What Can We Learn Privately?

Adam Smith

Penn State

Joint work with Shiva Kasiviswanathan (Penn State) Homin Lee (Columbia) Kobbi Nissim (Ben-Gurion) Sofya Raskhodnikova (Penn State)

Private Learning Algorithms

• **Goal:** machine learning algorithms that protect the privacy of individual examples (people, organizations,...)

Desiderata

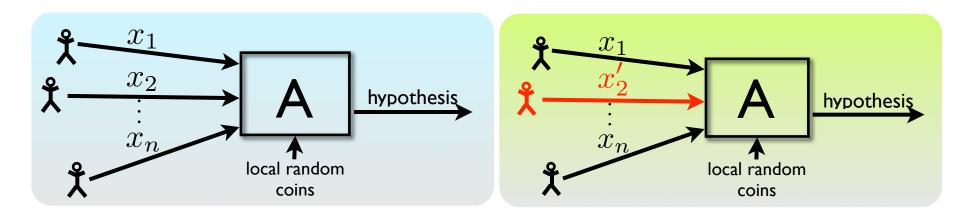
Privacy: Worst-case guarantee (differential privacy)
 Learning: Distributional guarantee (PAC learning)

This talk

 \succ Feasibility results

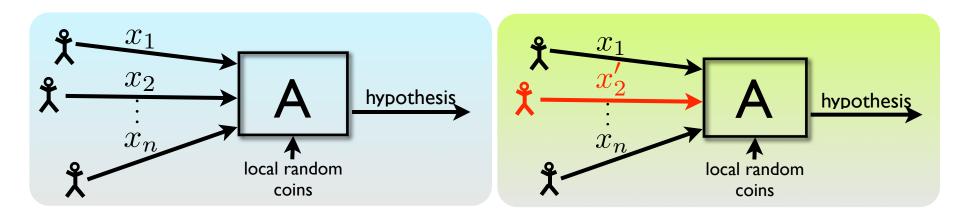
Open questions

Differential Privacy



 \mathbf{x} is a neighbor of \mathbf{x} if they differ in one row

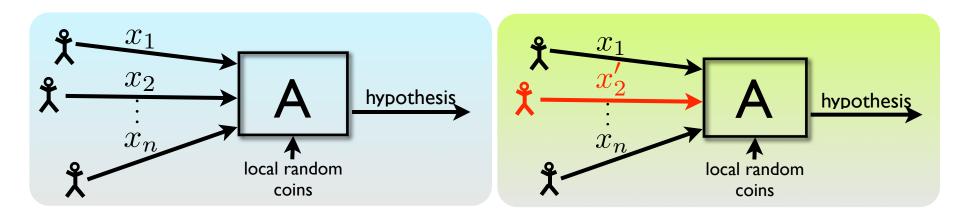
Differential Privacy



x' is a neighbor of x if they differ in one row

Definition: A is indistinguishable if, for all neighbors x, x', for all subsets S of transcripts $\Pr[A(x) \in S] \le (1 + \epsilon) \Pr[A(x') \in S]$

Differential Privacy



x' is a neighbor of x if they differ in one row

Definition: A is indistinguishable if, for all neighbors x, x', for all subsets S of transcripts $\Pr[A(x) \in S] \le (1 + \epsilon) \Pr[A(x') \in S]$

PAC learning

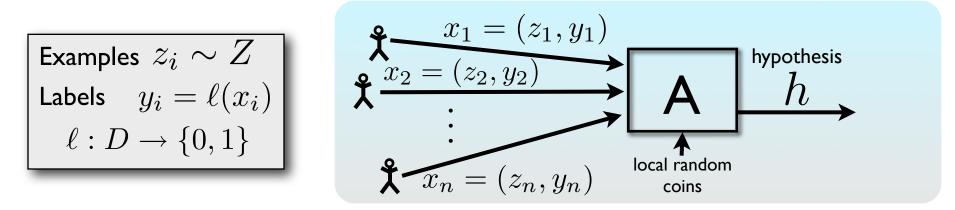
- Z : a random variable over domain D.
- C : a set of concepts $C = \{c : D \rightarrow \{0, 1\}\}$

