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15-213 Recitation
Caches & Blocking

Your TAs

Friday, October 4th
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Reminders
■ cachelab is due Thursday (October 10th).

■ malloc lab will be released on the same day.

■ Written 5 (“Midterm”) is due Wednesday (October 9th)

○ Roughly twice the length of a normal written, so plan your 

time accordingly!

■ Drop Deadline: Monday (October 7th)
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Agenda
■ Code Reviews

■ Writing Cache-Friendly Code

■ Blocking

■ Virtual Memory
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Code Reviews
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Why Code Reviews?
■ Used in industry

○ Nearly all companies use code reviews

○ Effective at finding bugs

■ Sets you up for success in future systems courses!

Roger G. [Aug 2005]

https://course.ece.cmu.edu/~ece649/lectures/09_reviews_handouts.pdf
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Code Reviews: Logistics
■ Each of you will be assigned a Code Review TA.

■ Starting with cachelab, you will receive style points (0-4) 

on each lab.

■ Watch for an email from your TA so that you can sign up for a 

meeting slot!

○ Meetings are short (<= 15 minutes)!
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Code Reviews: Guidelines
■ First: look at Official 213 Style Guide!

■ Documentation (comments, file header)

■ Modularity

■ Use helper functions!

■ Avoid magic numbers (use #define or static 

const)

■ Correctness

○ malloc can fail! Library functions can fail!

○ Are you leaking memory/file descriptors?

https://www.cs.cmu.edu/~213/codeStyle.html


Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache-Friendly Code
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Recall: Temporal and Spatial Locality
■ Temporal Locality:

○ Recently referenced 

items are likely to be 

referenced again soon!

■ Spatial Locality:

○ Items with nearby 

addresses tend to be 

referenced close 

together in time.
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Optimizing for Locality

Temporal Spatial

■ Recently referenced items are 

likely to be referenced again 

soon!

■ To optimize: try to use data 

objects as often as possible 

once they’re read from 

memory.

■ Lecture Example: Blocking.

■ Items with nearby addresses 

tend to be referenced close 

together in time.

■ To optimize: read objects 

sequentially, and with smaller 

stride.

■ Lecture Example: Rearranging 

loops.
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Blocking
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Example: Matrix Multiplication

■ “Standard” way of doing matrix 

multiplication (ijk):

○ c[i][j] is given by 

taking “dot product” of 

i-th row of a with j-th 

column of b.

/* Multiply 4x4 matrices */
void mm(int a[4][4], int b[4][4], int c[4][4]) {
    int i, j, k;
    for (i = 0; i < 4; i++)
        for (j = 0; j < 4; j++)
            for (k = 0; k < 4; k++)
                c[i][j] += a[i][k] * b[k][j];

a

(i,*)

b

(*,j)

c

(i,j)
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Example: Matrix Multiplication
■ Assume a tiny cache with 4 lines of 8 bytes (2 ints each)

○ S = 1, E = 4, B = 8

■ We’ll use the following key:

Key

Grey = Accessed

a

Dark Grey = Currently Accessing

Red Border = In Cache

■ Let’s see what happens if we don’t use blocking…
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] ???



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

Previous lines 
evicted (LRU)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)
Have these blocks 
been in the cache 

before?
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)
Has this block been 

in cache before?
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

Have these blocks 
been in the cache 

before?
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, m)
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No Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 4/8 = 50%

■ What is the miss rate of b?

○ 8/8 = 100%

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, m)
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No Blocking: What went Wrong?
■ Bad temporal locality!

■ Blocks are used multiple times, but are never in cache when 

we need them.

Misses on Iteration 
4

a b

Evictions on 
Iteration 2
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Example: Matrix Multiplication (with Blocking)

■ Let’s see what happens if we use blocking!

