Carnegie Mellon

15-213 Recitation
Malloc Lab (Checkpoint)

Your TAs
Friday, October 11th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Reminders
m cachelab was due yesterday.
m malloclab was released yesterday:
o Checkpoint: October 29th
o Final: November 5th
m Bootcamp 5: Post-Checkpoint Malloc will be in-person, and is

happening on October 27th.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda
m Review: Programmingin C
m malloc concepts
m Optimizations
o Explicit Lists
o Seglists
m Strategy Guide
o Debugging
o Suggested Roadmap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: Programming in C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Programming in C: Unions

union temp { Either or
int 1; int i; c Padding
char c;

}; 4 bytes 4 bytes

m Store potentially different data types in the same region of

memory.

m Specifies multiple ways to interpret data at the same memory

location.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Programming in C: Zero-Length Arrays

uint64_t word t;

typedef struct block
{

word t header;

unsigned char payload[0]; // Zero length array
} block t;

m Allowed in GNU C as an extension.
m A zero-length array must be the last element in a struct.
m sizeof (payload) always returns 0O

m But, the payload itself can have variable length

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

malloc Concepts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

What doesmalloc do?

m Given a bunch of heap space, _ Memory
manage it effectively: Kernel virtual memory ::2:'?;3:0
1. Use heap space to organize User stack |
blocks and information we \credted af L) I -

: tack
store about blocks in a :)
str.uctured way.] Memory-mapped region for

2. Using that structure, decide shared libraries
where to allocate new
b/OCkS. T < “The break”
3. Update structure correctly Run-time heap
(created bymalloc)
when we allocate or free,
) ..)) Read/write segment Loaded
maintaining heap invariants. (dats bas) :Lom
. | e
m ...and dosoin a way that Read-only segment executable
P (.init,.text, .rodata) file
m§>.<|m!zes throughput and 0x400000
utilization! 0 Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

mal loc Starter Code

static block t *coalesce block(block t *block) {

// TODO: delete or replace this comment once you're done.
return block;

m Starter code: working implementation of implicit free list with

boundary tags.
m However, it does not implement coalescing!

m Now it’s our turn! Let’s talk about what we need to do.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

mal loc Starter Code

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver -p
Found benchmark throughput 136090 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, benchmark checkpoint

hroughput targets: min=2618, max=11781, benchmark=13090

valid util msecs Kops trace

yes 78.4% .002 9632 ./traces/syn-array-short.rep
yes 13.4% .001 25777 ./traces/syn-struct-short.rep
yes 15.2% .001 24783 ./traces/syn-string-short.rep
yes 73.1% .001 19277 ./traces/syn-mix-short.rep
yes 16.0% .001 31192 ./traces/ngram-foxl.rep

yes 73.6% 757 .145 5237 ./traces/syn-mix-realloc.rep
yes 62.0% 5748 .925 1464 ./traces/bdd-aa4.rep

yes 58.3% 87830 1682.766 52 ./traces/bdd-aa32.rep

yes 58.0% 41080 410.385 100 ./traces/bdd-ma4.rep

yes 58.1% 115380 4636.711 25 ./traces/bdd-nq7.rep

yes 56.6% 20547 26.677 770 ./traces/cbit-abs.rep

yes 55.8% 95276 675.303 141 ./traces/cbit-parity.rep

yes 58.0% 89623 611.511 147 ./traces/cbit-satadd.rep

yes 49.6% 50583 185.382 273 ./traces/cbit-xyz.rep

yes 40.6% 32540 76.919 423 ./traces/ngram-gulliverl.rep
yes 42.4% 127912 1284.959 100 ./traces/ngram-gulliver2.rep
yes 39.4% 67012 338.591 198 ./traces/ngram-mobyl.rep

yes 38.6% 94828 701.305 135 ./traces/ngram-shakel.rep
yes 90.9% 80000 1455.891 55 ./traces/syn-array.rep

yes 88.0% 80000 915.167 87 ./traces/syn-mix.rep

yes 74.3% 80000 914.366 87 ./traces/syn-string.rep

yes 75.2% 80000 812.748 98 ./traces/syn-struct.rep

16 59.1% 1148359 14732.604 78

=
3
»
3
x
b 3
=
3
x
3
3
x
x
3
=
3

=t
D

Average utilization = 59.1%. Average throughput = 78 Kops/sec
Checkpoint Perf index = 20.0| (util) + 0.0 (thru) = 20.0/100

