Smooth Sensitivity and Sampling

Sofya Raskhodnikova Penn State University

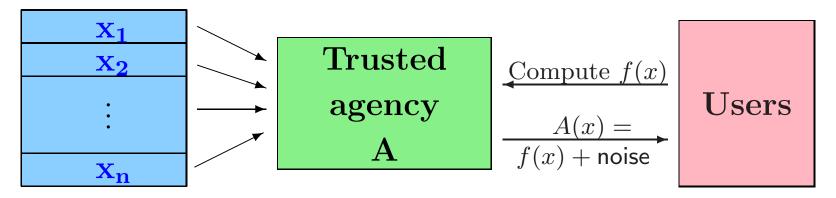
Joint work with Kobbi Nissim (Ben Gurion University) and Adam Smith (Penn State University)

- *Starting point:* Global sensitivity framework [DMNS06] (Cynthia's talk)
- Two new frameworks for private data analysis
- Greatly expand the types of information that can be released

I. Introduction

- Review of global sensitivity framework [DMNS06]
- Motivation
- II. Smooth sensitivity framework
- III. Sample-and-aggregate framework

Model



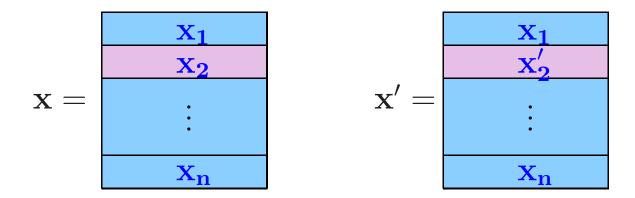
Each row is arbitrarily complex data supplied by 1 person.

For which functions f can we have:

- utility: little noise
- privacy: indistinguishability definition of [DMNS06]

Privacy as indistinguishability [DMNS06]

Two databases are *neighbors* if they differ in one row.



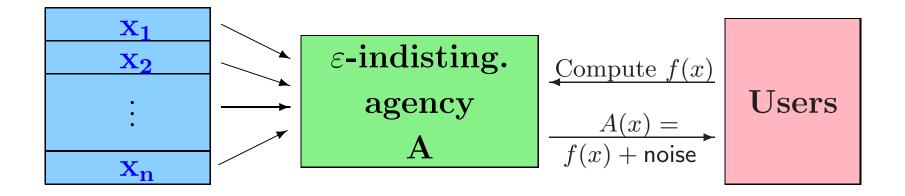
Privacy definition

Algorithm A is ε -indistinguishable if

- for all neighbor databases x, x'
- for all sets of answers S

 $\Pr[A(x) \in S] \le (1 + \varepsilon) \cdot \Pr[A(x') \in S]$

If A is ε -indistinguishable on each query, it is εq -indistinguishable on q queries.



Intuition: f can be released accurately when it is insensitive to individual entries x_1, \ldots, x_n . Global sensitivity $\mathsf{GS}_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|.$

Example: $GS_{average} = \frac{1}{n}$ if $x \in [0, 1]^n$.

Theorem	
$If A(x) = f(x) + Lap\left(\frac{GS_f}{\varepsilon}\right) th$	en A is ε -indistinguishable.

Instance-Based Noise

Big picture for global sensitivity framework:

- \bullet add enough noise to cover the worst case for f
- noise distribution depends only on f, not database x

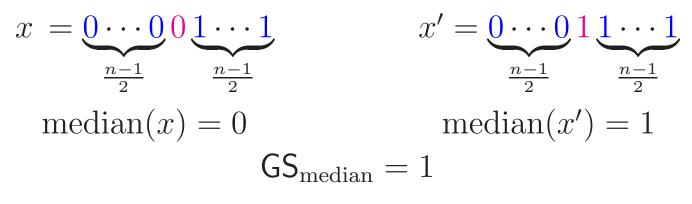
Problem: for some functions that's too much noise

Instance-Based Noise

Big picture for global sensitivity framework:

- \bullet add enough noise to cover the worst case for f
- noise distribution depends only on f, not database x

Problem: for some functions that's too much noise Example: median of $x_1, \ldots, x_n \in [0, 1]$



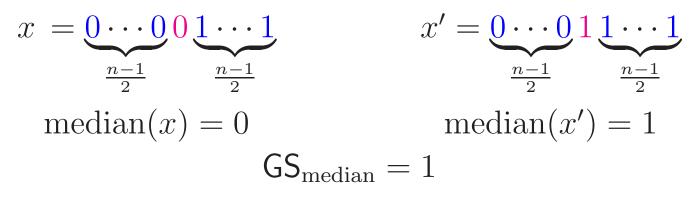
• Noise magnitude: $\frac{1}{\varepsilon}$.

