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Private Learning Algorithms

* Goal: machine learning algorithms that protect the
privacy of individual examples (people, organizations,...)

e Desiderata

» Privacy: Worst-case guarantee (differential privacy)

» Learning: Distributional guarantee (PAC learning)

* This talk

» Feasibility results

» Open questions
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PAC Iearning

e / :a random variable over domain D.

» C:aset of concepts C={c: D — {0,1}}

i_ L1 = (21,y1)

— hypothesis

ETENr— I

xn - Zn7 y’n coins

Examples Z; ~~ Z
Labels vy; = K(a:z)
¢:D —{0,1}

Definition: A agnostically PAC-learns C on Z if, for all Z,

with high prob. over zi,...,z, i.i.d.: Pr h(z) ={(z)] < OPT — &

where OPT = sup, ¢ Pr|c'(z) = ¢(2)]

# examples n 1 ,
. . poly | —, desc-length(c")
running time of A o
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* Say A is a private PAC learner for C on Z if
» A is a PAC learner for C on Z and
» A is e-indistinguishable for &€ = o(1)

* First attempt: Apply T

sample-aggregate to
non-private learning algorithm

aggregation function @

noise calibrated
e ~ —(—-)— output
to sensitivity of f

* Problem: there may be many good hypotheses. Different
samples may produce different-looking hypotheses.
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* Say A is a private PAC learner for C on Z if
» A is a PAC learner for C on Z and
» A is e-indistinguishable for &€ = o(1)

* Theorem: Any PAC learnable concept can be learned
privately, using polynomially-many samples but possibly
exponential running time.

* Proof: Use McSherry-Talwar exponential sampling

» “Score” q(x , h) = — #(misclassified examples)
1 1
> desc-length(c’ —, =
» Roughly need n > desc-length(c¢’) x maX(ae’ a2)

Questions:
e Can we get aVC- dimension bound?
e Can we preserve polynomial running time!?
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* Parity-like Problems | s e o I
sample-aggregate
» Domain D = ZZ .
0 ifzGOv=0 modp
1 ifzGv#0 modp

» Concepts ¢(z) = <

\

» Need to assume that labels are consistent with some concept

* (Without assumption, this becomes parity with noise)
* Statistical Query algorithms

» Statistical Query: ask question of distribution Z
> Query: predicate g : D x {0,1} — {0,1} |/Answer 5Q queries

via sum queries
Answer ~ Pr, [9(27 C(Z)) — 0] on data [BDMN’05]

» Many common learning algorithms are SQ algorithms
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Statistical Querz Learning

e Statistical Query: ask question of distribution Z
> Query: predicate g : D x {0,1} — {0,1}
Answer =~ Pr.[g(z,c(z)) = 0]

* If nis large, then use sum query on data + noise [BDMN]

* Alternative: “local”, decentralized protocol

- 1
» For each i, compute bit b; = {9(%) W.p. 5t €

1—g(x;) wp. 5—e€
» Sum of bits allows

approximation to answer

* Local protocols studied extensively in data mining lit.

* Theorem: Local-private-PAC = SQ.

D
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Notes

* Privacy has other interesting connections to learning

» D.P. algorithms are useful as sub-algorithms, to break
dependencies

* “Follow the perturbed leader” algorithm for online decision

[Kalai-Vempala]

* Fixing an issue in [Vempala-Wang 02] for learning Gaussian mixtures
» Privacy investigation lead to separations between “adaptive”
and “non-adaptive” SQ algorithms.
* Corresponds to interaction in private mechanisms

* Good “sensitivity” properties of error lead to good

generalization error
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