Specification and Verification in
Introductory Computer Science

Frank Pfenning
Carnegie Mellon University
MSR-CMU Center for Computational Thinking
May 14, 2012

www.cs.cmu.edu/~fp/courses/15122
c0.typesafety.net

Principal Contributors: Rob Arnold, Tom Cortina, lan Gillis, Jason Koenig,
William Lovas, Karl Naden, Rob Simmons, Jakob Uecker

MSR Collaborators: Rustan Leino, Nikolaj Bjgrner
MS Guest Speaker: Jason Yang (Windows team)
MSR Inspiration: Manuvir Das, Peter Lee

Outline

Background and guiding principles
Role in the curriculum

Learning goals

CO Language

(Lecture sample)

Research plans

Background

e 15-122 Principles of Imperative Computation

* Part of a major core CS curriculum revision
— 15-110/112 Principles of Computing/Programming
— 15-150 Principles of Functional Programming
— 15-210 Parallel & Sequential Data Structs. & Algs.
— 15-214 Software System Construction

e Still under development
— Pilot in Fall 2010, every semester since then
— Now taught ~630 students, majors & non-majors
— Adoption at Tubingen, Germany, Spring 2012

May 14, 2012 MSR-CMU Center for Computational Thinking

Core Curriculum Chart

15-110 Principles
of Computing

-
-
-

e

15-112 Fundamentals
of Programming

> «

- ~
- ~
~
~

>a

21-127 Concepts
of Modern Math

15-122 Principles of

Imperative Computation

15-150 Principles of
Functional Programming

/

15-213 Computer
Systems

-
 15-214 Software

N/

15-210 Seq. & Par.
Data Structs. & Algs.

System Construction

|
b = = = == -

May 14, 2012 MSR-CMU Center for Computational Thinking

v

15-251 Great Ideas
of Theoretical CS

Guiding Principles

Computational thinking and programming
must go hand-in-hand

Algorithm and data structure design, analysis,
and implementation is an intellectual activity

We build abstractions from an understanding
of the concrete

Rigorous types, invariants, specifications,
interfaces are crucial

Role in the New Curriculum

* Precondition: some programming experience
— Self-taught or high-school programming or 15-112
— Python and Java most common
— Broad rather than deep; diverse

* Postcondition: preparation for 15-2xx courses
— 15-210: Par. & Seq. Data Structs. & Algs.

— 15-213: Computer Systems
— 15-214: Software System Construction

Learning Goals

Computational thinking
Programming skills
Specific data structures and algorithms

Application contexts

Computational Thinking

Algorithmic concepts vs. code

Abstraction and interfaces

Specification vs. implementation

Pre- and post-conditions, loop invariants

Data structure invariants

Logical and operational reasoning

Asymptotic complexity and practical efficiency
Programs as data

Exploiting randomness

Programming Skills

Deliberate programming

Understand static and dynamic semantics
Develop, test, debug, rewrite, refine
Invariants, specifications

Using and designing APIs

Use and implement data structures

— Emphasis on mutable state (“RAM model”)

Render algorithms into correct code
— Emphasis on imperative programming

Some Algorithmic Concepts

Asymptotic analysis

— Sequential computation

— Time and space

— Worst-case vs. average-case

— Amortized analysis

— Common classes: O(n), O(n*log(n)), O(n?), O(2")
Divide and conquer

Self-adjusting data structures

Randomness

Sharing

Specific Alg’s and Data Struct’s

Binary search

Sorting (selection sort, mergesort)

Stacks and queues

Hash tables

Priority queues (heaps)

Binary search trees (red/black, randomized)
Tries

Binary decision diagrams (SAT, validity)
Graph traversal (depth-first, breadth-first)
Minimum spanning trees (Prim’s alg., Kruskal’s alg.)
Union-find

Application Contexts

e See algorithms in context of use
* Engage students’ interest

e Assignments (all written+programming)
— Image manipulation
— Text processing (Shakespeare word freq’s)
— Grammars and parsing
— Maze search
— Huffman codes
— Puzzle solving (Lights Out)
— Implementing a virtual machine (COVM)

Language

e Weeks 1-10: Use CO, a small safe subset of C,
with a layer to express contracts

— Garbage collection (malloc/free)

— Fixed range modular integer arithmetic
— Language unambiguously defined

— Contracts as boolean expressions

e Weeks 11-14: Transition to C

— Exploit positive habits, assertion macros
— Pitfalls and idiosyncrasies of C

Type Structure

t=int | bool | structs | t* | t[]
Distinguish pointers and arrays
Distinguish ints and booleans

Structs and arrays live in memory; ints, bools,
and pointers in variables

Strings and chars as abstract types

Control Structure

Variables and assighnment

Separation of expressions and statements
Conditionals, while, and for loops
Functions

Other considerations

— Minimal operator overloading
— No implicit type conversions
— Initialization

Rationale for CO

Imperative implementations of simple
algorithms are natural in this fragment

Simplicity permits effective analysis
— Proving invariants, sound reasoning

Concentrate on principles first, C later

Industrial use of assertions (SAL, Spec#)
— Guest lecture by J. Yang from MS Windows team

Lecture Example

* |n actual lecture use blackboard, plus laptop
for writing code

* Recu rring theme Computational Thinking

Data Structures
and Algorithms

Programming

May 14, 2012 MSR-CMU Center for Computational Thinking 17

Lecture 13: Priority Queues
Lecture 14: Restoring Invariants

Restoring Invariants

Priority Queues
Heaps

Trees as Arrays

May 14, 2012 MSR-CMU Center for Computational Thinking

18

Heap Interface

typedef struct heap* heap;

bool heap empty(heap H); /*
heap heap new(int limit) /*
//@requires limit > 0;