Examples
$$z_i \sim Z$$

Labels $y_i = \ell(x_i)$
 $\ell: D \rightarrow \{0, 1\}$

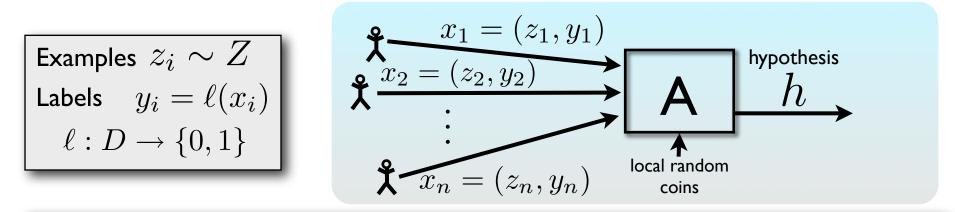
PAC learning

- Z : a random variable over domain D.
- C : a set of concepts $C = \{c : D \rightarrow \{0, 1\}\}$



PAC learning

- Z : a random variable over domain D.
- C : a set of concepts $C = \{c : D \rightarrow \{0, 1\}\}$



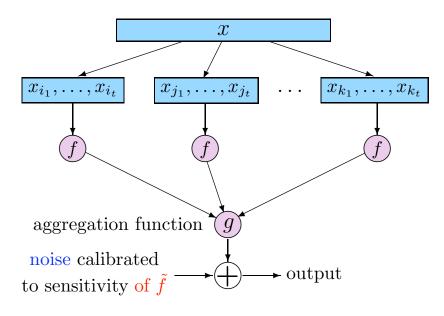
Definition: A agnostically PAC-learns C on Z if, for all ℓ , with high prob. over $z_1, ..., z_n$ i.i.d.: $\Pr_{z \sim Z} [h(z) = \ell(z)] \leq OPT - \alpha$ where $OPT = \sup_{c' \in C} Pr[c'(z) = c(z)]$ # examples nrunning time of A $\operatorname{poly} \left(\frac{1}{\alpha}, \operatorname{desc-length}(c')\right)$

- Say **A** is a private PAC learner for C on Z if
 - **A** is a **PAC learner** for C on Z and
 - **A** is ε -indistinguishable for $\varepsilon = o(1)$

Say A is a private PAC learner for C on Z if
 A is a PAC learner for C on Z and

 \blacktriangleright A is ε -indistinguishable for $\varepsilon = o(1)$

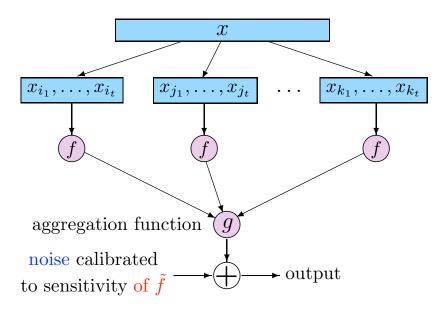
 First attempt: Apply sample-aggregate to non-private learning algorithm



Say A is a private PAC learner for C on Z if
A is a PAC learner for C on Z and

A is ε -indistinguishable for $\varepsilon = o(1)$

 First attempt: Apply sample-aggregate to non-private learning algorithm



Problem: there may be many good hypotheses. Different samples may produce different-looking hypotheses.

- Say **A** is a private PAC learner for C on Z if
 - **A** is a **PAC learner** for C on Z and
 - **A** is ε -indistinguishable for $\varepsilon = o(1)$

• Say **A** is a private PAC learner for C on Z if

> **A** is a **PAC** learner for C on Z and

A is ε -indistinguishable for $\varepsilon = o(1)$

• **Theorem**: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.