Instance-Based Noise

Big picture for global sensitivity framework:

- \bullet add enough noise to cover the worst case for f
- noise distribution depends only on f, not database x

Problem: for some functions that's too much noise Example: median of $x_1, \ldots, x_n \in [0, 1]$



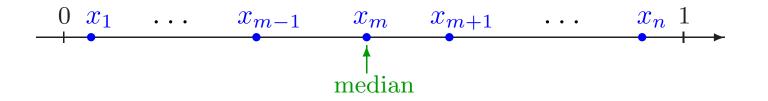
• Noise magnitude: $\frac{1}{\varepsilon}$.

Our goal: noise tuned to database x

I. Introduction

- Review of global sensitivity framework [DMNS06]
- Motivation
- II. Smooth sensitivity framework
- III. Sample-and-aggregate framework

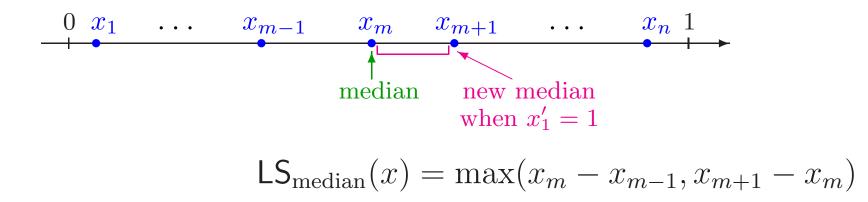
Local sensitivity $\mathsf{LS}_f(x) = \max_{\substack{x': \text{ neighbor of } x}} \|f(x) - f(x')\|$ *Reminder:* $\mathsf{GS}_f = \max_x \mathsf{LS}_f(x)$ *Example: median* for $0 \le x_1 \le \cdots \le x_n \le 1$, odd n



 $\mathsf{LS}_{\mathrm{median}}(x) = \max(x_m - x_{m-1}, x_{m+1} - x_m)$

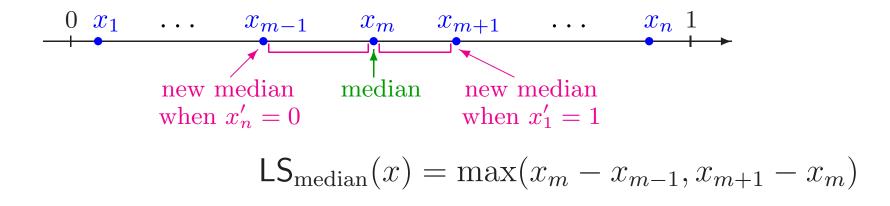
Goal: Release f(x) with less noise when $\mathsf{LS}_f(x)$ is lower.

Local sensitivity $\mathsf{LS}_f(x) = \max_{\substack{x': \text{ neighbor of } x}} \|f(x) - f(x')\|$ *Reminder:* $\mathsf{GS}_f = \max_x \mathsf{LS}_f(x)$ *Example: median* for $0 \le x_1 \le \cdots \le x_n \le 1$, odd n



Goal: Release f(x) with less noise when $\mathsf{LS}_f(x)$ is lower.

Local sensitivity $\mathsf{LS}_f(x) = \max_{\substack{x': \text{ neighbor of } x}} \|f(x) - f(x')\|$ *Reminder:* $\mathsf{GS}_f = \max_x \mathsf{LS}_f(x)$ *Example: median* for $0 \le x_1 \le \cdots \le x_n \le 1$, odd n



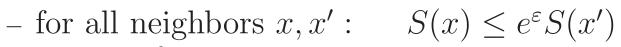
Goal: Release f(x) with less noise when $\mathsf{LS}_f(x)$ is lower.

