
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Final 
Review Session

Josh, Parth, Jerry

Sunday, December 8th



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

■ Thursday December 12, 8:30-11:30AM

■ Location

○ DH 2210, DH 2315, DH 2302, DH 2105, DH 2122

■ Physical Cheat Sheets - 2 pages double sided

○ No previous exam questions 

■ Bring your IDs to the exam! 

Final Exam Logistics



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview of Final Exam Topics

■ Low-level C (structs, alignment)

■ Bits, Bytes, Ints (datalab)

■ Assembly (bomblab)

■ Stacks (attacklab)

■ Caches (cachelab)

■ Malloc and Dynamic Memory Allocation (malloclab) 

■ Virtual Memory

■ Processes, Signals, IO (tshlab)

■ Proxy, Threads, Synchronization (proxylab)



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview of Final Exam Topics

■ Low-level C (structs, alignment)

■ Bits, Bytes, Ints (datalab)

■ Assembly (bomblab)

■ Stacks (attacklab)

■ Caches (cachelab)

■ Malloc and Dynamic Memory Allocation (malloclab) 

■ Virtual Memory

■ Processes, Signals, IO (tshlab)

■ Proxy, Threads, Synchronization (proxylab)



Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structs/Alignment



Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Rules

■ Primitive Types

○ char: 1-byte aligned

○ short: 2-byte aligned

○ int: 4-byte aligned

○ long/pointer-type: 8-byte aligned

■ Structs

○ Uses the alignment of the largest primitive within the 

struct. 



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

■ How would the following struct be represented in memory?



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

a1,a2 are ints - 4 bytes each

a1 a1 a1 a1 a2 a2 a2 a2



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

b,c are 1 btye each and have no 
alignment requirements

a1 a1 a1 a1 a2 a2 a2 a2

b c



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

d is 4 bytes and must be 4 byte 
aligned.  What is our current 
alignment status?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

■ 8+1+1 = 10 => Need padding!



Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

e is 2 bytes and must be 2 byte 
aligned.  What is our current 
alignment status?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

e e

■ 10+1+1+4 = 16 => Already satisfied!



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Struct

Now we have a constant length 
array - what is the alignment policy?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

e e buf buf buf buf - -

■ Takes alignment of primitive type!



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Nested Struct

■ How would the following struct (final_nested) be 

represented in memory?



Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Nested Struct

■ Remember: Structs take the highest alignment requirement of 

its fields! 

■ What is the alignment of  struct final?

■ Alignment of struct final is 4
○ int is the largest type

x x x x a1 a1 a1 a1

a2 a2 a2 a2 b c - -

d d d d e e buf buf

buf buf



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Nested Struct

■ Finally, we have a long, which has 
alignment of 8 bytes

x x x x a1 a1 a1 a1

a2 a2 a2 a2 b c - -

d d d d e e buf buf

buf buf - - - - - -

y y y y y y y y



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches - Quick Review

■ Direct Mapped vs. N-way associative vs. fully associative

○ What do these mean and how might they have an 

advantage over the other?

■ Eviction Policy

○ The main one we covered was LRU (least recently used)



Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. 

■ What would the address decomposition look like?

  … 0 0 0 0 0 0 0 0 0 0 0 0



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. 

■ What would the address decomposition look like?

○ 4 sets = 2^2 sets => 2 set bits

  … 0 0 0 0 0 0 0 0 0 0 0 0

○ 64 byte blocks => 2^6 byte blocks => 6 block offset bits

○ Remainder is tag!



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. Assume A and B are cache-aligned. 

○ What is the miss rate of pass 1 and pass 2?



Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache - Pass 1

■ We have 64 byte blocks, indicating a cache line holds 16 ints

■ We iterate through 64 elements with stride 4

○ 16 iterations total

■ How many iterations access the same cache line?

○ 4 iterations covers 16 elements = one block



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache - Pass 1

■ Then what is our miss rate?

■ 4 iterations cover one cache line, meaning the first is a cold 

miss, then the next 3 are hits!

■ This pattern repeats across all batches of iterations, giving us 

a miss rate of 1/4



Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache - Pass 2

■ Once again we iterate through 64 elements with stride 4

○ 16 iterations total

■ Remember our cache does not reset before pass 1 and pass 2. 

What is the state of our cache before pass 2?



Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache 2 - Pass 2

■ We had 4 cache line accesses from the 4 batches of iterations 

from pass 1. Remember each set has 2 lines and we have 4 

sets.

