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Differential Privacy

Context: A data set d ∈ DN and mechanism M : DN → R.

Evaluating M(d) shouldn’t give specific info about tuples in d.

Source of much definitional anxiety for some 30-odd years.

What is specific info? Can we prevent everything/anything?

Definition: A mechanism M gives ε-differential privacy if:

For d, d′ ∈ DN differing on at most one datum, and any S ⊆ R,

Pr[M(d) ∈ S] ≤ exp(ε)× Pr[M(d′) ∈ S] .

Changing one tuple can not change the output distribution much.

Relative change in the probability of any event (subset S of R).
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Previous Constructions

Simple scheme: Apply f : DN → R to data, return noisy result.

Kf(DB) ≡ f(DB) + Noise .

` ?
Database

ƒ Noise

Theorem: Using Laplace(σ,0) gives (∆f/σ)-differential privacy,

∆f = max
DB

max
Me

‖f(DB−Me)− f(DB + Me)‖ .

For many statistical properties: ∆f is small, small noise benign.
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Problems with Perturbation

Pricing: Inputs are n bids in [0,1]. Output is a price p ∈ [0,1].

Want to make lots of money, but we don’t want to reveal bids.

Problem: Perturbing the true answer by some noise may fail.

1. The function may have high sensitivity. (eg: Pricing)

2. Perturbations may not actually be useful. (eg: Pricing)

Moreover: Additive perturbations also fail when

3. Outputs are not numbers. (eg: strings, trees, etc...)
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A General Mechanism

Previously a “query” was f : DN → R, mapping data to result.
Implicit assumption that results r near f(d) are nearly as good.

Now, a query is q : (DN ×R) → R. Score of result r for data d.

Eg: Given bids and a price, revenue is q(d, r) = r×#(i : di > r).
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Definition: Let Eε
q(d) output r with probability ∝ exp(εq(d, r)).
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Two Exciting Properties

Privacy: Eε
q gives (2ε∆q)-differential privacy, where we define

∆q = max
r

max
d≈d′

|q(d, r)− q(d′, r)| .

Proof: Density, normalization alter by factors of at most exp(ε∆q).

Utility: For S ⊆ R, write µ(S) for its base measure. (pre-Eε
q).

Lem: Let St = {r : q(d, r) > OPT−t}. Pr(S2t) < exp(−t)/µ(St).

Proof: LHS < Pr(S2t)/Pr(St) < exp(−t)µ(S2t)/µ(St) < RHS.

Thm: E[q(d, Eq(d))] > OPT − 3t, for those t > ln(OPT/tµ(St)).

Proof: Pr(OPT−2t) ≥ 1−exp(−t)/µ(St) ≥ 1−t/OPT . Multiply.
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Applications to Pricing

Every bidder gives a demand curve: di : [0,1] → R+. (rdi(r) ≤ 1)

Theorem: Taking q(d, r) = r
∑

i di(r), then the mechanism Eε
q

gives (2ε)-differential privacy, and has expected revenue at least

OPT − 3 ln(e + ε2OPTm)/ε ,

where m is the number of items sold at the optimal price.

Proof: Grind t = ln(e+ε2OPTm) through the previous theorem.

Argue that µ(St) is not small. (near-opt r gives near-opt q(d, r)).
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Game Theory Implications

Differential Privacy implies many game-theoretic properties:

Pr[M(d) ∈ S] ≤ exp(ε)× Pr[M(d′)] ∈ S] .

ε-Dominance: For any “utility” function g : R → R+,

E[g(M(d))] ≤ exp(ε)× E[g(M(d′))] .

Collusion Resilient: For d ≈t d′, (ie: differing on t data)

Pr[M(d) ∈ S] ≤ exp(εt)× Pr[M(d′)] ∈ S] .

Repeatability: For M = (M1, M2, . . . Mt) with dependencies,

Pr[M(d) ∈ S] ≤ exp
( ∑

i≤t

εi
)
× Pr[M(d′)] ∈ S] .

Truthful whp [CKMT]: M can be implemented so that:
For all d, t, with prob exp(−2εt), M(d) = M(d′) for all d′ ≈t d.
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Conclusions, Future Direction

Stuff we did:

General mechanism Eε
q, more robust, awesome than previously.

Applications to Auctions/Pricing of various and new flavors.

Neat non-truthful solution concept. Cool consequences.

Stuff we didn’t do / did badly:

Computational questions of sampling from Eε
q efficiently.

Going beyond auctions/pricing to other mechanism problems.

Thanks! Questions?
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