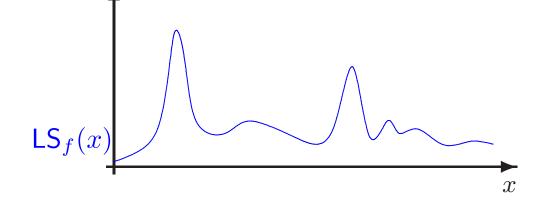
- Noise magnitude proportional to $\mathsf{LS}_f(x)$ instead of GS_f ?
- *No!* Noise magnitude reveals information.
- *Lesson:* Noise magnitude must be an insensitive function.

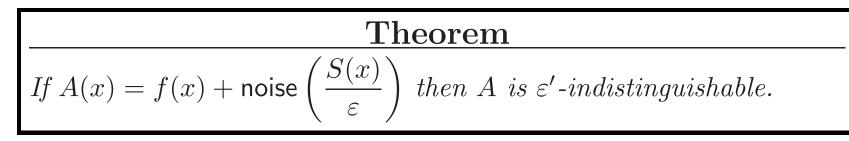
Smooth bounds on local sensitivity

Design sensitivity function S(x)

- S(x) is an ε -smooth upper bound on $\mathsf{LS}_f(x)$ if:
 - for all x: $S(x) \ge \mathsf{LS}_f(x)$





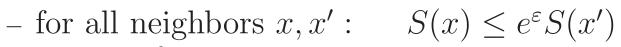


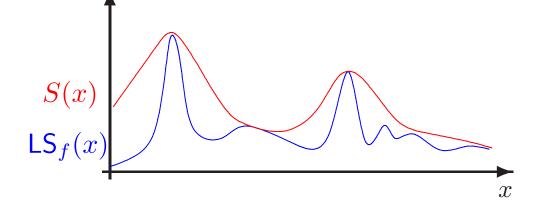
Example: GS_f is always a smooth bound on $\mathsf{LS}_f(x)$

Smooth bounds on local sensitivity

Design sensitivity function S(x)

- S(x) is an ε -smooth upper bound on $\mathsf{LS}_f(x)$ if:
 - for all x: $S(x) \ge \mathsf{LS}_f(x)$



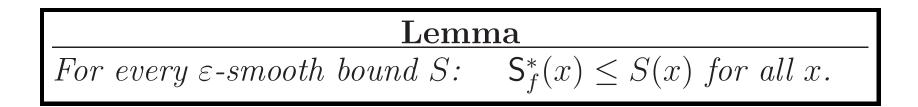


 $\frac{\text{Theorem}}{\text{If } A(x) = f(x) + \text{noise}\left(\frac{S(x)}{\varepsilon}\right) \text{ then } A \text{ is } \varepsilon' \text{-indistinguishable.}$

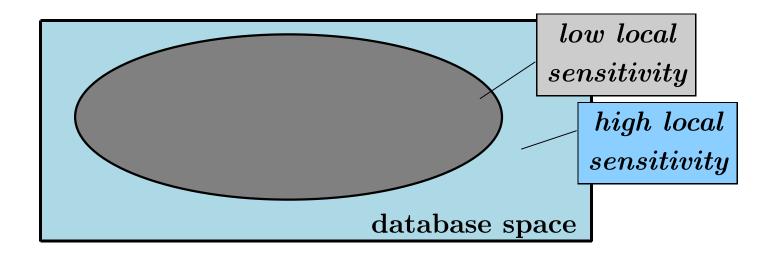
Example: GS_f is always a smooth bound on $\mathsf{LS}_f(x)$

Smooth Sensitivity

Smooth sensitivity $S_f^*(x) = \max_y \left(\mathsf{LS}_f(y) e^{-\varepsilon \cdot \mathsf{dist}(x,y)} \right)$

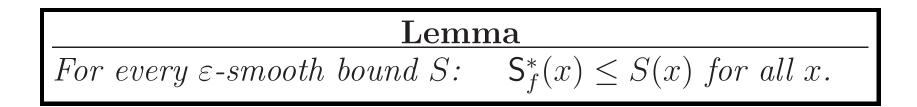


Intuition: little noise when **far** from sensitive instances

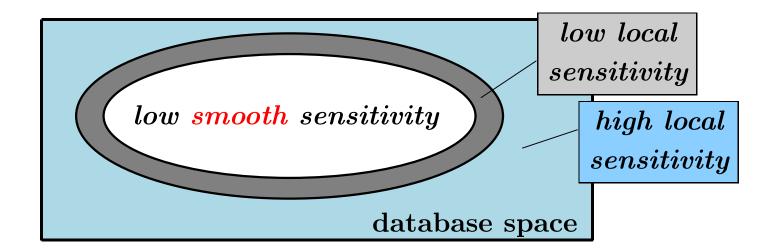


Smooth Sensitivity

Smooth sensitivity $S_f^*(x) = \max_y \left(\mathsf{LS}_f(y) e^{-\varepsilon \cdot \mathsf{dist}(x,y)} \right)$