• Say **A** is a private PAC learner for C on Z if

A is a **PAC learner** for C on Z and

> A is ε -indistinguishable for $\varepsilon = o(1)$

- **Theorem**: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.
- **Proof:** Use McSherry-Talwar exponential sampling

 \succ "Score" q(x, h) = - #(misclassified examples)

> Roughly need $n \ge \text{desc-length}(\mathbf{c'}) \times \max(\frac{1}{\alpha\epsilon}, \frac{1}{\alpha^2})$

• Say **A** is a private PAC learner for C on Z if

A is a **PAC learner** for C on Z and

A is ε -indistinguishable for $\varepsilon = o(1)$

- **Theorem**: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.
- **Proof:** Use McSherry-Talwar exponential sampling

 \succ "Score" q(x, h) = - #(misclassified examples)

> Roughly need $n \ge \text{desc-length}(\mathbf{c'}) \times \max(\frac{1}{\alpha\epsilon}, \frac{1}{\alpha^2})$

Questions:

- Can we get a VC- dimension bound?
- Can we preserve polynomial running time?

What is learnable privately & efficiently?

- Parity-like Problems
 - $\succ \text{Domain } \mathsf{D} = \mathbb{Z}_p^n$ $\succ \text{Concepts } c(z) = \begin{cases} 0 & \text{if } z \odot v = 0 \mod p \\ 1 & \text{if } z \odot v \neq 0 \mod p \end{cases}$
 - > Need to assume that labels are consistent with some concept
 - (Without assumption, this becomes parity with noise)

What is learnable privately & efficiently?

• Parity-like Problems

$$\succ \text{Domain } \mathsf{D} = \mathbb{Z}_p^n \\ \triangleright \text{Concepts } c(z) = \begin{cases} 0 & \text{if } z \odot v = 0 \mod p \\ 1 & \text{if } z \odot v \neq 0 \mod p \end{cases}$$

> Need to assume that labels are consistent with some concept

- (Without assumption, this becomes parity with noise)
- Statistical Query algorithms
 - Statistical Query: ask question of distribution Z

➤ Query: predicate
$$g: D \times \{0, 1\} \rightarrow \{0, 1\}$$
Answer ≈ $\Pr_{z}[g(z, c(z)) = 0]$

> Many common learning algorithms are **SQ** algorithms

What is learnable privately & efficiently?

• Parity-like Problems

 \wedge **D** = πn

Use variants on

sample-aggregate

$$\succ \text{ Concepts } c(z) = \begin{cases} 0 & \text{if } z \odot v = 0 \mod p \\ 1 & \text{if } z \odot v \neq 0 \mod p \end{cases}$$

> Need to assume that labels are consistent with some concept

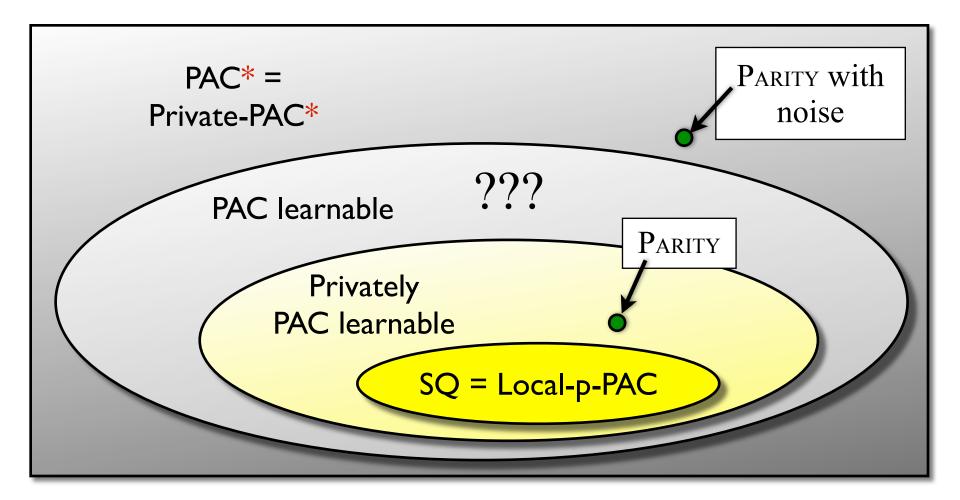
- (Without assumption, this becomes parity with noise)
- Statistical Query algorithms
 - Statistical Query: ask question of distribution Z
 - > Query: predicate $g: D \times \{0, 1\} \rightarrow \{0, 1\}$ Answer $\approx \Pr_{z}[g(z, c(z)) = 0]$