Very slow!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Getting Started on Checkpoint
m Based on the starter code, we’ve found two things we can
improve on already!
m Implement Coalescing
o See “Malloc Basic” lecture.
m Throw out implicit list for something faster.
o Start with explicit list.
o Work up to segregated lists!

m We’ll talk about both today!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Explicit Lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Explicit Lists

Implicit List

\ 16 24 16 8 \

m Implicit List achieves poor throughput. Why?
m How do we find a free block for an allocation?
o Which blocks are searched?

o How could we do better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Explicit Lists

m We want to search only free blocks:

— _ I
/V\ /

free list start
(not necessarily first free block in heap)

m Note: these forward/backward pointers require space

o Where do we store them?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Explicit Lists: Implementation

m Forward/backward pointers require space
m Free blocks are free!
o Not in use by any application.
o So our allocator can use their space to store its own data

structures.

Size a Size a
next
prev

Payload + Padding
Size a Size a
Allocated (as before) Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Explicit Lists: Performance

Optimization Utilization Throughput
Implicit List (Starter Code) 59% 10-100
Explicit Free List” mid-50s 1000-2500
Segregated Free Lists - 6000
Better Fit Algorithm 59% Variable
Eliminating Footers in Allocated Blocks +9% -
Decreasing Block Size/Mini Blocks +6% -20%
Compressing Headers +2% -

“— utilization score assumes the allocation order is the same as implicit list - otherwise
expect a minimum of 53% utilization.

m Way faster!
m But we can still do better... On to segregated lists!

o Note: you’ll need to understand explicit lists first.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Segregated Lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Segregated Lists

T N N N N N Ty
16 16 32 16 48 48 16 32

|—> 32 16 48 A 4096
W

m With explicit lists, we only have to search free blocks.
m But, for a given request, we still have to search all free blocks.
o What happens whenmalloc (4096) tries to find a free
block?

m Can we do better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Segregated Lists

m Segregated Lists: have multiple free lists, one for each size

class.
16 —— e —
32 -48 — —
64-inf

m Size classes are up to youl!
o Remember: you may optimize for the traces as long as you

don’t hardcode!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Segregated Lists: Performance

Optimization Utilization Throughput
Implicit List (Starter Code) 59% 10-100
Explicit Free List” mid-50s 1000-2500
Segregated Free Lists - 6000

m We have motivated seglists as a throughput optimization.
m What might they do for utilization?
o If you’re using “first fit”?

o If you’re using “best fit”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Design Choices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Design Choices
m Though we’ll recommend a strategy later, there are many
ways to optimize your allocator.
m What kind of implementation to use?
o Implicit list, explicit, segregated, binary tree, etc.
m What fit algorithm to use?
O Best Fit?
O First Fit? Next Fit?
o Which is faster? Which gets better utilization?

m There are many different ways to get a full score!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Strategy Guide: Debugging

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

In a perfect world...

m Setting up blocks, metadata, lists, etc. (500 LoC)
m Finding and allocating the right blocks (500 LoC)

m Updating heap structure on frees (500 LoC)

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver
Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUES5520@2.27(

Throughput targets: min=6528, max=11750, benchmark=13056
valad utal ops msecs Kops trace

yes 78.1% 20 0.004 5595 ./traces/syn-array-short.rep
yes 3.2% 20 0.004 5273 ./traces/syn-struct-short.rep

F yes 96.0% 80000 17.176 4658 ./traces/syn-array.rep

“ yes 93.2% 80000 .154 12999 ./traces/syn-mix.rep

© yes 86.4% 80000 3.717 21521 ./traces/syn-string.rep

“ yes 85.6% 80000 3.649 21924 ./traces/syn-struct.rep
16 74.2% 1148359 55.949 20525

Average utilization = 74.2%. Average throughput = 20525 Kops/sec
Perf index = 60.0 (util) + 40.0 (thru) = 100.06/100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

In reality...

