
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Synchronization

Your TAs

Friday, November 22th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ proxylab is due Tuesday (November 26th)

○ 2 grace days and 1 late day (runs into break)

■ sfslab will be released before Thanksgiving

○ Due December 5th

○ Last Day to Handin: December 6th

■ Code Reviews for tshlab

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Apply to be a TA!
■ TA Applications are open!

See Piazza @1104 :-)
○ First round of interviews

happening in 1-2 weeks!
■ What qualifications are we

looking for?
○ Decent class

performance
○ Strong communication

skills
○ Reasonable ability to

gauge schedule and
responsibilities

https://piazza.com/class/m0bs774647q5s2/post/1104
https://piazza.com/class/m0bs774647q5s2/post/1104

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Review:

○ Threading

○ Synchronization Errors

○ Locking

■ Activity: Making Trees Thread-Safe

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies and Threads
■ Network connections can be handled concurrently

○ Three approaches were discussed in lecture for doing so

■ Process-based, Event-based, Thread-based

○ Your proxy should (eventually) use threads

○ Threaded echo server is a good example of how to do this

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Threads
■ Each thread has its own logical control flow

■ Each thread shares same code, data, and kernel context

■ Each thread also has its own stack for local variables

○ NOT protected from other threads - all memory is shared

■ POSIX Threads

○ pthread_create: starts a new thread

○ pthread_join: waits for specified thread to terminate

○ pthread_detach: marks specified thread as detached,

where detached threads are cleaned-up without needing

to be joined by a peer thread.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {...};

int main() {
pthread_t threads[NUM_THREADS];
char message[BUFFER_SIZE];
for (int i = 0; i < NUM_THREADS; i++) {

pthread_create(&threads[i], NULL, print_message, (void*)message);
}
for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);
}
return 0;

}

We launch 2 threads that
each call

print_message,
passing in a shared

constant length array

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Stores string with thread id into
local_message buffer

Now let’s see how our threads interact with
print_message,assuming thread 1 runs first

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 finishes snprintf

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 Paused

Thread 2 Starts

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 PausedThread 2 Overwrites

Note: each local message
points to the same buffer!

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Thread 1 prints… Thread 2 Paused

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Unsafe threading
#define NUM_THREADS 2; #define BUFFER_SIZE 50

void* print_message(void* arg) {
char* local_message = (char*)arg;
snprintf(local_message, BUFFER_SIZE, "Hello from thread %d",

pthread_self());
printf("%s\n", message);
return NULL;

}

int main() {
// ... launch threads that call print_message()

}

Unexpected Behavior!

Various other unsafe scenarios can
occur! This is only one example.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical Problems in Concurrency
■ Deadlock

○ Two or more threads are unable to proceed because each

is waiting for a resource that the other holds.

■ Livelock

○ Two or more threads continuously change their state in

response to each other - but with no further progress.

■ Starvation

○ One of more threads continuously denied access to

resources because other threads holds them.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 1: Identify problem type
■ You are at a small table in a restaurant waiting to be served

dinner. But, tables of 213 TAs with large group orders keep

showing up, so the waiters continuously tend to these large

tables and you are never served.

■ Solution: Starvation, the TAs continually get served but you

don’t!

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 2: Identify problem type
■ You and your friend are at a famous restaurant but due to

how busy it is, the waiter only gives the table one knife and

fork. For someone to eat, they need both the knife and fork.

You grab the fork and your friend grabs the knife, both of you

refusing to give the other the needed utensil.

■ Solution: Deadlock, bad resource management leads to a

state of no forward progress

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 3: Identify problem type
■ When it is time to pay for the meal, both you and your friend

want the check. You grab the check to pay for it, but your

friend grabs the check back to place his card. The process

repeats.

■ Solution: Livelock, both you and your friend are trying to pay

for the check but neither can since once you grab the check,

your friend steals it, you steal it back, …

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locking
■ We saw that all memory is shared across threads - how can

we prevent unsafe behavior?

■ There are various locks, including mutexes, semaphores, atomic

operations, etc… (more to come in Tuesday’s lecture!)

■ Today, we’ll focus on using mutexes.

○ Use Locks! (But correctly…)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Mutexes
■ Opaque object which is either locked or unlocked.

■ unlock(m)
○ Should only be called when m is locked, by the locker

○ Changes m’s state to unlocked

■ lock(m)
○ If m is not locked, lock it and return

○ If locked, wait until m is unlocked, then retry

■ Now we’re prepared for our activity!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Thread-Safe BSTs

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Problem
■ We want to create an implementation of BSTs that supports

concurrent execution across multiple threads.

■ We provide code that works correctly for sequential accesses!

