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Our main contributions

• Starting point: Global sensitivity framework [DMNS06]

(Cynthia’s talk)

• Two new frameworks for private data analysis

• Greatly expand the types of information that can be

released
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Road map

I. Introduction

• Review of global sensitivity framework [DMNS06]

• Motivation

II. Smooth sensitivity framework

III. Sample-and-aggregate framework
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Model
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A(x) =
f(x) + noise

Users

Each row is arbitrarily complex data supplied by 1 person.

For which functions f can we have:

• utility: little noise

• privacy: indistinguishability definition of [DMNS06]
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Privacy as indistinguishability [DMNS06]

Two databases are neighbors if they differ in one row.

x = ...

x1

x2

xn

x′ = ...

x1

x′
2

xn

Privacy definition

Algorithm A is ε-indistinguishable if

• for all neighbor databases x, x′

• for all sets of answers S

Pr[A(x) ∈ S] ≤ (1 + ε) · Pr[A(x′) ∈ S]
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Privacy definition: composition

If A is ε-indistinguishable on each query,
it is εq-indistinguishable on q queries.

...

x1

x2

xn

�
�
�
� ε-indisting.

agency

A
�

�Compute f(x)
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Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when

it is insensitive to individual entries x1, . . . , xn.

Global sensitivity GSf = max
neighbors x,x′

‖f(x) − f(x′)‖.

Example: GSaverage = 1
n

if x ∈ [0, 1]n.

Theorem

If A(x) = f(x) + Lap
(

GSf

ε

)
then A is ε-indistinguishable.
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Instance-Based Noise

Big picture for global sensitivity framework:

• add enough noise to cover the worst case for f

• noise distribution depends only on f , not database x

Problem: for some functions that’s too much noise
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Instance-Based Noise

Big picture for global sensitivity framework:

• add enough noise to cover the worst case for f

• noise distribution depends only on f , not database x

Problem: for some functions that’s too much noise

Example: median of x1, . . . , xn ∈ [0, 1]

x = 0 · · · 0︸ ︷︷ ︸
n−1

2

0 1 · · · 1︸ ︷︷ ︸
n−1

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−1

2

1 1 · · · 1︸ ︷︷ ︸
n−1

2

median(x) = 0 median(x′) = 1

GSmedian = 1

• Noise magnitude: 1
ε
.
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Big picture for global sensitivity framework:

• add enough noise to cover the worst case for f

• noise distribution depends only on f , not database x

Problem: for some functions that’s too much noise

Example: median of x1, . . . , xn ∈ [0, 1]

x = 0 · · · 0︸ ︷︷ ︸
n−1

2

0 1 · · · 1︸ ︷︷ ︸
n−1

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−1

2

1 1 · · · 1︸ ︷︷ ︸
n−1

2

median(x) = 0 median(x′) = 1

GSmedian = 1

• Noise magnitude: 1
ε
.

Our goal: noise tuned to database x
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Road map

I. Introduction

• Review of global sensitivity framework [DMNS06]

• Motivation

II. Smooth sensitivity framework

III. Sample-and-aggregate framework
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Local sensitivity

Local sensitivity LSf (x) = max
x′: neighbor of x

‖f(x) − f(x′)‖
Reminder: GSf = max

x
LSf (x)

Example: median for 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, odd n

�0 1� �� ��x1 xnxm−1 xm+1xm. . . . . .

�
median

LSmedian(x) = max(xm − xm−1, xm+1 − xm)

Goal: Release f(x) with less noise when LSf (x) is lower.
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Instance-based noise: first attempt

Noise magnitude proportional to LSf (x) instead of GSf?

No! Noise magnitude reveals information.

Lesson: Noise magnitude must be an insensitive function.
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Smooth bounds on local sensitivity

Design sensitivity function S(x)

• S(x) is an ε-smooth upper bound on LSf (x) if:

– for all x: S(x) ≥ LSf (x)

– for all neighbors x, x′ : S(x) ≤ eεS(x′)

�

�

x

LSf (x)

Theorem

If A(x) = f(x) + noise

(
S(x)

ε

)
then A is ε′-indistinguishable.

Example: GSf is always a smooth bound on LSf (x)
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Smooth Sensitivity

Smooth sensitivity S∗
f (x)= max

y

(
LSf (y)e−ε·dist(x,y)

)

Lemma
For every ε-smooth bound S: S∗

f (x) ≤ S(x) for all x.

Intuition: little noise when far from sensitive instances

database space

high local

sensitivity

low local

sensitivity
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Smooth Sensitivity

Smooth sensitivity S∗
f (x)= max

y

(
LSf (y)e−ε·dist(x,y)

)

Lemma
For every ε-smooth bound S: S∗

f (x) ≤ S(x) for all x.

Intuition: little noise when far from sensitive instances

database space

high local

sensitivity

low local

sensitivity

low smooth sensitivity
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Computing smooth sensitivity

Example functions with computable smooth sensitivity

• Median & minimum of numbers in a bounded interval

• MST cost when weights are bounded

• Number of triangles in a graph

Approximating smooth sensitivity

• only smooth upper bounds on LS are meaningful

• simple generic methods for smooth approximations

– work for median and 1-median in Ld
1
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Road map

I. Introduction

• Review of global sensitivity framework [DMNS06]

• Motivation

II. Smooth sensitivity framework

III. Sample-and-aggregate framework
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New goal

• Smooth sensitivity framework requires

understanding combinatorial structure of f

– hard in general

• Goal: an automatable transformation from

an arbitrary f into an ε-indistinguishable A

– A(x) ≈ f(x) for ”good” instances x
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Example: cluster centers

Database entries: points in a metric space.
x
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• Comparing sets of centers: Earthmover-like metric

• Global sensitivity of cluster centers is roughly the

diameter of the space. But intuitively, if clustering is

”good”, cluster centers should be insensitive.

• No efficient approximation for smooth sensitivity
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))
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gaggregation function
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))
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noise calibrated
to sensitivity of f̃

output
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Good aggregation functions

• average

– works for L1 and L2

• center of attention

– the center of a smallest ball containing a strict

majority of input points

– works for arbitrary metrics

(in particular, for Earthmover)

– gives lower noise for L1 and L2
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Sample-and-aggregate results

Theorem
If f can be approximated on x

from small samples

then f can be released with little noise
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Sample-and-aggregate results

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε

+ negl(n)
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Sample-and-aggregate results

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε

+ negl(n)

• Works in all ”interesting” metric spaces

• Example applications

– k-means cluster centers (if data is separated a.k.a.
[Ostrovsky Rabani Schulman Swamy 06])

– fitting mixtures of Gaussians (if data is i.i.d., using
[Vempala Wang 04, Achlioptas McSherry 05])

– PAC concepts (Adam Smith’s talk)
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Road map

I. Introduction

• Review of global sensitivity framework [DMNS06]

• Motivation

II. Smooth sensitivity framework

III. Sample-and-aggregate framework
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Conclusion: fundamental question

Which computations are not too

sensitive to individual inputs?

Which functions f admit

ε-indistinguishable approximation A?
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