Answer SQ queries via **sum queries** on data [BDMN'05]

> Many common learning algorithms are **SQ** algorithms

What can be learned privately?

 $PAC^* = PAC$ learnable with poly. samples but arbitrary computation



Statistical Query Learning

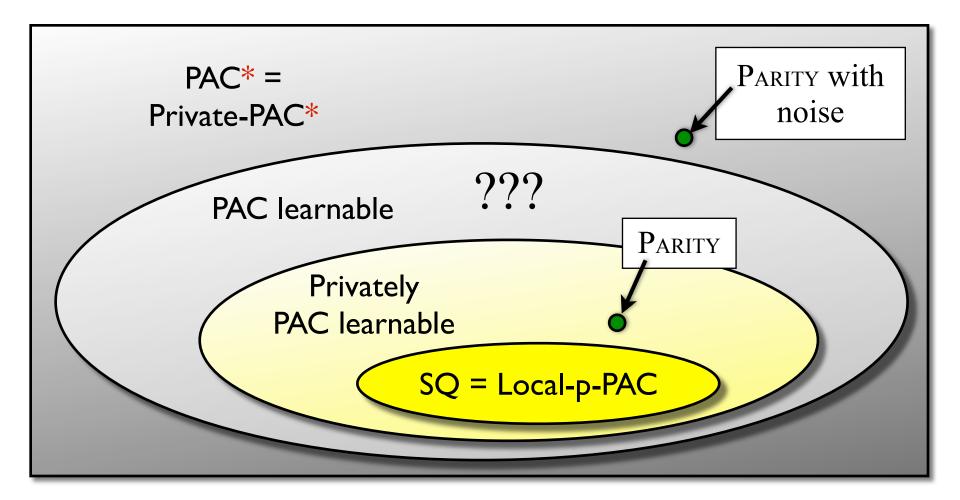
- Statistical Query: ask question of distribution Z
 ➤ Query: predicate g : D × {0,1} → {0,1}
 Answer ≈ Pr_z[g(z,c(z)) = 0]
- If n is large, then use sum query on data + noise [BDMN]
- Alternative: "local", decentralized protocol > For each i, compute bit $b_i = \begin{cases} g(x_i) & \text{w.p. } \frac{1}{2} + \epsilon \\ 1 - g(x_i) & \text{w.p. } \frac{1}{2} - \epsilon \end{cases}$
 - Sum of bits allows

approximation to answer

- Local protocols studied extensively in data mining lit.
- **Theorem:** Local-private-PAC = SQ.

What can be learned privately?

 $PAC^* = PAC$ learnable with poly. samples but arbitrary computation



Notes

- Privacy has other interesting connections to learning
 - D.P. algorithms are useful as sub-algorithms, to break dependencies
 - "Follow the perturbed leader" algorithm for online decision [Kalai-Vempala]
 - Fixing an issue in [Vempala-Wang 02] for learning Gaussian mixtures
 - Privacy investigation lead to separations between "adaptive" and "non-adaptive" SQ algorithms.
 - Corresponds to interaction in private mechanisms
- Good "sensitivity" properties of error lead to good generalization error

Thank you