■ Assume no lookups/inserts to the same value happen in parallel

■ Note that this BST does not support removal

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Starter Code: Thread Safe BSTs
■ Standard tree node struct that stores the value as well as it’s left

and right children.

■ Standard recursive lookup function. Note that a thread-safe

implementation should result in consistent lookup results.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code: Thread Safe BSTs

■ Our main focus will be on

the insert function!

■ What could go wrong here?

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Suppose we want to do insert(8) and insert(7) on

the tree below, where each call is launched in separate

threads

○ Say thread 1 runs insert(8)and thread 2 runs

insert(7)

10

Original Tree

10

8

7

One Possible (correct) Tree

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Thread 1 sees that t->left == NULL and prepares to

create the node (eg. call calloc)

10 Thread 1 prepares to
create node

Relevant Case:

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ We then jump to thread 2, which also sees that

t->left == NULL and prepares to create the node

10

Thread 1 prepares to
create node

Thread 2 prepares to
create node

Relevant Case:

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Now thread 1 continues to run, creating the left node with

val = 8

10

Thread 1 creates
node

Thread 2 prepares to
create node

8

■ However from thread 2’s perspective, t->left is NULL!

○ The check has already occurred.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifying Race Condition
■ Now thread 2 also attempts to create a left node, overwriting

the node written by thread 1

10

Thread 2 overwrites 7

■ Unsafe behavior!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 1: Coarse Grain Locking
■ It is unsafe to have multiple threads accessing the tree at once

○ Let’s lock away the entire tree!

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Coarse Grain Locking
■ Currently, we lock the entire tree. How does this affect

performance?

Node 1 Node 2 Node 3Thread 1 Idle Idle Idle

Idle Idle IdleThread 2 Node 1 Node 2 Node 3

■ Assuming each thread’s call takes 3 iterations through the tree,

we can see the following behavior!

■ Wrapping each function call in locks makes all execution

sequential. Can we make this better?

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 2: Partial Step towards fine grain
■ We still want to lock away the tree for correctness, but can we

add more granularity while still using a global lock?

■ We lock when entering and unlock before returning

○ Is this still thread-safe?

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 2: Partial Step towards fine grain
■ Yes the function is thread-safe (under our assumptions)

○ BUT …
■ Would this implementation be thread-safe if we supported

removal from the tree?

■ No! - What if we are traversing through the list and we unlock

to make the recursive call, but we delete in between?

■ NOTE: this solution only serves as an intermediary towards

our final goal and is NOT a good general technique.

○ It will generally be incorrect (and also non-optimal)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 2
■ Does this supposed increase in granularity actually improve

performance?

■ No! - This method only allows for the interleaving of execution,

but is still inherently sequential.

○ (below is one possible example)

Node 1 Node 2 Node 3Thread 1 Idle Idle Idle

Idle IdleIdleThread 2 Node 1 Node 2 Node 3

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 2
■ Another point of analysis is lock overhead, or the overhead

from the frequency of threads attempting to acquire the lock.

■ Increase - previously we attempt to acquire at every call to

lookup or insert, but now we make an attempt at every

iteration.

■ Compared to solution 1, do we see an increase or decrease in

lock overhead on our global lock?

■ We see no improvement in performance - it actually got worse

due to this overhead! Can we make this better?

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Group Activity: Fine Grain Locking
■ As groups, find an implementation that is thread-safe, but also

doesn’t always lock the entire tree.

○ Stay within mutexes [you may modify the struct :)]

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution 3: Fine Grain locking
■ Instead of locking the entire tree, we can implement per-node

locking. This ensures no two threads will try to simultaneously

update the same node.

■ We can adjust the node struct to include a lock (shown below)

■ Similar to our second solution, we lock and unlock at each

iteration, aka at each access to a node.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 3
■ How does fine-grain locking help? Let’s return to the figure

from before!

○ Again, we assume each thread makes 3 iterations

Node 1 Node 2 Node 3Thread 1 Idle

Idle Node1 Node2Thread 2 Node 3

■ Nice! We managed to expose the potential concurrency in these

iterations (note: this requires a multiprocessor system)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analysis: Solution 3
■ In our first coarse-grain solution, we saw a large critical section

per lock (the entire function call). What about this solution?

■ Drastic Reduction!

○ We now only block off one iteration at a time (as pointed to

by the previous diagram)

■ However, there is still high overhead…

○ (we try to acquire locks many times)

■ Tradeoff analysis of parallelism and overhead is beyond the

scope of 15-213 - look into 15-346 or 15-418!

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ proxylab is due Tuesday (November 26th)

○ 2 grace days and 1 late day (runs into break)

■ sfslab will be released before Thanksgiving

○ Due December 5th

○ Last Day to Handin: December 6th

■ Code Reviews for tshlab

■ Apply to be a TA!

■ Good luck on proxylab :-)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

