
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Processes and Shells

Your TAs

Friday, November 1st



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ malloc deadlines:

○ Checkpoint: October 29th

○ Final: November 5th (Tuesday)

■ tshlab will be released on November 5th

■ Code Reviews:

○ Checkpoint: Heap Checker Quality

○ Final: All of mm.c



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Shell Lab Preview

○ Shell Demo

■ Processes

○ Process Lifecycle

○ Process Graphs

■ Error-handling



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Lab



Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Lab
■ tshlab will be released on November 5th

■ You’ll write a simple shell, complete with:

○ Foreground and background jobs

○ I/O redirection

■ Getting Started:

○ CS:APP Chapter 8



Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Demo
If you want to follow along…
■ Log into a Shark machine, then type:

$ wget http://www.cs.cmu.edu/~213/activities/rec10.tar
$ tar -xvf rec10.tar
$ cd rec10
$ make



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Demo: Recap

Process Lifecycle

■ ./demo – created a new process, and reaped it on exit.
■ ctrl + z – pauses foreground process
■ ./demo … & – “&” runs process in background

What did we see?

I/O Redirection

■ ./demo < in.txt – take input from a file
■ ./demo > out.txt – created a new file, and wrote 

output to it!

You’ll be implementing all of these features in Shell Lab!

Today

Next time



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Life Cycle of a Process
■ fork()

○ Creates a new child process

■ execve()

○ Load and run a new program, replacing the current one

■ [... Do some work]

■ exit()

○ End the running program

■ waitpid()

○ Parent reaps terminated children



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork(): Creating a New Process

Memory Memory

Parent

Stack

Heap

Data

Code

Saved Regs.

CPU Regs

fork()

Parent

Stack

Heap

Data

Code

Saved Regs.

Child

Stack

Heap

Data

Code

Saved Regs.

CPU Regs

■ Child gets duplicate but separate copy of address space.

■ File descriptors are still shared!



Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork() Example

int main(int argc, char ** argv) {
pid_t pid;
int *x = malloc(sizeof(int));
*x = 1;

pid = Fork();
if (pid == 0) {

    *x += 1;
    printf("[%d] child: x = %p, *x = %d\n", getpid(), x, *x);
    return 0;

}

*x -= 1;
printf("[%d] parent: x = %p, *x = %d\n", getpid(), x, *x);
return 0;

}

■ Suppose x is stored at address A. What are the different 
possible outputs?



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork() Example: Solution

■ In this example, calls to printf can happen in any order.

■ Child and parent have different PIDs

■ Same virtual address, different values.

[<child pid>] child: x = A, *x = 2
[<parent pid>] parent: x = A, *x = 0

or

[<parent pid>] parent: x = A, *x = 0
[<child pid>] child: x = A, *x = 2



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve(): Loading and Running a Program
int execve(char *pathname, char *argv[], char *envp[]);

■ Loads and runs program specified by pathname:

○ With arguments argv, environment envp

■ If successful:

○ Overwrite code, data, stack, and start executing!

○ Calls once, never returns!

■ On failure, return -1, and set errno.



Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve(): Example

■ What does this program print? Assume /bin/echo exists.

○ “Hi 18213!”

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};

execve(args[0], args, environ);
printf("Hi 15213!\n");
exit(0);

}



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve(): Example

■ What does this program print? Assume /bin/blahblah 

does not exist.

○ “Hi 14513!”

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};

execve(args[0], args, environ);
printf("Hi 14513!\n");
exit(0);

}



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Terminating and Reaping
■ void exit(int 

status)
○ Terminates the current 

program

○ Called once, never 

returns

■ Terminated processes still 

consume system resources!

■ Parent process is responsible 

for reaping them:

○ wait
○ waitpid

$ ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

$ ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks  
<defunct>
6641 ttyp9 00:00:00 ps



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait() vs. waitpid()
pid_t wait(int *status)

pid_t waitpid(pid_t pid, int *status, int options)

■ wait
○ Blocks until any child exits.

○ Returns PID of child, stores exit status at specified 

address.

■ waitpid
○ pid = -1 – wait for any child

○ pid > 0 – wait for specific child

○ Can use options argument to configure behavior, e.g. to 

return immediately if there are no children to reap.

Textbook: p743



Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit Values Convey Information

■ What does this program print?

○ “0x7b54 exited with 0x13”

○ WEXITSTATUS() returns only 1 byte

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(0x213); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid, WEXITSTATUS(status));

}

exit(0);
}



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs
■ Process Graphs allow us to 

reason about the ordering of 

events across different 

processes.

■ Vertices: execution of an 

event

■ Directed Edge (a -> b): a 

occurs before b

■ fork() creates a branch

■ wait() creates a join

exitprintf

main fork printf exit

exit

printf

fork printf wait printf



Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs: Example

int main() {
pid_t pid;
int child_status;

pid = Fork();
if (pid == 0) {

    printf("1\n");
    printf("3\n");
    return 0;

}

printf("2\n");
wait(&child_status);

printf("Bye\n");
}

■ What does the process graph for 

this program look like?

“3”“1”

main fork “2” wait

“Bye”

■ Now we want to use the graph to 

answer questions:

○ e.g. “Can this program output 

213?”



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs: Reasoning about Orderings
Q: “Is this ordering feasible?” 

A: Use the graph!

“3”“1”

main fork “2” wait

“Bye”

1. Relabel graph
gf

a b c d

e

2. Write out the ordering you want to try:

A  B  C  F  G  D  E

3. Add edges from graph, then check for backward arrows

A B C F G D E



Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs: Reasoning about Orderings

Feasible: no backward arrows

gf

a b c d

e

A B C F G D E

“3”“1”

main fork “2” wait

“Bye”

2
1
3
Bye

2
Bye
1
3

What about:

A B C F GD E



Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs: Harder Example

■ What does the process graph look like for this example?

■ How many unique combinations can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution…

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}



Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork

“Child”

Process Graphs: Harder Example

“Child”

wait

fork

exit

wait “Parent”

exit

“Parent” exit

“Child” (Grandchild)

“Child”

“Parent” (Child)

“Parent”

or

“Child”

“Child” (Grandchild)

“Parent” (Child)

“Parent”



Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error Handling



Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error Handling

int main() {
int fd = open("213Grades.txt", O_RDWR);
// Change grades to As or Fs

}

■ Can syscalls fail?

■ How can we tell when they fail?



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error Handling

int main() {
int fd = open("213Grades.txt", O_RDWR);

if (fd < 0) {
    fprintf(stderr, "Failed to open\n”);
    exit(-1);

}
// Change grades to As or Fs

}

■ Syscalls return -1 on failure, and set errno.

■ How can we tell what specifically went wrong?



Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error Handling

■ strerror – turns errno codes into printable messages

■ perror (print error) is a handy shorthand

int main(void) {
int fd = open("213Grades.txt", O_RDWR);
if (fd < 0) {

    fprintf(
stderr,

      "Failed to open %s: %s\n",
      "213Grades.txt",
      strerror(errno)

);
    exit(1);

}
// Change grades to As or Fs

}



Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ malloc Final:

○  Due November 5th 

(Tuesday)

■ Getting started on Shell Lab:

○ Textbook, write-up, man 

pages!

■ Watch your inbox for code 

review sign ups.

■ Good luck on malloc Final :-)

https://www.instagram.com/213srequin/


Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End


