Smooth Sensitivity and
Sampling

Sofya Raskhodnikova
Penn State University

Joint work with Kobbi Nissim (Ben Gurion University)
and Adam Smith (Penn State University)



Our main contributions

e Starting point: Global sensitivity framework [DMNSO06]
(Cynthia’s talk)

e Two new frameworks for private data analysis

e Greatly expand the types of information that can be
released



Road map

I. Introduction
e Review of global sensitivity framework [DMNS06]

e Motivation
II. Smooth sensitivity framework

IT1I. Sample-and-aggregate framework
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X2 s: Trusted Compute f(x)

: — agency Ale) Users
; z) =

Xn / A f(z) + noise

Each row is arbitrarily complex data supplied by 1 person.

For which functions f can we have:
e utility: little noise

e privacy: indistinguishability definition of [DMNS06]



Privacy as indistinguishability [DMINS06]

Two databases are neighbors if they differ in one row.

X1 X1

Xo s
X = x' = .

Xy Xy

Privacy definition
Algorithm A 1is e-indistinguishable if
o for all neighbor databases x, x’

o for all sets of answers S

Pr[A(z) € S] < (1 +¢) - Pr[A(z)) € 9]




Privacy definition: composition

If A is e-indistinguishable on each query,
it 1s €g-indistinguishable on ¢ queries.

X1

X2 s: e-indisting. Compute f(z)

: — agency Alz) Users
r) —

Xn / A F(z) + noise




Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when

1t 1s insensitive to individual entries xq,...,z,.

Global sensitivity GS; = max  ||f(z) — f(2)|.

neighbors x,x’

Ezample: GS,yerage = % if z € 1]0,1]™.

Theorem

If A(x) = f(x) + Lap(%) then A 1is e-indistinguishable.




Instance-Based Noise

Big picture for global sensitivity framework:
e add enough noise to cover the worst case for f

e noise distribution depends only on f, not database x

Problem: for some functions that’s too much noise
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Big picture for global sensitivity framework:
e add enough noise to cover the worst case for f

e noise distribution depends only on f, not database x

Problem: for some functions that’s too much noise

Ezample: median of x1,...,x, € [0,1]
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e Noise magnitude: <.

Our goal: noise tuned to database x
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Local sensitivity

Local sensitivity LS;(x) = max  |[f(x) — f(a)]]

x’: neighbor of x

Reminder: GS; = maxLS;(z)

Example: median for 0 < x; <--- <z, <1, oddn

0 . Tom—1 Tm Tm+1 . Ty 1
—o o) o o) o : P>
median

I—Smedian(x) — max(wm — Im—1,Tm+1 — va)

Goal: Release f(z) with less noise when LS(x) is lower.
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Local sensitivity

Local sensitivity LS;(x) = max  |[f(x) — f(a)]]
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Goal: Release f(z) with less noise when LS(x) is lower.
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Instance-based noise: first attempt

Noise magnitude proportional to LS¢(z) instead of GS;?
No! Noise magnitude reveals information.

Lesson: Noise magnitude must be an insensitive function.
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Smooth bounds on local sensitivity

Design sensitivity function S(x)

e S(x) is an e-smooth upper bound on LS¢(x) if:

— for all x: S(x) > LSy(x)
— for all neighbors x,z' :  S(z) < efS(2')
A
LSy ()
>
Theorem

S(x)

E

If A(z) = f(x) + noise ( ) then A is &’'-indistinguishable.

Ezample: GSy is always a smooth bound on LS;(z)
12
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Smooth Sensitivity

Smooth sensitivity S}’?(z): max (LSf(y)e—e'dist(w,y))
Y

Lemma

For every e-smooth bound S:  Si(z) < S(x) for all x.

Intuition: little noise when far from sensitive instances

low local

sensitivity

high local
sensitivity

/

database space

13



Smooth Sensitivity

Smooth sensitivity S;‘c(x): max (LSf(y)e—e'dist(fc,y))
Y

Lemma

For every e-smooth bound S:  Si(z) < S(x) for all x.

Intuition: little noise when far from sensitive instances

low local
sensitivity
low smooth sensitivity Ihz’ h local
| R e
sensitivity
database space
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Computing smooth sensitivity

Example functions with computable smooth sensitivity
o Median & minimum of numbers in a bounded interval
e MST cost when weights are bounded

e Number of triangles in a graph

Approximating smooth sensitivity
e only smooth upper bounds on LS are meaningful

e simple generic methods for smooth approximations

— work for median and 1-median in L
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Road map

I. Introduction
e Review of global sensitivity framework [DMNS06]

e Motivation
II. Smooth sensitivity framework

II1I. Sample-and-aggregate framework
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New goal

e Smooth sensitivity framework requires

understanding combinatorial structure of f

— hard in general

e Goal: an automatable transformation from

an arbitrary f into an e-indistinguishable A

— A(z) = f(x) for "good” instances x
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Example: cluster centers

Database entries: points in a metric space. /
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e Comparing sets of centers: Earthmover-like metric

e Global sensitivity of cluster centers is roughly the
diameter of the space. But intuitively, if clustering is
"good”, cluster centers should be insensitive.

e No efficient approximation for smooth sensitivity
17
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f.

f(a;) = g(f(sampley), f(samples), ..., f(sample))

aggregation function g
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f.

f(a;) = g(f(sampley), f(samples), ..., f(sample))

aggregation function

noise calibrated
> = output

to sensitivity of f

/
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Good aggregation functions

® average

— works for L, and Lo

e center of attention

— the center of a smallest ball containing a strict

majority of input points

— works for arbitrary metrics

(in particular, for Earthmover)

— gives lower noise for Ly and Lo
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Sample-and-aggregate results

Theorem

If f can be approrimated on x
from small samples

then f can be released with little noise
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Sample-and-aggregate results

Theorem

from small samples of size n

If f can be approximated on x within distance r

1—¢

then f can be released with little noise ~ = + negl(n)
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Sample-and-aggregate results

Theorem

If f can be approximated on x within distance r

from small samples of size n'=°

then f can be released with little noise ~ = + negl(n)

e Works in all "interesting” metric spaces

e Example applications

— k-means cluster centers (if data is separated a.k.a.
[Ostrovsky Rabani Schulman Swamy 06])

— fitting mixtures of Gaussians (if data is i.i.d., using
[Vempala Wang 04, Achlioptas McSherry 05])

— PAC concepts (Adam Smith’s talk)
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Road map

I. Introduction
e Review of global sensitivity framework [DMNS06]

e Motivation
II. Smooth sensitivity framework

IT1I. Sample-and-aggregate framework
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Conclusion: fundamental question

Which computations are not too
sensitive to individual inputs?

Which functions f admit

e-indistinguishable approximation A7
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