//@ensures heap empty(\result);

void heap insert(heap H, int x); /*
int heap min(heap H) / *
//@requires !heap empty(H);

int heap delmin(heap H) / *
//@requires !heap empty(H);

4

is H empty? */
create new heap */

insert x into H */
find minimum */

delete minimum */

Checking Heap Invariants

struct heap {
int limit;
int next;
int[] heap;

}i

bool is heap(heap H)

//@requires H != NULL && \length(H->heap) == H->limit;

{
if (!(1 <= H->next && H->next <= H->limit)) return false;
for (int i = 2; i1 < H->next; i++)

if (!(H->heap[i/2] <= H->heap[i])) return false;
return true;

Heap Insertion

void heap insert(heap H, int x)
//@requires is heap(H);
//@requires !'heap full(H);
//@ensures is heap(H);
{
H->heap[H->next] = Xx;
H->next++;
sift up(H, H->next-1);
}

Preliminary Course Assessment

* First four course instances successful
— Covered envisioned material and more
— Excellent exam and assighment performance
— Lecture notes
— Positive student feedback

* Interesting programming assignments

— Using our CO compiler weeks 1-10, gcc thereafter
— Linked with C/C++ libraries

Some Course Tools

CO to C compiler (cc0), front end v3

CO interpreter and debugger (new Su 2012)
CO tutorial

CO language reference

Binaries for Windows, Linux, Mac OS X
COVM for last assignment

Contracts

* Currently, contracts are checked dynamically if
compiled with ccO -d

* Contracts are enormously useful
— Bridge the gap from algorithm to implementation
— Express programmer intent precisely
— Catch bugs during dynamic checking

— Debugging aid (early failure, localization)

* Not easy to learn effective use of contracts

Exploiting Contracts Further

* Ongoing research

e Contracts could be even more useful
— Static verification (MSR: Daphne, Boogie, Z3)
— Counterexample, test generation (MSR: Pex)
— Autograding of code and contracts

* The educational setting creates unique challenges
and opportunities
— Explainable static analysis (null ptrs, array bounds)
— Pedagogically sound design
— Diversity of student programmers

Summary

15-122 Principles of Imperative Computation

Freshmen-level course emphasizing the interplay
between computational thinking, algorithms, and
programming in simple setting

CO, a small safe subset of C, with contracts
Contracts pervasive, checked only dynamically

Research question: can we use static analysis and
theorem proving to aid in achieving student learning

goals?
MSR collaborators: Rustan Leino, Nikolaj Bjgrner
Visits: F. Pfenning, J. Yang, R. Leino, K. Naden, J. Koenig,

Priority Queues

* Generalizes stacks and queues

e Abstract interface
— Create a new priority queue
— Insert an element
— Remove a minimal element

Heaps

e Alternative 1: unsorted array
— Insert O(1), delete min O(n)

e Alternative 2: sorted array
— Insert O(n), delete min O(1)

e Alternative 3: heap
— Partially sorted!

Heaps

A heap represents a priority queue as a binary
tree with two invariants

Shape:
— Tree is complete (missing nodes bottom-right)

Order:

— Each interior node is greater-or-equal to its parent
— OR: each node is less-or-equal to all its children

Guarantee a minimal element is at root!

Shape Invariant

1 node 2 nodes 3 nodes 4 nodes
5 nodes 6 nodes 7 nodes

A AT AN

May 14, 2012 MSR-CMU Center for Computational Thinking 30

Inserting into Heap

* By shape invariant, know where new element
should go

* Now have to restore ordering invariant

Sifting Up

* Order invariant satisfied, except between new
node and its parent (“looking up”)

e Swapping with parent will restore locally
* Parent may now violate invariant

May 14, 2012 MSR-CMU Center for Computational Thinking 32

Invariant Restored

* When reaching root (no parent!), ordering
invariant restored everywhere

 We have a valid heap!

Analysis

* |Insert requires O(log(n)) swaps in worst case

* Logarithmic thinking: complete binary tree
with n elements has 1+log(n) levels

* Delete min also O(log(n)), omitted here

Heaps as Arrays

* Exploit shape invariant
* Binary numbering system for nodes, root is 1
e Left child is n0 =2*n; right child is nl1l = 2*n+1

* Parentis atn/2:0is unused
1 1

10 11 2 3

100 101 110 111 4 5 6 7

Creating a Heap

heap heap new(int limit)
//@requires 1 <= limit;
//@ensures is heap(\result) && heap empty(\result);
{
heap H = alloc(struct heap);
H->limit = limit;
H->next = 1;
H->heap = alloc array(int, limit);
return H;

* Pre/postconditions are easy to specify and reason about
* How to automate?

Almost a Heap

bool is heap except up(heap H, int n)
//@requires H != NULL && \length(H->heap) == H->limit;
{ int i;

if (!(1 <= H->next && H->next <= H->1limit)) return false;

for (i = 2; i < H->next; i++)

if (Y(1i == | | H->heap[i/2] <= H->heap[i]))
return false;
return true;

}
// is_heap except up(H, 1) == is_ heap(H);

* Captures permitted violation precisely
* Observation at end for postcondition of sift up

Sifting Up / Restoring Invariant

void sift up(heap H, int n)
//@requires 1 <= n && n < H->limit;
//@requires is heap except up(H, n);
//@ensures is heap(H);
{ int i = n;

while (i > 1)

//@loop invariant is heap except up(H, 1i);

{

if (H->heap[i/2] <= H->heap[i]) return;
swap (H->heap, i/2, 1i);
i=1/2;

}

//Rassert i == 1;
//@assert is heap except up(H, 1);
return;

