition in foo\n");
 break;
 case 2:
 printf("Detected an error2 condition in foo\n");
 break;
 default:
 printf("Unknown error condition in foo\n");
 }
 exit(0);
}

setjmp/longjmp
Example (cont)

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline
 Can only long jump to environment of function that has been called

but not yet completed
jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp After longjmp

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline
 Can only long jump to environment of function that has been called

but not yet completed

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{
 siglongjmp(buf, 1);
}

int main()
{
 if (!sigsetjmp(buf, 1)) {
 Signal(SIGINT, handler);
 Sio_puts("starting\n");
 }

else
 Sio_puts("restarting\n");

 while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c

	Exceptional Control Flow��15-213/15-513: Introduction to Computer Systems�18th Lecture, October 31, 2024
	Recall: Simple Shell Implementation
	Recall: Simple Shell eval Function
	Recall: Simple Shell eval Function
	Problem with Simple Shell Example
	Today
	Printers Used to Catch on Fire
	Highly Exceptional Control Flow
	Recall: Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Today
	Exceptions
	Exception Tables
	Taxonomy of Hardware ECF
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Today
	Problem with Simple Shell Example
	Signals
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Receiving a Signal
	Signal Concepts: Pending and Blocked Signals
	Signal Concepts: Pending/Blocked Bits	
	Signal Concepts: Sending a Signal
	Sending Signals: Process Groups
	Sending Signals with /bin/kill Program
	Sending Signals from the Keyboard
	Example of ctrl-c and ctrl-z
	Sending Signals with kill Function
	Receiving Signals
	Receiving Signals
	Quiz
	Default Actions
	Installing Signal Handlers
	Signal Handling Example
	Signals Handlers as Concurrent Flows
	Another View of Signal Handlers as Concurrent Flows
	Nested Signal Handlers	
	Blocking and Unblocking Signals	
	Temporarily Blocking Signals
	Safe Signal Handling
	Guidelines for Writing Safe Handlers	
	Async-Signal-Safety	
	Safe Formatted Output: Option #1
	Safe Formatted Output: Option #2
	Incorrect Signal Handling
	Correct Signal Handling
	Synchronizing Flows to Avoid Races
	Synchronizing Flows to Avoid Races
	Corrected Shell Program Without Race
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Waiting for Signals with sigsuspend
	Waiting for Signals with sigsuspend
	Supplemental slides
	Nonlocal Jumps: setjmp/longjmp
	setjmp/longjmp (cont)
	setjmp/longjmp Example
	setjmp/longjmp Example (cont)
	Limitations of Nonlocal Jumps
	Limitations of Long Jumps (cont.)
	Putting It All Together: A Program �That Restarts Itself When ctrl-c’d

