The Exponential Mechanism (and maybe some mechanism design)

Frank McSherry and Kunal Talwar Microsoft Research, Silicon Valley Campus

Intentionally Blank Slide _____

1

Differential Privacy ____

Context: A data set $d \in D^N$ and mechanism $M : D^N \to R$.

Evaluating M(d) shouldn't give specific info about tuples in d.

Source of much definitional anxiety for some 30-odd years. What is specific info? Can we prevent everything/anything?

Definition: A mechanism M gives ϵ -differential privacy if: For $d, d' \in D^N$ differing on at most one datum, and any $S \subseteq R$,

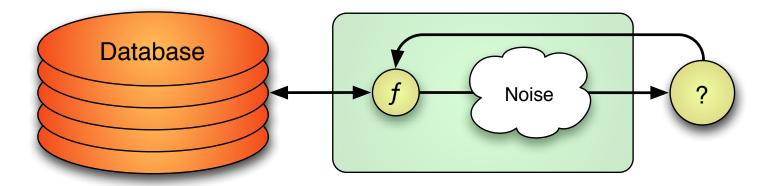
 $Pr[M(d) \in S] \leq \exp(\epsilon) \times Pr[M(d') \in S].$

Changing one tuple can not change the output distribution much. Relative change in the probability of any event (subset S of R).

Previous Constructions

Simple scheme: Apply $f : \mathcal{D}^N \to \mathbb{R}$ to data, return noisy result.

 $\mathcal{K}_f(\mathsf{DB}) \equiv f(\mathsf{DB}) + \mathsf{Noise}$.



Theorem: Using Laplace(σ , 0) gives ($\Delta f/\sigma$)-differential privacy,

$$\Delta f = \max_{\text{DB Me}} \max \|f(\text{DB} - \text{Me}) - f(\text{DB} + \text{Me})\|.$$

For many statistical properties: Δf is small, small noise benign.

Pricing: Inputs are *n* bids in [0, 1]. Output is a price $p \in [0, 1]$. Want to make lots of money, but we don't want to reveal bids.

Problem: Perturbing the true answer by some noise may fail.

- 1. The function may have high sensitivity. (eg: Pricing)
- 2. Perturbations may not actually be useful. (eg: Pricing)

Moreover: Additive perturbations also fail when

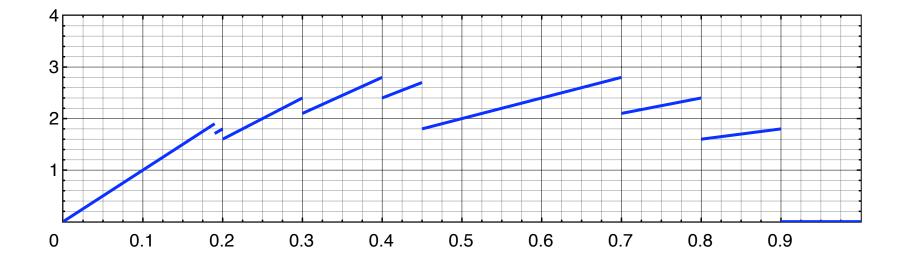
3. Outputs are not numbers. (eg: strings, trees, etc...)

A General Mechanism .

Previously a "query" was $f : \mathcal{D}^N \to \mathbb{R}$, mapping data to result. Implicit assumption that results r near f(d) are nearly as good.

Now, a query is $q : (\mathcal{D}^N \times \mathcal{R}) \to \mathbb{R}$. Score of result r for data d.

Eg: Given bids and a price, revenue is $q(d,r) = r \times \#(i : d_i > r)$.

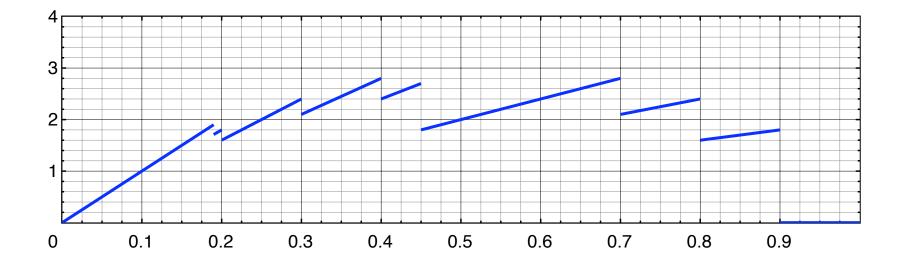


A General Mechanism

Previously a "query" was $f : \mathcal{D}^N \to \mathbb{R}$, mapping data to result. Implicit assumption that results r near f(d) are nearly as good.

Now, a query is $q : (\mathcal{D}^N \times \mathcal{R}) \to \mathbb{R}$. Score of result r for data d.

Eg: Given bids and a price, revenue is $q(d,r) = r \times \#(i : d_i > r)$.



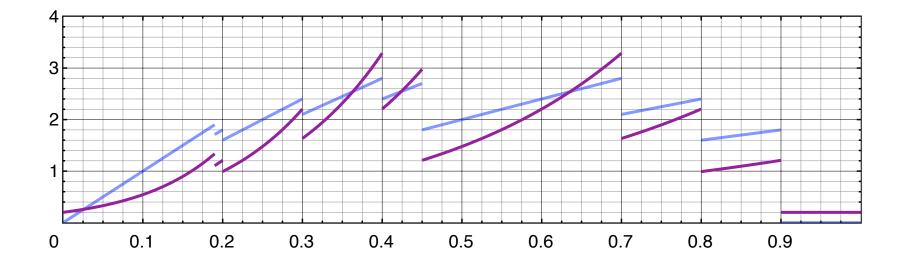
Definition: Let $\mathcal{E}_q^{\epsilon}(d)$ output r with probability $\propto \exp(\epsilon q(d, r))$.