Intuition: little noise when **far** from sensitive instances



Computing smooth sensitivity

Example functions with computable smooth sensitivity

- Median & minimum of numbers in a bounded interval
- *MST cost* when weights are bounded
- Number of triangles in a graph

Approximating smooth sensitivity

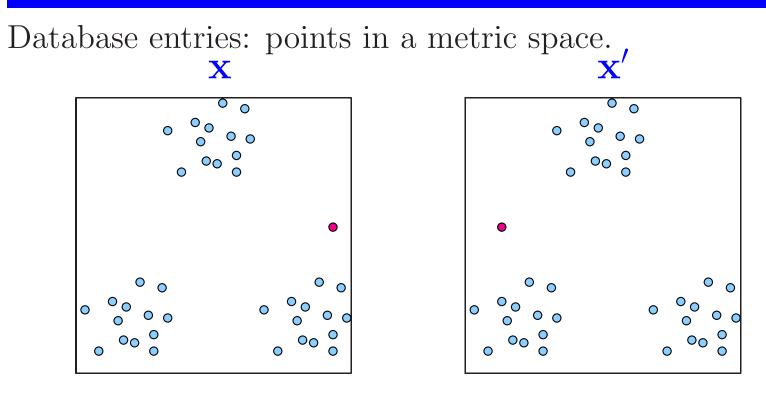
- \bullet only smooth upper bounds on LS are meaningful
- simple generic methods for smooth approximations – work for *median* and *1-median* in L_1^d

I. Introduction

- Review of global sensitivity framework [DMNS06]
- Motivation
- II. Smooth sensitivity framework
- III. Sample-and-aggregate framework

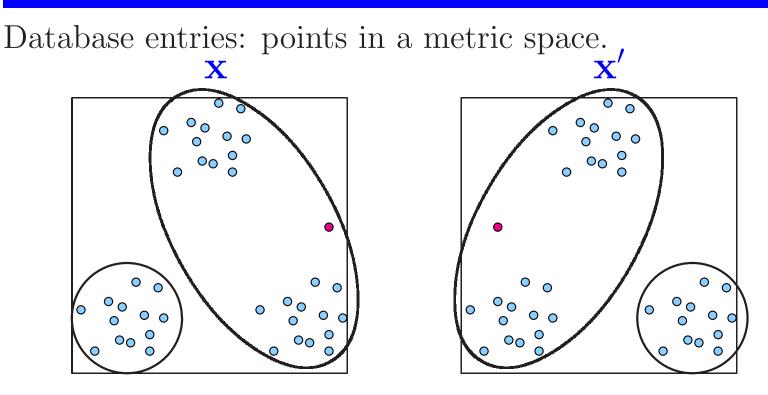
- Smooth sensitivity framework requires understanding combinatorial structure of f
 hard in general
- Goal: an automatable transformation from an arbitrary f into an ε-indistinguishable A
 - A(x) ≈ f(x) for "good" instances x

Example: cluster centers



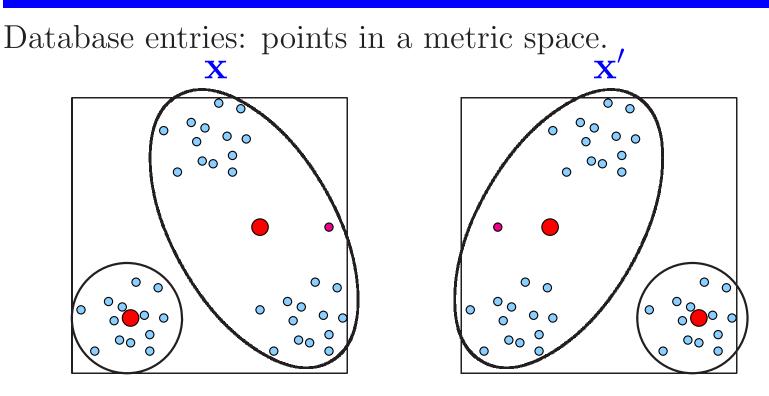
- Comparing sets of centers: Earthmover-like metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is "good", cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity

Example: cluster centers



- Comparing sets of centers: Earthmover-like metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is "good", cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity

Example: cluster centers

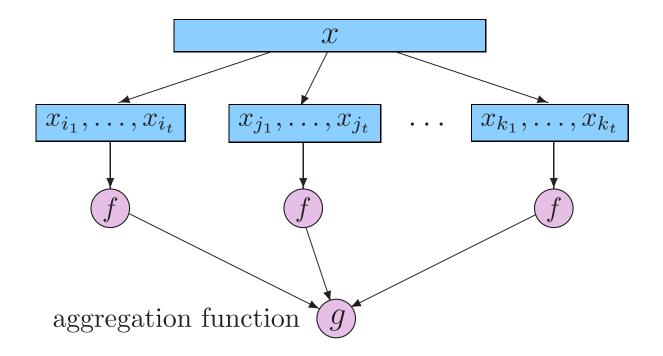


- Comparing sets of centers: Earthmover-like metric
- Global sensitivity of cluster centers is roughly the diameter of the space. But intuitively, if clustering is "good", cluster centers should be insensitive.
- No efficient approximation for smooth sensitivity

$Sample-and-aggregate\ framework$

Intuition: Replace f with a less sensitive function \tilde{f} .

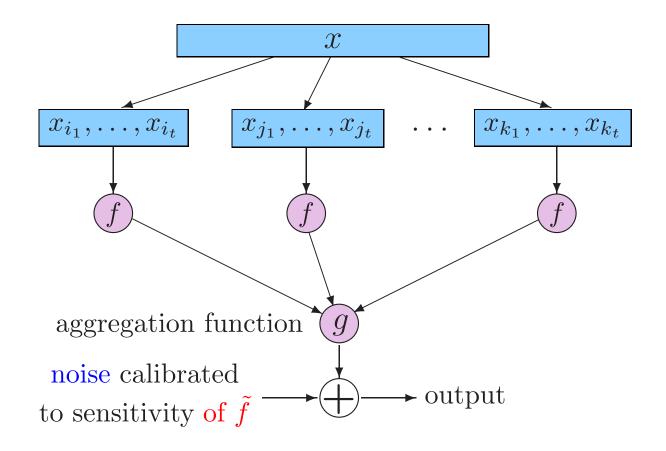
 $\tilde{f}(x) = g(f(sample_1), f(sample_2), \dots, f(sample_s))$



$Sample-and-aggregate\ framework$

Intuition: Replace f with a less sensitive function \tilde{f} .

 $\tilde{f}(x) = g(f(sample_1), f(sample_2), \dots, f(sample_s))$



Good aggregation functions

• average

- works for L_1 and L_2
- center of attention
 - the center of a smallest ball containing a strict majority of input points
 - works for arbitrary metrics
 - (in particular, for Earthmover)
 - gives lower noise for L_1 and L_2

$Sample-and-aggregate\ results$

Theorem

If f can be approximated on xfrom small samples then f can be released with little noise

Theorem

If f can be approximated on x within distance r from small samples of size $n^{1-\delta}$ then f can be released with little noise $\approx \frac{r}{\epsilon} + negl(n)$

Theorem

If f can be approximated on x within distance r from small samples of size $n^{1-\delta}$ then f can be released with little noise $\approx \frac{r}{\varepsilon} + negl(n)$

- Works in all "interesting" metric spaces
- Example applications
 - $k-\text{means cluster centers (if data is separated a.k.a.} \\ [Ostrovsky Rabani Schulman Swamy 06])$
 - fitting mixtures of Gaussians (if data is i.i.d., using [Vempala Wang 04, Achlioptas McSherry 05])
 - PAC concepts (Adam Smith's talk)

I. Introduction

- Review of global sensitivity framework [DMNS06]
- Motivation
- II. Smooth sensitivity framework
- III. Sample-and-aggregate framework

Conclusion: fundamental question

Which computations are not too sensitive to individual inputs? Which functions f admit ε -indistinguishable approximation A?