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Thread-Level Parallelism

15-213/15-513: Introduction to Computer Systems
25th Lecture, December 3, 2024
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Disclaimer
 We do not have time to fully cover the following content
 Take -346, -410, -418 …

 Valuable to know as you start writing parallel programs



Carnegie Mellon

4

Today
 Parallel  Computing Hardware    CSAPP 12.6
 Memory Consistency     CSAPP 12.6
 Thread-Level Parallelism     CSAPP 12.6
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Today
 Parallel Computing Hardware
 Multicore

 Multiple separate processors on single chip
 Hyperthreading

 Efficient execution of multiple threads on single core

 Memory Consistency
 What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example: Parallel summation
 Examine some performance artifacts

 Divide-and conquer parallelism
 Example: Parallel quicksort
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Typical Multicore Processor

 Multiple processors operating with coherent view of memory

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream 
of operations

 Operations mapped onto functional units to execute in parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction 
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC
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Hyperthreading Implementation

 Replicate instruction control to process K instruction streams
 K copies of all registers
 Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction 
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A PC B
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Benchmark Machine

 Get data about machine from /proc/cpuinfo
 Shark Machines
 Intel Xeon E5520 @ 2.27 GHz
 Nehalem, ca. 2010
 8 Cores
 Each can do 2x hyperthreading
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Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays
 e.g., one thread per client to prevent one from delaying another

 Multi-core CPUs offer another opportunity
 Spread work over threads executing in parallel on N cores
 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients
 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks

 Shark machines can execute 16 threads at once
 8 cores, each with 2-way hyperthreading
 Theoretical speedup of 16X

 never achieved in our benchmarks
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Memory Coherence / Consistency

 What are the possible values printed?
 Depends on memory consistency model
 Abstract model of how hardware handles concurrent accesses

 How do the two threads really see the writes? 

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Non-Coherent Cache Scenario
 Write-back caches, without 

coordination between them

Main Memory
a:1 b:100

Thread1 Cache
a: 2

Thread2 Cache
b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

At later points, a:2 and b:200
are written back to main memory
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Snoopy Caches
 Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Main Memory
a:1 b:100

Thread1 Cache Thread2 Cache

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

a: 2M



Carnegie Mellon

15

Snoopy Caches
 Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Main Memory
a:1 b:100

Thread1 Cache Thread2 Cache
a: 2M

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for 
one of its M-tagged blocks
 Supply value from cache

(Note: value in memory 
may be stale)

 Set tag to S

print 200
b:200S b:200S

print 2a:2Sa: 2S
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Memory Consistency

 What are the possible values printed?
 Depends on memory consistency model
 Abstract model of how hardware handles concurrent accesses 

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Memory Consistency

 What are the possible values printed?
 Depends on memory consistency model
 Abstract model of how hardware handles concurrent accesses 

 Sequential consistency
 As if only one operation at a time, in an order consistent with the 

order of operations within each thread
 Thus, overall effect consistent with each individual thread but 

otherwise allows an arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Sequential Consistency Example

 Impossible outputs
 100, 1 and 1, 100
 Would require reaching both Ra and Rb before either Wa or Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200
1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);



Carnegie Mellon

19

Non-Coherent Cache Scenario
 Write-back caches, without 

coordination between them

Main Memory
a:1 b:100

Thread1 Cache
a: 2

Thread2 Cache
b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Sequentially consistent? No!
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Non-Sequentially Consistent Scenario
 Coherent caches, but thread 

consistency constraints violated 
due to operation reordering

Main Memory

a:1 b:100

Thread1 Cache

a:2

Thread2 Cache

b:200

a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Architecture lets reads finish before writes because single thread 
accesses different memory locations

12
3 4
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Non-Sequentially Consistent Scenario

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra
 Fix: Use synchronization (properly written, it fences)

12
3 4

Thread1 Write 
Buffer

Thread2 Write 
Buffera:2 b:200

a:1b:100

 Why Reordered? Writes 
take long time.  Buffer 
write, let read go ahead. 
Instruction-level parallelism
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Memory Consistency
 Sequentially Consistent:
 Each thread executes in proper order, any interleaving

 To ensure, requires
 Proper cache/memory behavior
 Proper intra-thread ordering constraints

 Thread ordering constraints
 Use synchronization to ensure the program is free of data races
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Today
 Parallel  Computing Hardware
 Multicore

 Multiple separate processors on single chip
 Hyperthreading

 Efficient execution of multiple threads on single core

 Consistency Models
 What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example: Parallel summation
 Examine some performance artifacts

 Divide-and conquer parallelism
 Example: Parallel quicksort
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Summation Example
 Sum numbers 0, …, N-1
 Should add up to (N-1)*N/2