/* multiply 4x4 matrices using blocks of size 2 */
void mm_blocking(int a[4][4], int b[4][4], int c[4][4]) {
    int i, j, k;
    int i_c, j_c, k_c;
    int B = 2;
    // control loops
    for (i_c = 0; i_c < 4; i_c += B)
        for (j_c = 0; j_c < 4; j_c += B)
            for (k_c = 0; k_c < 4; k_c += B)
                // block multiplications
                for (i = i_c; i < i_c + B; i++)
                    for (j = j_c; j < j_c + B; j++)
                        for (k = k_c; k < k_c + B; k++)
                            c[i][j] += a[i][k] * b[k][j];
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] + b[1][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] + b[1][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][0] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] + b[3][1] ???
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c a b

= x

Accessed

Currently 
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] + b[3][1] (h, h)
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Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 25%

■ What is the miss rate of b?

○ 25%

Iteration Miss?

0 (m, m)

1 (h, m)

2 (h, h)

3 (h, h)

4 (m, h)

5 (h, h)

6 (h, h)

7 (h, h)

Iteration Miss?

8 (m, m)

9 (h, m)

10 (h, h)

11 (h, h)

12 (m, h)

13 (h, h)

14 (h, h)

15 (h, h)
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Blocking: What Happened?
■ Good temporal locality!

■ Blocks are re-used while they are still in the cache.
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Virtual Memory
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Review: What Is Virtual Memory?

Physical Addressing

Memory address refers to an exact location in 
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific 
address, mapped to physical memory via the 
hardware memory management unit.

One of the Great Ideas Of Computer Science™
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Page Table

Virtual addresses are mapped to 
physical addresses in the page 
table. Each entry is called a 
page table entry.

Pages are in memory, like a 
cache. If they are not available in 
memory, we have a page miss.

A page miss causes a page fault, 
which causes the OS to fetch the 
page from disk and evict a page 
from DRAM.



Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables

The size of a page table quickly gets out of control 
when we have to address large addresses space.

The solution is to nest page tables. The VPO/PPO acts 
as the pseudo-”block offset”
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Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a 
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many PTEs (page table entries) fit inside a single page?

# of PTEs in a page = size of a page / size of a PTE

# of PTEs in a page = size of a page / size of a PTE = 4KB/4B = 212/22 = 210 = 
1024
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Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a 
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many bits in the virtual/physical address for page offset?

VPO = PPO = log2(page size)

VPO = PPO = log2(2
12) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)
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Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a 
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many PTEs required for mapping the entire VA space?

# of PTEs for VA space = size of VA space/size of a page

# of PTEs for VA space = size of VA space/size of a page = 232/212 = 220
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Example - Multi-Level Page Table
Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a 
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many pages for a single-level page table?

# of pages for VA space = # of PTEs to map VA space/# of PTEs in a page

# of pages for VA space = 220/210 = 210
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Example - Multi-Level Page Table
Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a 
single-level page table enough? Do we need more levels? Let’s dive into it….

Now that we know that we need 210 pages for the page table, can we add 
another level?

YES!
We can have one page at the outer level (because a page can hold 1024 PTEs, 
which is how many pages we need for the inner level)
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Example - Multi-Level Page Table
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Advantage of multi-level page tables
Consider a system with 32 bit virtual address space and a 24 bit physical 
address space. Page Size is 4KB. Assume the size of entries in the Page 
Table is 4 bytes.

If we think about a single memory access (assuming the page table was 
empty at the start), how many pages would be require?

We know that we need one page for the outer level. 

Since we know it’s a single memory access, we only need one valid PTE at 
the outer level. This also implies we need one page at the inner level

Therefore, we only need 2 pages, saving a huge chunk of space.
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Advantage of multi-level page tables
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Wrapping Up
■ cachelab is due Thursday (October 10th)

■ Written 5 (“Midterm”) is due Wednesday (October 9th)

○ Twice the length of a regular written!

■ Make sure to leave time for both.

■ Keep an eye out for an email from your Code Review TA!
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The End


