Privacy-Preserving Information Release from Social Networks

Avrim Blum
Anupam Datta
Jeremiah Blocki
Or Sheffet

The problem

Given a sensitive social network:

Friendship network

Email or phone-call

ctious disease tran network

 Can we release a sanitized version or (noisy) information about it an a way that preserves privacy and is still useful?

How can one formally talk about preserving privacy?

The science of privacy

 Fundamental breakthrough came from MSR in work of [Dwork-McSherry-Nissim-Smith] building on earlier work of Dwork et al, in definition of differential privacy.

> A semantically-meaningful, composable, plausibly achievable, notion of privacy

The science of privacy

 Fundamental breakthrough came from MSR in work of [Dwork-McSherry-Nissim-Smith] building on earlier work of Dwork et al, in definition of differential privacy.

The science of privacy

- Fundamental breakthrough came from MSR in work of [Dwork-McSherry-Nissim-Smith] building on earlier work of Dwork et al, in definition of differential privacy.
- Powerful tools, including
 - Smooth sensitivity, sample-and-aggregate of [Nissim-Raskhodnikova-Smith]
 - Exponential mechanism of [McSherry-Talwar] and use for outputting sanitized databases of [B-Ligett-Roth]
 - Composition theorems of [Dwork-Rothblum-Vadhan]
 - Multiplicative weights of [Hardt-Talwar] and Iterative Database Construction of [Gupta-Roth-Ullman]

What can be done when your "database" is a social network?

Thrust #1: output sanitized network approximately preserving cut-values.

 Natural for understanding high-level connectivity from various sets A to the rest of the network.

What can be done when your "database" is a social network?

Thrust #1: output sanitized network approximately preserving cut-values.

 Recent work of [Gupta-Roth-Ullman] gave interactive query-answering protocol with good properties.

What can be done when your "database" is a social network?

Thrust #1: output sanitized network approximately preserving cut-values.

• Our work: produce output s.t. for (almost) all sets A, error is only O(|A|) [+ multiplicative $(1 \pm \epsilon)$]

What can be done when your "database" is a social network?

Thrust #1: output sanitized network approximately preserving cut-values.

How it works:

- Each edge (i,j) picks random w_{ij} ~ N(0,1). Sends w_{ij} to i, -w_{ij} to j. [Technically, non-edges do this too, scaled by O(1/n)]
- Vertices add up and publish their sums.

So, what happens if add these up over all $i \in A$?

What can be done when your "database" is a social network?

Thrust #1: output sanitized network approximately preserving cut-values.

How it works:

- Repeat several times to get good estimate of [E(A,V-A)].
- Equivalent to random (JL) projection of edgeadjacency matrix.
- Privacy is wrt individual edge changes. Doing anything wrt arbitrary node changes is much harder....

What can be done when your "database" is a social network?

Thrust #2: answering queries while preserving privacy wrt arbitrary node changes (node privacy).

Considering queries of form: how many nodes participate in a given local pattern?

 Note: could be very sensitive to single node change (adding many nbrs, changing profession)...

What can be done when your "database" is a social network?

Thrust #2: answering queries while preserving privacy wrt arbitrary node changes (node privacy).

But would be OK if, e.g., all nodes had low degree.

 Note: could be very sensitive to single node change (adding many nbrs, changing profession)...

What can be done when your "database" is a social network?

Thrust #2: answering queries while preserving privacy wrt arbitrary node changes (node privacy).

Approach:

• User specifies property $\mathcal P$ of graphs (e.g., degree \leq k) s.t. query has low sensitivity over $\mathcal P$, and user believes $\mathcal G\in \mathcal P$.

- Want to preserve privacy no matter what.
- And give accurate answer if $G \in \mathcal{P}$.

What can be done when your "database" is a social network?

Thrust #2: answering queries while preserving privacy wrt arbitrary node changes (node privacy).

Approach:

 Method #1: construct modified query q' that is smooth over all graphs, and equiv to actual query q over the nice graphs.

- Method #2: map graphs into the nice set in a smooth manner
- See poster (manned by Or and Jeremiah) for details.

Additional notes

- In discussion for visits to MSR-SVC.
- 2010-2011 support in area of algorithmic pricing led to results enabling successful NSF ICES grant. (interface b/w CS, Economics, and Social Sciences)
- Current support has enabled collaboration that is very helpful in connection to current NSF center proposal.

Thank you for your support!