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o Intentionally Blank Slide




o Differential Privacy

Context: A data set d € DY and mechanism M : DV — R.
Evaluating M (d) shouldn’t give specific info about tuples in d.

Source of much definitional anxiety for some 30-odd years.
What is specific info? Can we prevent everything/anything?

Definition: A mechanism M gives e-differential privacy if:
For d, d € DV differing on at most one datum, and any S C R,

Pr[M(d) € S] < exp(e) x Pr(M(d) € S].

Changing one tuple can not change the output distribution much.
Relative change in the probability of any event (subset S of R).



o Previous Constructions

Simple scheme: Apply f: DN — R to data, return noisy result.

K;(DB) = f(DB) + Noise.

Theorem: Using Laplace(o,0) gives (A f/o)-differential privacy,

Af = rB%xnchaefo(DB—I\/Ie)—f(DB—l—I\/Ie)H.

For many statistical properties: Af is small, small noise benign.
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— Problems with Perturbation

Pricing: Inputs are n bids in [0,1]. Output is a price p € [0, 1].
Want to make lots of money, but we don’t want to reveal bids.

Problem: Perturbing the true answer by some noise may fail.

1. The function may have high sensitivity. (eg: Pricing)
2. Perturbations may not actually be useful. (eg: Pricing)

Moreover: Additive perturbations also fail when

3. Outputs are not numbers. (eg: strings, trees, etc...)



— A General Mechanism

Previously a “query” was f: DY — R, mapping data to result.
Implicit assumption that results » near f(d) are nearly as good.

Now, a query is ¢ : (DY x R) — R. Score of result r for data d.

Eg: Given bids and a price, revenue is g(d,r) =r x #(i : d; > r).
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Definition: Let £(d) output r with probability oc exp(eq(d,)).
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— Two EXciting Properties

Privacy: &7 gives (2¢Agq)-differential privacy, where we define

—_ /
Aq = mgx?§d§lq(d,r)—q(d,r)l-

Proof: Density, normalization alter by factors of at most exp(eAgq).
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— Applications to Pricing

Every bidder gives a demand curve: d; : [0,1] — RT. (rd;(v) < 1)
Theorem: Taking ¢(d,r) = r>;d;(r), then the mechanism &7
gives (2¢)-differential privacy, and has expected revenue at least

OPT — 3In(e + €20PTm) /e,

where m is the number of items sold at the optimal price.

Proof: Grind t = In(e4€20OPTm) through the previous theorem.
Argue that u(Sy) is not small. (near-opt r gives near-opt g(d,r)).



o Game Theory Implications

Differential Privacy implies many game-theoretic properties:
Pr[M(d) € S] < exp(e) x Pr[M(d)] € 5] .

e-Dominance: For any “utility” function g: R — RT,
Elg(M(d))] < exp(e) x E[g(M(d))] .

Collusion Resilient: For d ~; d’, (ie: differing on t data)
Pr(M(d) € S] < exp(et) x Pr[M(d)] € 9] .

Repeatability: For M = (Mq, M>,... M) with dependencies,

Pr[M(d) € S] < exp (Zei) x Pr[M(d)] € 9] .
1<t

Truthful whp [CKMT]: M can be implemented so that:
For all d,t, with prob exp(—2et), M(d) = M(d") for all d' ~; d.
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o Conclusions, Future Direction

Stuff we did:

General mechanism 85, more robust, awesome than previously.
Applications to Auctions/Pricing of various and new flavors.
Neat non-truthful solution concept. Cool conseqguences.

Stuff we didn’t do / did badly:

Computational questions of sampling from 85 efficiently.
Going beyond auctions/pricing to other mechanism problems.

T hanks! Questions?