A[0-15]

A[16-31]

A[32-47]

A[48-63]

-

-

-

-

■ Do we need to evict from the cache during pass 2?

Set 0

Set 1

Set 2

Set 3



Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache 2 - Pass 2

■ No, we do not need to evict!

○ We access 4 memory blocks of B in pass 2, and since there 

are 2 lines per set, we do not need to evict

A[0-15]

A[16-31]

A[32-47]

A[48-63]

B[0-15]

B[16-31]

B[32-47]

B[48-63]

Set 0

Set 1

Set 2

Set 3

■ Yay! Our cache was the same size as our working set.



Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache 2 - Pass 2

■ Now what is our miss rate?

■ Per batch of iterations, we have 4 hits to A, 1 cold miss to B, 

and 3 following hits to B.

■ This yields a miss rate of 1/8



Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Review

Physical Addressing

Memory address refers to an exact location in 
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific 
address, mapped to physical memory via the 
hardware memory management unit.

One of the Great Ideas Of Computer Science™



Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Review

■ Now that we’ve done tshlab, let’s ask: is VM really that 

helpful?

■ It definitely is! Not only does VM give us a way to access the 

disk, but it also gives us address space isolation! 



Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Page Table

Virtual addresses are mapped to 
physical addresses in the page 
table. Each entry is called a page 
table entry.

Pages are in memory, like a 
cache. If they are not available 
in memory, we have a page 
miss.

A page miss causes a page 
fault, which causes the OS to 
fetch the page from disk and 
evict a page from DRAM.



Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Multi-Level Page Tables

■ The size of a page table quickly gets out of control when we 

have to address large addresses space.

■ The solution is to nest page tables. The VPO/PPO acts as the 

pseudo-”block offset”



Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

■ Consider a system with 32 bit virtual address space and a 24 

bit physical address space. Page Size is 4KB. Assume the size 

of entries in the Page Table is 4 bytes.

■ Question of interest : How would we map the virtual address 

space? Is a single-level page table enough? Do we need more 

levels? Let’s dive into it….



Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Address Decomp.)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 1: How many bits in the virtual/physical address for 

page offset?

■ VPO = PPO = log
2
(page size) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)



Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (PTEs in Pages)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 2: How many PTEs (page table entries) fit inside a 

single page?

■ # of PTEs in a page = size of a page / size of a PTE

○ 4KB/4B = 2^12/2^2 = 2^10 = 1024



Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Mapping PTEs to VA)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 3: How many PTEs are required to map the entire 

VA space?

■ # of PTEs for VA space = size of VA space/size of a page

○ 2^32/2^12 = 2^20 PTEs



Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Now let’s talk about how we can extend this to a multi-level 

page table

■ So far, we’ve discussed preliminary values that tell us how to 

map onto the entire VA space.

○ General/“Single-Level” Ideas



Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 4: How many pages do we need to cover the single 

level page table?

■ # of pages for VA space = # of PTEs to map VA space/# of PTEs 

in a page

○ 2^20/2^10 = 2^10 pages



Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 5: How many pages do we need to represent the 

outer level page table?

■ # of pages for outer level = # of pages for VA space / # PTEs in 

a page

○ 2^10/2^10 = 1 page



Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ This is what our final multi-level page table would look like



Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Without the outer level, we would have to store the entirety 

of the single-level page table.

○ Oops that’s (2^20 PTEs x 4 bytes) = 2^22 bytes = 4096 KB

○ Also can think of as (2^10 Pages x 4 KB)

■ Great, now we’ve setup a 2-level page table, let’s talk about 

the benefits we get. 



Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Now we have two-levels. Suppose we have a single memory 

access (assuming the page table was empty at first). How 

many pages would be required?

■ Entire outer level (there is only one page)

■ 1 PTE needed from outer level => 1 page in inner level

■ Total 2 pages! We saved a huge chunk of space.

○ 2 pages = 8 KB <<<<<<< 4096 KB



Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes/Signals



Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ Goal: figure out what are 

possible outcomes printed 

from executing this 

program.



Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ Parent calls fork twice and 

forks two children.

■ Child with pid = pid1 

forks another child.

■ In total: 4 processes



Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ Now a very important step, 

draw the process diagram.



Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
■ Parent: 

○ pid1 != 0

○ pid2 != 0

■ Child1: 

○ pid1 == 0

○ pid2 != 0

■ Child2: 

○ pid1 != 0

○ pid2 == 0

■ Grandchild: 

○ pid1 == 0

○ pid2 == 0



Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ Remember: Each process has 

its own memory space! - Let’s 

figure out the outcomes now

■ Parent: count = 3

■ Child1: count = 2

■ Child2: count = 0

■ Grandchild: count = 2



Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ Use the process diagram to figure out possible outcomes.

