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Outline

• Motivation: finding even simple structures like 
lists is useful, and seems like it should be easy.

• Cohen & Fan, 1999a: List-finding as 
classification.

• Cohen 1999b,2000: List-finding as matching
structure to content.

• Cohen et al 2001, Cohen 2002, Blei et al 
2002: List-finding as learning global content and 
local structure.



Observation: Recognizing Structure is Useful



Observation: Recognizing Structure is Useful



Observation: HTML Structure is Meaningful 
and (Easily?) Recognizable

“Colorless 
green ideas 
sleep 
furiously.”



List-finding as Classification
[Cohen & Fan, WWW 1999]

Learning to extract “simple lists” and “simple hotlists”.



List-finding as classification

In a page containing a simple list, the structure extracted is a one-
column relation containing a set of strings s1,...,sN, and each si is all 
the text that falls below some node ni in the parse tree. In a simple 
hotlist, the extracted structure is a two-column relation, containing a 
set of pairs <s1,u1>,...,<sN,uN>; each si is all the text that falls below 
some node ni in the parse tree; and each ui is a URL that is 
associated with some HTML anchor element aithat appears 
somewhere inside ni. 

Technique: classify each node in the HTML tree as “extract” or “don’t 
extract”; then reconstruct the list or hotlist.

Evaluation: on a set of 84 pre-wrapped simple lists and simple hotlists 
(about 75% of a larger collection of wrapped pages).



List-finding as classification

• Simple Features:
– Tag Name (“a”, “p”, “td”)
– Text Length, Non-white Text Length
– Recursive Text Length, ...
– Depth, NumChildren, NumSiblings
– Parent tag, Ancestor tags, Child tags, Descendent tags

• Complex features:
– tagSeqPosition TSP(n) = sequence of tags encountered walking 

from root to node n
– NodePrefixCount(n) = |{ leaf n’ | TSP(n) prefix of TSP(n’)|}
– NodeSuffixCount(n) = ...



List-finding as classification



List-finding as classification



Another Experiment:
Wrapper Induction: User Labels K Positive Examples
(Hybrid: After Accepting/Rejecting Default Wrapper)



Outline

• Motivation: finding even simple structures like 
lists is useful, and seems like it should be easy.

• Cohen & Fan, 1999: List-finding as 
classification: kind of disappointing, only 30-50% of the 
pages were wrapped well.

• Cohen 2000a,2000b: List-finding as matching
structure to content.

• Cohen et al 2001, Cohen 2002, Blei et al 
2002: List-finding as learning global content and 
local structure.
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Matching Structure To Content
Key point: every simple list or 
hotlist can be written just like this: 
you just need to fill in

• one root-node path for simple 
lists;

• one root-node path and one 
node-node path for simple 
hotlists.

Given a web page with N
nodes, there are O(N2) possible 
wrappers, which can be 
enumerated and scored.



Enumerating and Scoring Wrappers



Enumerating and Scoring Wrappers
Enumerates all Path1, 
Path2 such that Path1 
goes from root to n, and 
Path2 goes from n to an 
anchor element.



Enumerating and Scoring Wrappers
Enumerates and scores 
Path1,Path2 according to 
how many things are 
extracted by that wrapper.



Enumerating and Scoring Wrappers
Enumerates and scores 
Path1,Path2 according to 
how many things are 
extracted by that wrapper 
such that the text under 
node n is close to the text 
under the anchor element.e.g., discounts wrappers where n is close to the root.

“Soft” predicate, 
true/false according to 
TFIDF similarity



Enumerating and Scoring Wrappers
Enumerates and scores 
Path1,Path2 according to 
how many things are 
extracted by that wrapper 
such that the text under 
node n is close to the text 
of some X such that R(X)
is trueR(X) is “content” information, as a K-NN classifier



Results



Using Extracted Lists

• Experiments above describe semi-automated techniques for wrapper 
learning: some user intervention is needed.

• Can you use the wrappers without letting a user check them?

• Idea [Cohen, ICML2000]:
– Start with some textual examples for a classification problem (e.g., 

names of classical/rock musicians)
– Use these examples as “seeds” R and find a bunch of simple lists 

L1, L2, ...., Lm

– Use each list as a feature: Fi true for x iff x (approximately) matches 
something in list Li.

– Also: used features for header words that seemed to modify the 
matching element of the list (kind of like anchor text).



Using Extracted Lists
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Using Extracted Lists



Outline

• Motivation: finding even simple structures like 
lists is useful, and seems like it should be easy.

• Cohen & Fan, 1999a: List-finding as 
classification: kind of disappointing, only 30-50% of the 
pages were wrapped well.

• Cohen 1999b,2000: List-finding as matching
structure to content: seems to be effective even with 
moderately good models of content.

• Cohen et al 2001, Cohen 2002, Blei et al 
2002: List-finding as learning global content and 
local structure.