A General Mechanism

Previously a "query" was $f : \mathcal{D}^N \to \mathbb{R}$, mapping data to result. Implicit assumption that results r near f(d) are nearly as good.

Now, a query is $q : (\mathcal{D}^N \times \mathcal{R}) \to \mathbb{R}$. Score of result r for data d.

Eg: Given bids and a price, revenue is $q(d,r) = r \times \#(i : d_i > r)$.



Definition: Let $\mathcal{E}_q^{\epsilon}(d)$ output r with probability $\propto \exp(\epsilon q(d, r))$.

Privacy: \mathcal{E}_q^{ϵ} gives $(2\epsilon\Delta q)$ -differential privacy, where we define

$$\Delta q = \max_{r} \max_{d \approx d'} |q(d,r) - q(d',r)|.$$

Proof: Density, normalization alter by factors of at most $\exp(\epsilon \Delta q)$.

Privacy: \mathcal{E}_q^{ϵ} gives $(2\epsilon\Delta q)$ -differential privacy, where we define

$$\Delta q = \max_{r} \max_{d \approx d'} |q(d,r) - q(d',r)|.$$

Proof: Density, normalization alter by factors of at most $\exp(\epsilon \Delta q)$.

Utility: For $S \subseteq \mathcal{R}$, write $\mu(S)$ for its base measure. (pre- \mathcal{E}_q^{ϵ}).

Privacy: \mathcal{E}_q^{ϵ} gives $(2\epsilon\Delta q)$ -differential privacy, where we define

$$\Delta q = \max_{r} \max_{d \approx d'} |q(d,r) - q(d',r)|.$$

Proof: Density, normalization alter by factors of at most $\exp(\epsilon \Delta q)$.

Utility: For $S \subseteq \mathcal{R}$, write $\mu(S)$ for its base measure. (pre- \mathcal{E}_q^{ϵ}). **Lem**: Let $S_t = \{r : q(d,r) > OPT-t\}$. $\Pr(\overline{S}_{2t}) \leq \exp(-t)/\mu(S_t)$.

Proof: $LHS \leq \Pr(\overline{S}_{2t}) / \Pr(S_t) \leq \exp(-t)\mu(\overline{S}_{2t}) / \mu(S_t) \leq RHS.$

Privacy: \mathcal{E}_q^{ϵ} gives $(2\epsilon\Delta q)$ -differential privacy, where we define

$$\Delta q = \max_{r} \max_{d \approx d'} |q(d,r) - q(d',r)|.$$

Proof: Density, normalization alter by factors of at most $\exp(\epsilon \Delta q)$.

Utility: For $S \subseteq \mathcal{R}$, write $\mu(S)$ for its base measure. (pre- \mathcal{E}_q^{ϵ}). **Lem**: Let $S_t = \{r : q(d,r) > OPT-t\}$. $\Pr(\overline{S}_{2t}) \leq \exp(-t)/\mu(S_t)$. Proof: $LHS \leq \Pr(\overline{S}_{2t})/\Pr(S_t) \leq \exp(-t)\mu(\overline{S}_{2t})/\mu(S_t) \leq RHS$. **Thm**: $E[q(d, \mathcal{E}_q^{\epsilon}(d))] \geq OPT - 3t$, for those $t \geq \ln(OPT/t\mu(S_t))$. Proof: $\Pr(OPT-2t) \geq 1-\exp(-t)/\mu(S_t) \geq 1-t/OPT$. Multiply. Every bidder gives a demand curve: $d_i : [0, 1] \rightarrow \mathbb{R}^+$. $(rd_i(r) \leq 1)$

Theorem: Taking $q(d,r) = r \sum_i d_i(r)$, then the mechanism \mathcal{E}_q^{ϵ} gives (2 ϵ)-differential privacy, and has expected revenue at least

$$OPT - 3\ln(e + \epsilon^2 OPTm)/\epsilon$$
,

where m is the number of items sold at the optimal price.

Proof: Grind $t = \ln(e + \epsilon^2 OPTm)$ through the previous theorem. Argue that $\mu(S_t)$ is not small. (near-opt r gives near-opt q(d,r)).

Game Theory Implications

Differential Privacy implies many game-theoretic properties: $Pr[M(d) \in S] < \exp(\epsilon) \times Pr[M(d')] \in S].$

 ϵ -Dominance: For any "utility" function $g : R \to \mathbb{R}^+$, $E[g(M(d))] \leq \exp(\epsilon) \times E[g(M(d'))]$.

Collusion Resilient: For $d \approx_t d'$, (ie: differing on t data) $Pr[M(d) \in S] \leq \exp(\epsilon t) \times Pr[M(d')] \in S]$.

Repeatability: For $M = (M_1, M_2, \dots, M_t)$ with dependencies, $Pr[M(d) \in S] \leq \exp\left(\sum_{i \leq t} \epsilon_i\right) \times Pr[M(d')] \in S]$.

Truthful whp [CKMT]: M can be implemented so that: For all d, t, with prob exp $(-2\epsilon t)$, M(d) = M(d') for all $d' \approx_t d$.

Stuff we did:

General mechanism \mathcal{E}_q^{ϵ} , more robust, awesome than previously. Applications to Auctions/Pricing of various and new flavors. Neat non-truthful solution concept. Cool consequences.

Stuff we didn't do / did badly:

Computational questions of sampling from \mathcal{E}_q^{ϵ} efficiently. Going beyond auctions/pricing to other mechanism problems.

Thanks! Questions?