■ 4 print branches, 2 repeated values

○ 4! / 2 = 12 different possible outcomes.



Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ How does the inclusion of 
wait(NULL) change our 
possible outcomes?



Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

■ How does the inclusion of 
wait(NULL) change our 
possible outcomes?

Child 1

Grandchild

Child 2

Parent



Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
■ Child calls kill(getppid(), SIGUSR{1,2}) between 2-4 times. 

What sequence of kills may print 1? How can you guarantee 

printing 2? What is the range of values printed?



Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals - Solution

■ Sending the same signal to the parent in all the calls to kill() 
may print 1 since there would be no queuing of signals.
○ All the signals can coalesce and get handled at once

■ We can guarantee printing 2 if we send precisely one SIGUSR1 
and one SIGUSR2.
○ Different signals do not coalesce!

■ We can print 1-4 depending on the manner in which signals 
are sent and received.



Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O



Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Open files structures



Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ How does read offset 
the current position?

■ How does dup2 work?

■ Does fd3 share offset with 
fd2? (after dup2)
○ Yes

○ Incremented by number of 
bytes read

○ dup2(old, new)
○ points new to old

■ What about before 
dup2?

○ No



Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ How are file descriptors 
and open file tables 
shared between parent 
and children?

○ Descriptor table is 
copied, open file 
tables and v-node 
tables are shared



Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ Child creates a copy of 
the parent fd table
○ dup2/open/close 

in child do NOT affect 
the parent and vice 
versa

■ File descriptors across 
processes share the same 
file offset.

■ Many possible outputs!



Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ Parent then child, no 
interleaving case:

○ c = d // in parent
○ c = b // in parent

○ c = c // in child from 
fd1

○ c = e // in child from 
fd3

○ c = d // in child
○ c = e // in child



Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ Child then parent, no 
interleaving case:

○ c = b // in child

○ c = d // in child

○ c = c // in child
○ c = d // in child
○ c = e // in parent
○ c = e // in parent



Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ What does adding a 
waitpid here do?



Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threading/Synchronization



Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical Problems in Threading
■ Deadlock 

○ Two or more threads are unable to proceed because each 

is waiting for a resource that the other holds.

■ Livelock

○ Two or more threads continuously change their state in 

response to each other - but with no further progress.

■ Starvation

○ One of more threads continuously denied access to 

resources because other threads holds them. 



Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads

■ What variables might be shared in this code?



Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ What are some possible execution orders given these 

functions?



Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ Simple case where each thread fully executes their function 

calls to deposit and withdraw.

Thread A
deposit(4)

Thread A
withdraw(11)

Thread B
withdraw(6)

Thread B
deposit(3)

Thread B
withdraw(7)

balance: 14
fail_count: 0

balance: 8 
fail_count: 0

balance: 11
fail_count: 0

balance: 0
fail_count: 0

balance: 0
fail_count: 1



Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ Are we guaranteed each thread finishes their calls to deposit 

and withdraw?

■ No, interleaving can take place within these functions!

■ Even loading and storing variables are multi-step operations 

that can be interleaved.



Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ Assume Thread A just completed deposit(4) and balance = 14.

Thread A enters
withdraw(11)

Computes
balance - amt = 3

Sets
balance = 3

Thread B enters
withdraw(6)

Computes
balance - amt = 8

Sets
Balance = 8



Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ How can we make this thread safe with one lock?

■ Can we do better?



Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
■ What are our critical resources?

○ The two global variables! 

○ Note: They do not need to be protected against each 

other; only within accesses to the same global

■ Let’s use two locks instead!



Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads

■ Marginal benefit in this case as we perform trivial tasks in 

each case, but will lead to large gains if functions are more 

complex.



Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GOOD LUCK!!

[Requin is studying with you guys too :)]



Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Q/A



Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Practice Questions 
(if time remains/for self-reference)



Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly



Carnegie Mellon

 

Assembly

■ Typical questions asked 
■ Given a function, look at assembly to fill in missing portions
■ Given assembly of a function, intuit the behavior of the 

program
■ (More rare) Compare different chunks of assembly, which one 

implements the function given?