•Previous work in page classification using links:

• Exploit hyperlinks (Slattery&Mitchell 2000; 
Cohn&Hofmann, 2001; Joachims 2001): 
Documents pointed to by the same “hub” should 
have the same class.

• What’s new in this paper (Cohen NIPS 2002):

• Use structure of hub pages (as well as structure 
of site graph) to find better “hubs”

• Adapt an existing “wrapper learning” system to 
find structure, on the task of classifying “executive 
bio pages”.



Intuition: links from this 
“hub page” are informative…

…especially these links



Background: “wrapper” learning

• System is based on a number of “builders”:
– Infer a “structure” (e.g. a list, table column, etc) 

from  few positive examples.
– A “structure” extracts all its members 

• f(page) = { x: x is a “structure element” on page }

• A master algorithm co-ordinates the “builders”
• Add/remove “builders” to optimize performance on a 

domain (Cohen,Hurst&Jensen WWW-2002)

• Some builder usually obtains a good generalization 
from only 2-3 positive examples



Builder





Experimental results:
2-3 examples leads to high average accuracy

F1

#examples



Background: “co-training” (Mitchell&Blum, ‘98)

• Suppose examples are of the form (x1,x2,y) where x1,x2

are independent (given y), and where each xiis 
sufficient for classification, and unlabeled examples are 
cheap.  
– (E.g., x1 = bag of words, x2 = bag of links).

• Co-training algorithm:

1. Use x1’s (on labeled data D) to train f1(x)=y

2. Use f1 to label additional unlabeled examples U.

3. Use x2’s (on labeled part of  U+D to train f1(x)=y

4. Repeat . . .

≈≈≈≈



Simple 1-step co-training for web 
pages

f1 is a bag-of-words page classifier, and S is web site 
containing unlabeled pages.

• Feature construction.  Represent a page xin S as a 
bag of pages that link to x(“bag of hubs”).

• Learning. Learn f2 from the bag-of-hubs examples, 
labeled with f1

• Labeling. Use f2(x) to label pages from S.

Idea. use one roundof co-training to bootstrapthe bag-of words 
classifier to one that uses site-specific features x2/f2



Improved 1-step co-training for web pages

Feature construction. 

- Label an anchor a in S as positive iff it points to a positive page x 
(according to f1).  Let D =  —(x’,a): a is a positive anchor on x’˝.  
-Generate many small training sets Di from D, by sliding small 

windows over D.

- Let P be the set of all “structures” found by any builder from any 
subset Di

- Say that p links to xif p extracts an anchor that points to x.  Represent 
a page x as the bag of structures in Pthat link to x.

Learning and Labeling.  As before.



builder

extractor

List1
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BOH representation:

{ List1, List3,…}, PR

{ List1, List2, List3,…}, PR

{ List2, List 3,…},  Other

{ List2, List3,…}, PR

…

Learner



Experimental results
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Experimental results



Summary
- “Builders” (from a wrapper learning system) let one 

discover and use structure of web sites and index 
pages to smooth page classification results.

- Discovering good “hub structures” makes it 
possible to use 1-step co-training on small (50-200 
example) unlabeled datasets.

– Average error rate was reduced from 8.4% to 
3.6%.

– Difference is statistically significant with a 2-
tailed paired sign test or t-test.

– EM with probabilistic learners also works—see 
(Blei et al, UAI 2002)



Learning Formatting Patterns “On the Fly”:
“Scoped Learning” for IE

[Blei, Bagnell, McCallum, 2002]
[Taskar, Wong, Koller 2003]

Formatting is regular on each site, but there are too many different sites to wrap.
Can we get the best of both worlds?



Scoped Learning Generative Model

1. For each of the D documents:
a) Generate the multinomial formatting 

feature parameters φ from p(φ|α)
2. For each of the N words in the 

document:
a) Generate the nth category cn from 

p(cn).
b) Generate the nth word (global feature) 

from p(wn|cn,θ)
c) Generate the nth formatting feature 

(local feature) from p(fn|cn,φ)

w f

c

φ

N
D

αθ



Inference
Given a new web page, we would like to classify each word
resulting in c = {c1, c2,…, cn}

This is not feasible to compute because of the integral and
sum in the denominator.  We experimented with two
approximations:
- MAP point estimate of φ
- Variational inference



MAP Point Estimate
If we approximate φ with a point estimate, φ, then the integral 
disappears and c decouples.  We can then label each word with:

E-step:

M-step:

A natural point estimate is the posterior mode: a maximum likelihood 
estimate for the local parameters given the document in question:

^



Global Extractor:  Precision = 46%, Recall = 75%



Scoped Learning Extractor:  Precision = 58%, Recall = 75% Δ Error = -22%



Outline

• Motivation: finding even simple structures like 
lists is useful, and seems like it should be easy.

• Cohen & Fan, 1999a: List-finding as 
classification.

• Cohen 1999b,2000: List-finding as matching
structure to content.

• Cohen et al 2001, Cohen 2002, Bagnell et al 
2002: List-finding as learning global content and 
local structure.


