
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Malloc Lab (Checkpoint)

Your TAs

Friday, October 11th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ cachelab was due yesterday.

■ malloclab was released yesterday:

○ Checkpoint: October 29th

○ Final: November 5th

■ Bootcamp 5: Post-Checkpoint Malloc will be in-person, and is

happening on October 27th.

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Review: Programming in C

■ malloc concepts

■ Optimizations

○ Explicit Lists

○ Seglists

■ Strategy Guide

○ Debugging

○ Suggested Roadmap

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Programming in C

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C: Unions

■ Store potentially different data types in the same region of

memory.

■ Specifies multiple ways to interpret data at the same memory

location.

union temp {
int i;
char c;

};

int i;

4 bytes

c

4 bytes

Padding

Either Or

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C: Zero-Length Arrays

■ Allowed in GNU C as an extension.

■ A zero-length array must be the last element in a struct.

■ sizeof(payload)always returns 0

■ But, the payload itself can have variable length

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Concepts

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What does malloc do?
■ Given a bunch of heap space,

manage it effectively:
1. Use heap space to organize

blocks and information we
store about blocks in a
structured way.

2. Using that structure, decide
where to allocate new
blocks.

3. Update structure correctly
when we allocate or free,
maintaining heap invariants.

■ …and do so in a way that
maximizes throughput and
utilization!

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

static block_t *coalesce_block(block_t *block) {
 // TODO: delete or replace this comment once you're done.

return block;
}

malloc Starter Code

■ Starter code: working implementation of implicit free list with

boundary tags.

■ However, it does not implement coalescing!

■ Now it’s our turn! Let’s talk about what we need to do.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Starter Code

Very slow!

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Getting Started on Checkpoint
■ Based on the starter code, we’ve found two things we can

improve on already!

■ Implement Coalescing

○ See “Malloc Basic” lecture.

■ Throw out implicit list for something faster.

○ Start with explicit list.

○ Work up to segregated lists!

■ We’ll talk about both today!

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists

■ Implicit List achieves poor throughput. Why?

■ How do we find a free block for an allocation?

○ Which blocks are searched?

○ How could we do better?

16 24 24 16 8

Implicit List

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists

16 24 24 16 8

free_list_start
(not necessarily first free block in heap)

■ We want to search only free blocks:

■ Note: these forward/backward pointers require space

○ Where do we store them?

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists: Implementation
■ Forward/backward pointers require space

■ Free blocks are free!

○ Not in use by any application.

○ So our allocator can use their space to store its own data

structures.

?

Size a

Size a

Payload + Padding

Allocated (as before)

Size a

Size a

next

Free

prev

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists: Performance

■ Way faster!

■ But we can still do better… On to segregated lists!

○ Note: you’ll need to understand explicit lists first.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated Lists

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated Lists

■ With explicit lists, we only have to search free blocks.

■ But, for a given request, we still have to search all free blocks.

○ What happens when malloc(4096) tries to find a free

block?

■ Can we do better?

16 16 32 16 48 48 16 32

32 16 48 4096…

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated Lists
■ Segregated Lists: have multiple free lists, one for each size

class.

16

32 - 48

64-inf

■ Size classes are up to you!

○ Remember: you may optimize for the traces as long as you

don’t hardcode!

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated Lists: Performance

■ We have motivated seglists as a throughput optimization.

■ What might they do for utilization?

○ If you’re using “first fit”?

○ If you’re using “best fit”?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design Choices

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design Choices
■ Though we’ll recommend a strategy later, there are many

ways to optimize your allocator.

■ What kind of implementation to use?

○ Implicit list, explicit, segregated, binary tree, etc.

■ What fit algorithm to use?

○ Best Fit?

○ First Fit? Next Fit?

○ Which is faster? Which gets better utilization?

■ There are many different ways to get a full score!

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy Guide: Debugging

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In a perfect world…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

=

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In reality…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

■ + Some bug hiding in those 1500 LoC…

=

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Strategies
■ Use gdb!

■ Write a heap checker!

○ Checks heap invariants

○ Call around major operations to make sure heap

invariants aren’t violated.

■ Assertions (like 122!):

○ dbg_assert(...)

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Errors
■ Garbled Bytes

○ This means you’re overwriting data in an allocated block.

■ Overlapping Payloads

○ This means you have unique blocks whose payloads

overlap in memory

■ segfault!

○ This means something is accessing invalid memory.

■ For all of the above, step through with gdb to see where

things start to break!

○ Note: to run assert statements, you’ll need to run

./mdriver-dbg rather than ./mdriver.

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using gdb: Breakpoints and Watchpoints
■ Breakpoints:

○ break coalesce_block

○ break mm.c:213

○ break find_fit if size == 24

■ Watchpoints:

○ w block = 0x8000010

○ w *0x15213

○ rwatch <thing> – stop on reading a memory location

○ awatch <thing> – stop on any access to the location

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using gdb: Inspecting Frames

■ backtrace - print call stack up until current function

■ frame 1: switch to mm_malloc’s stack frame

○ Can then inspect local variables.

(gdb) backtrace #0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid (...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing a Heap Checker
■ Heap checker: just a function that loops over your heap/data

structures and makes sure invariants are satisfied.

○ Returns true if and only if heap is well-formed.

■ Critical for debugging!

○ Update when your implementation changes.

■ Worry about correctness, not efficiency.

○ But do avoid printing excessively.

■ For Checkpoint, you will be graded on the quality of your heap

checker.

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants
■ Heap invariants are things that should always be true about

the heap/your data structures between calls to

malloc/free.

■ Can you come up with some invariants?

○ Block Level: what should be true about individual blocks?

○ List Level: what should be true about your free list(s)?

○ Heap Level: what should be true about your blocks in

relation to the heap?

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: Block Level
■ Header and footer store size/allocation information. Do they

match?

■ Payload area is 16-byte aligned.

■ Size is valid.

■ No contiguous free blocks (unless you do deferred

coalescing).

Disclaimer:
Non-Exhaustive

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: List Level
■ Assuming a doubly-linked explicit list:

○ prev/next pointers are consistent

○ No allocated blocks in free list

○ No cycles!

■ Segregated lists:

○ Common bug: forgetting to move blocks between buckets

when their sizes change.

○ Invariant: each segregated list contains only blocks in the

appropriate size class.

Disclaimer:
Non-Exhaustive

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: Heap Level
■ All blocks are between heap boundaries.

■ “Sentinel” Blocks store correct information.

○ “Dummy” footer (at the start of the heap) and “dummy”

header (at the end of the heap) prevent accidental

coalescing.

Disclaimer:
Non-Exhaustive

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy Guide: Suggested Roadmap

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Suggested Roadmap
■ First: read the write-up!

○ “Roadmap to Success” section

0. Start writing your heap checker!

1. Implement coalesce_block() first.

2. Implement an explicit free list.

3. Implement segregated lists!

4. Further optimizations (in this order)

○ Footer Removal in allocated blocks

○ Decrease minimum block size

○ Compress Headers (hard)

Checkpoint

Final

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Note: Using git
■ As we have seen:

○ This is a difficult lab.

○ You will experiment with different optimizations, with

varying effects on performance and thus, your score.

■ Make sure to regularly checkpoint your code with commits,

and push it to GitHub!

○ Don’t want to lose your progress.

○ It will be helpful to include performance metrics in your

commit messages.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ malloc due dates:

○ Checkpoint: October 29th

○ Final: November 5th

○ Start early!

■ Bootcamp 5: Post-Checkpoint

Malloc: October 27th.

■ cachelab: Watch your inbox

for an email from your code

review TA!

■ Have a good Fall Break :-)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