■ Important things to remember/put on your cheat sheet:
■ Memory Access formula: D(Rb,Ri,S)
■ Distinguish between mov/lea instructions
■ Callee/Caller save regs
■ Condition codes and corresponding eflags



Carnegie Mellon

 

Assembly

■ Katherine TODO: pick one



Carnegie Mellon

 

Assembly

z



Carnegie Mellon

 

Assembly

z

e = %r8d



Carnegie Mellon

 

Assembly

z

Loop end: add 1, compare, iterate

 i++



Carnegie Mellon

 

Assembly

z  i++ x > i

cmp %edx, %edi     =>      (edi - edx > 0), same as x > i



Carnegie Mellon

 

Assembly

z  x > i  i++

We know that e = %r8d...



Carnegie Mellon

 

Assembly

z  x > i  i++

e << y

Where did %cl come from?



Carnegie Mellon

 

Assembly

z  x > i  i++

e << y
Again, e = %r8d...



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y

What’s left?



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d

      d



Carnegie Mellon

 

Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d

      d



Carnegie Mellon

90Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arrays



Carnegie Mellon

 

Arrays

IMPORTANT POINTS + TIPS: 
● Remember your indexing rules! They’ll 

take you 95% of the way there.
● Be careful about addressing (&) vs. dereferencing (*)
● You may be asked to look at assembly!



Carnegie Mellon

 

Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val
val[2]
*(val + 2)
&val[2]
val + 2
val + i

Arrays



Carnegie Mellon

 

Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val    int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Arrays



Carnegie Mellon

 

Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Arrays



Carnegie Mellon

 

Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Addressing methods:
● &val[index]
● val + index

Arrays



Carnegie Mellon

 

Nested indexing rules
● Declared: T A[R][C]
● Contiguous chunk of space (think of multiple arrays lined up next 

to each other)

Arrays



Carnegie Mellon

 

Nested indexing rules:

● Arranged in ROW-MAJOR ORDER - think of row vectors
● A[i] is an array of C elements (“columns”) of type T

Arrays



Carnegie Mellon

 

Nested indexing rules:

Arrays



Carnegie Mellon

 

Compiles Bad Deref? Size (bytes)
int A1[3][5]
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays



Carnegie Mellon

 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N    3*5*(4) = 60
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays



Carnegie Mellon

 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays



Carnegie Mellon

 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays



Carnegie Mellon

 

Consider accessing elements of A…. 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5]

Arrays



Carnegie Mellon

 

Consider accessing elements of A…. 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5] Y N 3*8 = 24

Arrays



Carnegie Mellon

 

ex., A3: pointer to a 3x5 int array
      *A3: BAD, 3x5 int array (3 * 5 elements * each 4 bytes = 60)
    **A3: BAD, but means stepping inside one of 3 “rows” c

Arrays



Carnegie Mellon

 

ex.,   A5: array of 3 (int *) pointers
 *A5: 1 (int *) pointer, points to an array of 5 ints
**A5: BAD, means accessing 5 individual ints of the pointer 

(stepping inside “row”)

Arrays



Carnegie Mellon

 

Sample assembly-type questions

Arrays



Carnegie Mellon

 

Arrays



Carnegie Mellon

 

Arrays



Carnegie Mellon

11
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc



Carnegie Mellon

11
1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Tracing



Carnegie Mellon

 

Virtual Memory
Virtual Address - 18 Bits

Physical Address - 12 Bits

Page Size - 512 Bytes

TLB is 8-way set associative

Cache is 2-way set associative

Final S-02 (#5)
Lecture 17: VM - Systems

http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
https://www.cs.cmu.edu/~213/lectures/17-vm-systems.pdf


Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset - Location in the page

Page Size = 512 Bytes = 29 → Need 9 bits



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number - Everything Else



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

2 Indices → 1 Bit

TLBI



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag - Everything Else

TLBITLBT



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
(B) PPN: Physical Page Number
(C) CO: Cache Offset
(D) CI: Cache Index
(E) CT: Cache Tag



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO

AAAAAAAAA



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else

AAAAAAAAABBB



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

AAAAAAAAABBB



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

4 Byte Blocks → 2 Bits

AAAAAAAAABBB

CO



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

AAAAAAAAABBB

CO



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

4 Indices → 2 Bits

AAAAAAAAABBB

COCI



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index
(E) CT: Cache Tag - Everything Else

AAAAAAAAAB

Cache Tag

BB

COCI



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
1 = 0001 A = 1010 9 = 1001 F = 1111 4 = 0100

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0x?? TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: Y/N? PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x??

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x3

001011111001010110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = 0x??

110



Carnegie Mellon

 

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = VPO = 0x1F4

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?

CO: 0x?? CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y/N? Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0xFF

001011111110


