
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Caches & Blocking

Your TAs

Friday, October 4th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ cachelab is due Thursday (October 10th).

■ malloc lab will be released on the same day.

■ Written 5 (“Midterm”) is due Wednesday (October 9th)

○ Roughly twice the length of a normal written, so plan your

time accordingly!

■ Drop Deadline: Monday (October 7th)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Code Reviews

■ Writing Cache-Friendly Code

■ Blocking

■ Virtual Memory

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Code Reviews?
■ Used in industry

○ Nearly all companies use code reviews

○ Effective at finding bugs

■ Sets you up for success in future systems courses!

Roger G. [Aug 2005]

https://course.ece.cmu.edu/~ece649/lectures/09_reviews_handouts.pdf

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews: Logistics
■ Each of you will be assigned a Code Review TA.

■ Starting with cachelab, you will receive style points (0-4)

on each lab.

■ Watch for an email from your TA so that you can sign up for a

meeting slot!

○ Meetings are short (<= 15 minutes)!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews: Guidelines
■ First: look at Official 213 Style Guide!

■ Documentation (comments, file header)

■ Modularity

■ Use helper functions!

■ Avoid magic numbers (use #define or static

const)

■ Correctness

○ malloc can fail! Library functions can fail!

○ Are you leaking memory/file descriptors?

https://www.cs.cmu.edu/~213/codeStyle.html

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache-Friendly Code

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Temporal and Spatial Locality
■ Temporal Locality:

○ Recently referenced

items are likely to be

referenced again soon!

■ Spatial Locality:

○ Items with nearby

addresses tend to be

referenced close

together in time.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Locality

Temporal Spatial

■ Recently referenced items are

likely to be referenced again

soon!

■ To optimize: try to use data

objects as often as possible

once they’re read from

memory.

■ Lecture Example: Blocking.

■ Items with nearby addresses

tend to be referenced close

together in time.

■ To optimize: read objects

sequentially, and with smaller

stride.

■ Lecture Example: Rearranging

loops.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

■ “Standard” way of doing matrix

multiplication (ijk):

○ c[i][j] is given by

taking “dot product” of

i-th row of a with j-th

column of b.

/* Multiply 4x4 matrices */
void mm(int a[4][4], int b[4][4], int c[4][4]) {
 int i, j, k;
 for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 for (k = 0; k < 4; k++)
 c[i][j] += a[i][k] * b[k][j];

a

(i,*)

b

(*,j)

c

(i,j)

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication
■ Assume a tiny cache with 4 lines of 8 bytes (2 ints each)

○ S = 1, E = 4, B = 8

■ We’ll use the following key:

Key

Grey = Accessed

a

Dark Grey = Currently Accessing

Red Border = In Cache

■ Let’s see what happens if we don’t use blocking…

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] ???

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] ???

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] ???

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

Previous lines
evicted (LRU)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] ???

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] ???

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)
Have these blocks
been in the cache

before?

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] ???

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)
Has this block been

in cache before?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] ???

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

Have these blocks
been in the cache

before?

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] ???

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, m)

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 4/8 = 50%

■ What is the miss rate of b?

○ 8/8 = 100%

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, m)

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Blocking: What went Wrong?
■ Bad temporal locality!

■ Blocks are used multiple times, but are never in cache when

we need them.

Misses on Iteration
4

a b

Evictions on
Iteration 2

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication (with Blocking)

■ Let’s see what happens if we use blocking!

/* multiply 4x4 matrices using blocks of size 2 */
void mm_blocking(int a[4][4], int b[4][4], int c[4][4]) {
 int i, j, k;
 int i_c, j_c, k_c;
 int B = 2;
 // control loops
 for (i_c = 0; i_c < 4; i_c += B)
 for (j_c = 0; j_c < 4; j_c += B)
 for (k_c = 0; k_c < 4; k_c += B)
 // block multiplications
 for (i = i_c; i < i_c + B; i++)
 for (j = j_c; j < j_c + B; j++)
 for (k = k_c; k < k_c + B; k++)
 c[i][j] += a[i][k] * b[k][j];

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] ???

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] ???

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] ???

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] ???

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] ???

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] ???

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] ???

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] + b[1][1] ???

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] + b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] + b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] + b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] + b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] + b[1][1] (h, h)

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] ???

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] ???

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] ???

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] ???

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] ???

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] ???

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][0] ???

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] + b[3][1] ???

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] + b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] + b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] + b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] + b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] + b[3][1] (h, h)

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 25%

■ What is the miss rate of b?

○ 25%

Iteration Miss?

0 (m, m)

1 (h, m)

2 (h, h)

3 (h, h)

4 (m, h)

5 (h, h)

6 (h, h)

7 (h, h)

Iteration Miss?

8 (m, m)

9 (h, m)

10 (h, h)

11 (h, h)

12 (m, h)

13 (h, h)

14 (h, h)

15 (h, h)

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking: What Happened?
■ Good temporal locality!

■ Blocks are re-used while they are still in the cache.

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: What Is Virtual Memory?

Physical Addressing

Memory address refers to an exact location in
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific
address, mapped to physical memory via the
hardware memory management unit.

One of the Great Ideas Of Computer Science™

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Table

Virtual addresses are mapped to
physical addresses in the page
table. Each entry is called a
page table entry.

Pages are in memory, like a
cache. If they are not available in
memory, we have a page miss.

A page miss causes a page fault,
which causes the OS to fetch the
page from disk and evict a page
from DRAM.

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables

The size of a page table quickly gets out of control
when we have to address large addresses space.

The solution is to nest page tables. The VPO/PPO acts
as the pseudo-”block offset”

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many PTEs (page table entries) fit inside a single page?

of PTEs in a page = size of a page / size of a PTE

of PTEs in a page = size of a page / size of a PTE = 4KB/4B = 212/22 = 210 =
1024

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many bits in the virtual/physical address for page offset?

VPO = PPO = log2(page size)

VPO = PPO = log2(2
12) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many PTEs required for mapping the entire VA space?

of PTEs for VA space = size of VA space/size of a page

of PTEs for VA space = size of VA space/size of a page = 232/212 = 220

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table
Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a
single-level page table enough? Do we need more levels? Let’s dive into it….

Simpler question : How many pages for a single-level page table?

of pages for VA space = # of PTEs to map VA space/# of PTEs in a page

of pages for VA space = 220/210 = 210

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table
Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

Question of interest : How would we map the virtual address space? Is a
single-level page table enough? Do we need more levels? Let’s dive into it….

Now that we know that we need 210 pages for the page table, can we add
another level?

YES!
We can have one page at the outer level (because a page can hold 1024 PTEs,
which is how many pages we need for the inner level)

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Advantage of multi-level page tables
Consider a system with 32 bit virtual address space and a 24 bit physical
address space. Page Size is 4KB. Assume the size of entries in the Page
Table is 4 bytes.

If we think about a single memory access (assuming the page table was
empty at the start), how many pages would be require?

We know that we need one page for the outer level.

Since we know it’s a single memory access, we only need one valid PTE at
the outer level. This also implies we need one page at the inner level

Therefore, we only need 2 pages, saving a huge chunk of space.

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Advantage of multi-level page tables

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ cachelab is due Thursday (October 10th)

■ Written 5 (“Midterm”) is due Wednesday (October 9th)

○ Twice the length of a regular written!

■ Make sure to leave time for both.

■ Keep an eye out for an email from your Code Review TA!

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