 Partition into K ranges
 N/K values each
 Each of the t threads processes 1 range 
 Accumulate leftover values serially

 Method #1: All threads update single global variable
 1A: No synchronization
 1B: Synchronize with pthread semaphore
 1C: Synchronize with pthread mutex

 “Binary” semaphore.  Only values 0 & 1
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Accumulating in Single Global Variable: 
Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;

/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;

/* Number of elements summed by each thread */
size_t nelems_per_thread;

/* Keep track of thread IDs */
pthread_t tid[MAXTHREADS];

/* Identify each thread */
int myid[MAXTHREADS];
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Accumulating in Single Global Variable: 
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size_t nelems_per_thread;

/* Keep track of thread IDs */
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Accumulating in Single Global Variable: 
Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;

/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;

/* Number of elements summed by each thread */
size_t nelems_per_thread;

/* Keep track of thread IDs */
pthread_t tid[MAXTHREADS];

/* Identify each thread */
int myid[MAXTHREADS];
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Accumulating in Single Global Variable: 
Operation

nelems_per_thread = nelems / nthreads;

    /* Set global value */
    global_sum = 0;

    /* Create threads and wait for them to finish */
    for (i = 0; i < nthreads; i++) {
 myid[i] = i;
 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
    }                                                
    for (i = 0; i < nthreads; i++)                   
 Pthread_join(tid[i], NULL);                  
   
    result = global_sum; 
                          
    /* Add leftover elements */
    for (e = nthreads * nelems_per_thread; e < nelems; e++)
        result += e;

Thread ID Thread routine

Thread arguments
(void *p) 
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Thread Function: No Synchronization

void *sum_race(void *vargp) 
{
    int myid = *((int *)vargp);          
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread; 
    size_t i;

    for (i = start; i < end; i++) {
 global_sum += i;                  
    }                            
    return NULL;
}
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Unsynchronized Performance

 N = 230

 Best speedup = 2.86X
 Gets wrong answer when > 1 thread! Why?
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Thread Function: Semaphore / Mutex

void *sum_sem(void *vargp) 
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;

    for (i = start; i < end; i++) {
        sem_wait(&semaphore);
 global_sum += i;
 sem_post(&semaphore);
    }                            
    return NULL;
}

sem_wait(&semaphore);
global_sum += i;
sem_post(&semaphore); 

pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);

Semaphore

Mutex
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Semaphore / Mutex Performance

 Terrible Performance
 2.5 seconds  ~10 minutes

 Mutex 3X faster than semaphore
 Clearly, neither is successful

What is main reason for 
poor performance?
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Separate Accumulation
 Method #2: Each thread accumulates into separate variable
 2A: Accumulate in contiguous array elements
 2B: Accumulate in spaced-apart array elements
 2C: Accumulate in registers

/* Partial sum computed by each thread */ 
data_t psum[MAXTHREADS*MAXSPACING];

/* Spacing between accumulators */
size_t spacing = 1;
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Separate Accumulation: Operation
nelems_per_thread = nelems / nthreads;

    /* Create threads and wait for them to finish */
    for (i = 0; i < nthreads; i++) {
 myid[i] = i;
 psum[i*spacing] = 0;
 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
    }                                                
    for (i = 0; i < nthreads; i++)                   
 Pthread_join(tid[i], NULL);                  
   
    result = 0;

    /* Add up the partial sums computed by each thread */
    for (i = 0; i < nthreads; i++)                   
 result += psum[i*spacing]; 
                          
    /* Add leftover elements */
    for (e = nthreads * nelems_per_thread; e < nelems; e++)
        result += e;



Carnegie Mellon

35

Thread Function: Memory Accumulation

void *sum_global(void *vargp) 
{
    int myid = *((int *)vargp);          
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread; 
    size_t i;
    size_t index = myid*spacing;

    psum[index] = 0;
    for (i = start; i < end; i++) {
 psum[index] += i;                  
    } 
    return NULL;
}

Where is the mutex?
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Memory Accumulation Performance

 Clear threading advantage
 Adjacent speedup: 5 X
 Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

 Why does spacing the accumulators apart matter?
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False Sharing

 Coherence maintained on cache blocks
 To update psum[i], thread i must have exclusive access
 Threads sharing common cache block will keep fighting each other 

for access to block

… …
0 7 8 15

Cache Block m Cache Block m+1

psum
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False Sharing Performance

 Best spaced-apart performance 2.8 X better than best adjacent

 Demonstrates cache block size = 64
 8-byte values
 No benefit increasing spacing beyond 8
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Thread Function: Register Accumulation

void *sum_local(void *vargp) 
{
    int myid = *((int *)vargp);          
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread; 
    size_t i;
    size_t index = myid*spacing;

data_t sum = 0;
for (i = start; i < end; i++) {

sum += i;                  
}
psum[index] = sum;

    return NULL;
}
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Register Accumulation Performance

 Clear threading advantage
 Speedup = 7.5 X

 2X better than fastest memory accumulation

Beware the speedup metric!
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Lessons learned
 Sharing memory can be expensive
 Pay attention to true sharing
 Pay attention to false sharing

 Use registers whenever possible
 (Remember cachelab)
 Use local cache whenever possible

 Deal with leftovers
 When examining performance, compare to best possible 

sequential implementation



Carnegie Mellon

42

Quiz Time!

