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Reminders
■ malloc deadlines:

○ Checkpoint: October 29th

○ Final: November 5th (Tuesday)

■ tshlab will be released on November 5th

■ Code Reviews:

○ Checkpoint: Heap Checker Quality

○ Final: All of mm.c
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Agenda
■ Shell Lab Preview

○ Shell Demo

■ Processes

○ Process Lifecycle

○ Process Graphs

■ Error-handling
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Shell Lab
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Shell Lab
■ tshlab will be released on November 5th

■ You’ll write a simple shell, complete with:

○ Foreground and background jobs

○ I/O redirection

■ Getting Started:

○ CS:APP Chapter 8
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Shell Demo
If you want to follow along…
■ Log into a Shark machine, then type:

$ wget http://www.cs.cmu.edu/~213/activities/rec10.tar
$ tar -xvf rec10.tar
$ cd rec10
$ make
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Shell Demo: Recap

Process Lifecycle

■ ./demo – created a new process, and reaped it on exit.
■ ctrl + z – pauses foreground process
■ ./demo … & – “&” runs process in background

What did we see?

I/O Redirection

■ ./demo < in.txt – take input from a file
■ ./demo > out.txt – created a new file, and wrote 

output to it!

You’ll be implementing all of these features in Shell Lab!

Today

Next time
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Processes
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Life Cycle of a Process
■ fork()

○ Creates a new child process

■ execve()

○ Load and run a new program, replacing the current one

■ [... Do some work]

■ exit()

○ End the running program

■ waitpid()

○ Parent reaps terminated children
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fork(): Creating a New Process

Memory Memory
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■ Child gets duplicate but separate copy of address space.

■ File descriptors are still shared!
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fork() Example

int main(int argc, char ** argv) {
pid_t pid;
int *x = malloc(sizeof(int));
*x = 1;

pid = Fork();
if (pid == 0) {

    *x += 1;
    printf("[%d] child: x = %p, *x = %d\n", getpid(), x, *x);
    return 0;

}

*x -= 1;
printf("[%d] parent: x = %p, *x = %d\n", getpid(), x, *x);
return 0;

}

■ Suppose x is stored at address A. What are the different 
possible outputs?
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fork() Example: Solution

■ In this example, calls to printf can happen in any order.

■ Child and parent have different PIDs

■ Same virtual address, different values.

[<child pid>] child: x = A, *x = 2
[<parent pid>] parent: x = A, *x = 0

or

[<parent pid>] parent: x = A, *x = 0
[<child pid>] child: x = A, *x = 2



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve(): Loading and Running a Program
int execve(char *pathname, char *argv[], char *envp[]);

■ Loads and runs program specified by pathname:

○ With arguments argv, environment envp

■ If successful:

○ Overwrite code, data, stack, and start executing!

○ Calls once, never returns!

■ On failure, return -1, and set errno.
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execve(): Example

■ What does this program print? Assume /bin/echo exists.

○ “Hi 18213!”

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};

execve(args[0], args, environ);
printf("Hi 15213!\n");
exit(0);

}



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve(): Example

■ What does this program print? Assume /bin/blahblah 

does not exist.

○ “Hi 14513!”

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};

execve(args[0], args, environ);
printf("Hi 14513!\n");
exit(0);

}
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Recall: Terminating and Reaping
■ void exit(int 

status)
○ Terminates the current 

program

○ Called once, never 

returns

■ Terminated processes still 

consume system resources!

■ Parent process is responsible 

for reaping them:

○ wait
○ waitpid

$ ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

$ ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks  
<defunct>
6641 ttyp9 00:00:00 ps
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wait() vs. waitpid()
pid_t wait(int *status)

pid_t waitpid(pid_t pid, int *status, int options)

■ wait
○ Blocks until any child exits.

○ Returns PID of child, stores exit status at specified 

address.

■ waitpid
○ pid = -1 – wait for any child

○ pid > 0 – wait for specific child

○ Can use options argument to configure behavior, e.g. to 

return immediately if there are no children to reap.

Textbook: p743
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Exit Values Convey Information

■ What does this program print?

○ “0x7b54 exited with 0x13”

○ WEXITSTATUS() returns only 1 byte

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(0x213); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid, WEXITSTATUS(status));

}

exit(0);
}
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Process Graphs
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Process Graphs
■ Process Graphs allow us to 

reason about the ordering of 

events across different 

processes.

■ Vertices: execution of an 

event

■ Directed Edge (a -> b): a 

occurs before b

■ fork() creates a branch

■ wait() creates a join

exitprintf

main fork printf exit

exit

printf

fork printf wait printf
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Process Graphs: Example

int main() {
pid_t pid;
int child_status;

pid = Fork();
if (pid == 0) {

    printf("1\n");
    printf("3\n");
    return 0;

}

printf("2\n");
wait(&child_status);

printf("Bye\n");
}

■ What does the process graph for 

this program look like?

“3”“1”

main fork “2” wait

“Bye”

■ Now we want to use the graph to 

answer questions:

○ e.g. “Can this program output 

213?”
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Process Graphs: Reasoning about Orderings
Q: “Is this ordering feasible?” 

A: Use the graph!

“3”“1”

main fork “2” wait

“Bye”

1. Relabel graph
gf

a b c d

e

2. Write out the ordering you want to try:

A  B  C  F  G  D  E

3. Add edges from graph, then check for backward arrows

A B C F G D E
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Process Graphs: Reasoning about Orderings

Feasible: no backward arrows

gf

a b c d

e

A B C F G D E

“3”“1”

main fork “2” wait

“Bye”

2
1
3
Bye

2
Bye
1
3

What about:

A B C F GD E
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Process Graphs: Harder Example

■ What does the process graph look like for this example?

■ How many unique combinations can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution…

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}
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fork

“Child”

Process Graphs: Harder Example

“Child”

wait

fork

exit

wait “Parent”

exit

“Parent” exit

“Child” (Grandchild)

“Child”

“Parent” (Child)

“Parent”

or

“Child”

“Child” (Grandchild)

“Parent” (Child)

“Parent”
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Error Handling
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Error Handling

int main() {
int fd = open("213Grades.txt", O_RDWR);
// Change grades to As or Fs

}

■ Can syscalls fail?

■ How can we tell when they fail?
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Error Handling

int main() {
int fd = open("213Grades.txt", O_RDWR);

if (fd < 0) {
    fprintf(stderr, "Failed to open\n”);
    exit(-1);

}
// Change grades to As or Fs

}

■ Syscalls return -1 on failure, and set errno.

■ How can we tell what specifically went wrong?
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Error Handling

■ strerror – turns errno codes into printable messages

■ perror (print error) is a handy shorthand

int main(void) {
int fd = open("213Grades.txt", O_RDWR);
if (fd < 0) {

    fprintf(
stderr,

      "Failed to open %s: %s\n",
      "213Grades.txt",
      strerror(errno)

);
    exit(1);

}
// Change grades to As or Fs

}
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Wrapping Up
■ malloc Final:

○  Due November 5th 

(Tuesday)

■ Getting started on Shell Lab:

○ Textbook, write-up, man 

pages!

■ Watch your inbox for code 

review sign ups.

■ Good luck on malloc Final :-)

https://www.instagram.com/213srequin/
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The End