m Setting up blocks, metadata, lists, etc. (500 LoC)

m Finding and allocating the right blocks (500 LoC)

m Updating heap structure on frees (500 LoC)

m + Some bug hiding in those 1500 LoC...
[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $./mdriver

Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUE5520@2.27

hroughput targets mln 6528, max=11750, benchmark=136056

[dalud@angeléhark / /1521J/s17/ma110c1abcheckp01nt handout] s B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Debugging Strategies
m Use gdb!
m Write a heap checker!
o Checks heap invariants
o Call around major operations to make sure heap
invariants aren’t violated.
m Assertions (like 1221!):

© dbg assert(...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Common Errors

m Garbled Bytes
o This means you’re overwriting data in an allocated block.
m Overlapping Payloads
o This means you have unique blocks whose payloads
overlap in memory
m segfault!
o This means something is accessing invalid memory.
m For all of the above, step through with gdb to see where
things start to break!
o Note: to run assert statements, you’ll need to run
./mdriver-dbg rather than . /mdriver.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Using gdb: Breakpoints and Watchpoints
m Breakpoints:

0 break coalesce block

O break mm.c:213

© break find fit if size == 24
m Watchpoints:

© w block = 0x8000010

o w *0x15213

o rwatch <thing> - stop on reading a memory location

o awatch <thing> - stop on any access to the location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Using gdb: Inspecting Frames

(gdb) backtrace #0 find fit (...)
#1 mm malloc (...)

#2 0x0000000000403352 in eval mm valid (...) #3 &run tests (...)
#4 0x0000000000403c39 in main (...)

m backtrace - print call stack up until current function

m frame 1:switchto mm_malloc’s stack frame

o Can then inspect local variables.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Writing a Heap Checker
m Heap checker: just a function that loops over your heap/data
structures and makes sure invariants are satisfied.
o Returns true if and only if heap is well-formed.
m Critical for debugging!
o Update when your implementation changes.
m Worry about correctness, not efficiency.
o But do avoid printing excessively.
m For Checkpoint, you will be graded on the quality of your heap

checker.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Heap Invariants

m Heap invariants are things that should always be true about
the heap/your data structures between calls to
malloc/free.

m Can you come up with some invariants?
o Block Level: what should be true about individual blocks?
o List Level: what should be true about your free list(s)?
o Heap Level: what should be true about your blocks in

relation to the heap?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Disclaimer:

Heap Invariants: Block Level Non-Exhaustive

m Header and footer store size/allocation information. Do they

match?
m Payload area is 16-byte aligned.
m Sizeis valid.
m No contiguous free blocks (unless you do deferred

coalescing).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Disclaimer:

Heap Invariants: List Level Non-Exhaustive

m Assuming a doubly-linked explicit list:
o prev/next pointers are consistent
o No allocated blocks in free list
o No cycles!
m Segregated lists:
o Common bug: forgetting to move blocks between buckets
when their sizes change.
o Invariant: each segregated list contains only blocks in the

appropriate size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Disclaimer:

Heap Invariants: Heap Level Non-Exhaustive

m All blocks are between heap boundaries.
m “Sentinel” Blocks store correct information.
o “Dummy” footer (at the start of the heap) and “dummy”
header (at the end of the heap) prevent accidental

coalescing.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Strategy Guide: Suggested Roadmap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Suggested Roadmap

m First: read the write-up!
o “Roadmap to Success” section

Start writing your heap checker!
Implement coalesce block () first.

Checkpoint
Implement an explicit free list.

Implement segregated lists!

el S A s S

Further optimizations (in this order)
o Footer Removal in allocated blocks

Final
o Decrease minimum block size

o Compress Headers (hard)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Note: Using git
m As we have seen:
o This is a difficult lab.
o You will experiment with different optimizations, with
varying effects on performance and thus, your score.
m Make sure to regularly checkpoint your code with commits,
and push it to GitHub!
o Don’t want to lose your progress.
o |t will be helpful to include performance metrics in your

commit messages.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Wrapping Up

m malloc due dates:
o Checkpoint: October 29th
o Final: November 5th
o Start early!

m Bootcamp 5: Post-Checkpoint
Malloc: October 27th.

m cachelab: Watch your inbox

for an email from your code
review TA!
m Have a good Fall Break :-)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