Canvas Quiz:  Day 25 – Thread Level Parallelism



Carnegie Mellon

43

A More Substantial Example: Sort
 Sort set of N random numbers
 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X
 Rearrange X into

 L: Values ≤ p
 R: Values ≥ p

 Recursively sort L to get L′
 Recursively sort R to get R′
 Return L′ : p : R′
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Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•
•
•

L′
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Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L′

•
•
•

R′

pL′ R′
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Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {
  if (nele <= 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  }

  /* Partition returns index of pivot */
  size_t m = partition(base, nele);
  if (m > 1)
    qsort_serial(base, m);
  if (nele-1 > m+1)
    qsort_serial(base+m+1, nele-m-1);
}
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Parallel Quicksort
 Parallel quicksort of set of values X
 If N ≤ Nthresh, do sequential quicksort
 Else

 Choose “pivot” p from X
 Rearrange X into

– L: Values ≤ p
– R: Values ≥ p

 Recursively spawn separate threads
– Sort L to get L′
– Sort R to get R′

 Return L′ : p : R′
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Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p
•
•
•

L′

•
•
•

R′p
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort
 Sort 227 (134,217,728) random values
 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism
 F too large: Thread overhead too high
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Amdahl’s Law (Travel Analogy)
 Flying jet non-stop from PIT -> LHR: 7.5 Hours 1
 Or, old fashioned SST way:
 Fly jet from PIT -> JFK: 1.5 Hours

 Fly SST from JFK -> LHR: 3.5 Hours  5 Hours 1.5x
 Or, Using FTL:
 Fly jet from PIT -> JFK: 1.5 Hours

 Fly FTL from JFK -> LHR: .01 Hours  1.51 Hours ~5x

 Best possible speed up is 5X, even with FTL because have to get 
to New York.

Speed-Up
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Amdahl’s Law
 Overall problem
 T Total sequential time required
 p Fraction of total that can be sped up (0 ≤ p  ≤ 1)
 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster
 Portion which cannot be sped up stays the same

 Maximum possible speedup
 k = ∞
 T∞ = (1-p)T
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Amdahl’s Law (Travel Analogy)
 Flying jet non-stop from PIT -> LHR: 7.5 Hours 1
 Or, old fashioned SST way:
 Fly jet from PIT -> JFK: 1.5 Hours

 Fly SST from JFK -> LHR: 3.5 Hours  5 Hours 1.5x
 Or, Using FTL:
 Fly jet from PIT -> JFK: 1.5 Hours

 Fly FTL from JFK -> LHR: .01 Hours  1.51 Hours ~5x

 Best possible speed up is 5X, even with FTL because have to get 
to New York.

 T=7.5, p=6/7.5=.8, k= ∞ ⇒  T∞ = (1-p)T=1.5  max speed-up =5x 

Speed-Up
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Amdahl’s Law Example
 Overall problem
 T = 10 Total time required
 p = 0.9 Fraction of total which can be sped up
 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0      (a 5x speedup)

 Maximum possible speedup
 T∞ = 0.1 * 10.0 = 1.0       (a 10x speedup)

 With infinite parallel computing resources!
 Limit speedup shows algorithmic limitation
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Amdahl’s Law & Parallel Quicksort
 Sequential bottleneck
 Top-level partition: No speedup
 Second level: ≤ 2X speedup
 kth level:  ≤ 2k-1X speedup

 Implications
 Good performance for small-scale parallelism
 Would need to parallelize partitioning step to get large-scale 

parallelism
 Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Lessons Learned
 Must have parallelization strategy
 Partition into K independent parts
 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Watch out for hardware artifacts
 Need to understand processor & memory structure
 Sharing and false sharing of global data

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult
 Set up experimental framework and test multiple strategies
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Thursday’s Lecture: Frontiers of Computing

 Sara McAllister: Sustainability in computer systems
 Kaiyang Zhao: Speeding up virtual memory address translation
 Valerie Choung: Designing malloc to better serve programmers

 Not recorded, not on the final
 No separate 14513 lecture
 15513 and 14513 students are encouraged to attend, in GHC 4401
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