
William’s Top 10 Things to
Do With Minorthird

William W. Cohen
CALD

10. Play with the code
• The .jar file—all you need to use it is JRE 1.4+

– http://sourceforge.net/projects/minorthird
• The latest source, with latest bug [fixes] and/or features:

– http://minorthird.sourceforge.net/IntroMinorthirdTutorial.doc -> Part I
• The “launchpad”: java edu.cmu.minorthird.Minorthird
• The “user interface” package:

java edu.cmu.minorthird.ui.Help
• Every .ui program has a –gui option. Hit the ?’s and help

buttons, and try the tutorials.
• The #1 most helpful feature of minorthird:

cammie@cmu.edu

9. Read the documentation
• The overview tutorial:

http://minorthird.sourceforge.net/IntroMinort
hirdTutorial.doc

• The javadocs:
http://minorthird.sourceforge.net/javadoc/ed
u/cmu/minorthird/package-summary.html

• Sample code:
– ~you/.../minorthird/demos
– ~you/../minorthird/apps/*

8. Use the command line
• Help available with

java ...ui.XXX -help
• Command-line options can be

mixed with gui manipulations
• Any options can also be placed

in a config file, eg.
java ...ui.XXX –config
sample.config

• Command-line options and
config files are for reproducible
experiments

7. Use your own dataset
1. Make a directory foo of

text files
2. Look at them with

...ui.ViewLabels
3. Add annotations via

“standoff annotation”:
each line is

• addToType FILE LO LEN Type
• closeType FILE Type

4. ...ui.EditLabels is an
annotation tool & inline
XML is also supported

“-1” means to end of document

“myfile-0.txt fully labels for trueName”

6. Pass data to your favorite learner

• ...ui.PreprocessTextForClassifier
• ...ui.PreprocessTextForExtractor

– bug: both need options -saveAs foo.data from command line

• Output files:
– lines in data file:

• k textFileName class feature1=v1 feature2=v2 ...
• a “*” indicates end of a sequence (= document) for

extraction data
– link file:

• datafileName:lineNum textFileName LO LEN

5. Write a .mixup program

... and run it (with ...ui.RunMixup) or debug it (...ui.DebugMixup).

Using –gui and hitting “?” button brings you to a Mixup tutorial.

6. Reuse what you learn
• ui.ApplyAnnotator runs a learned annotator

(produced by ui.TrainClassifier or
ui.TrainExtractor) on a new dataset, and
outputs the resulting annotation file as
stand-off annotation (.labels file)

4. Write some features in mixup
• By default, in extraction problems:

– token properties (set with defTokProp) are
exported to the learner as features

– span properties and spanTypes (set with
defSpanProp) are used as training and test
labels—i.e., to define learning problems.

– mixup is the recommended “feature engineering
language” for minorthird.

3. Write a feature extractor in java
• A sample: ~you/.../minorthird/demos/MyFE.java
• To use: compile and place the .class file in your

classpath, then use ui.TrainTestExtractor options
like –fe “new MyFE()”

• Simple things like a bag-of-words can be done
with short sequences like:
– from(span).tokens().eq().emit(); // BOW
– from(span).right().tokens(0).eq().emit(); // token to right

• Complex things can be done by using the
minorthird.classify.* API on the FE’s protected
variable instance.

2. Write your own learner
• Compile and use it the

same way as for feature
extractors: use –learner
“new MyLearner()” option
for ui.TrainXY

• No samples in demos/ but
hitting the “?” in the GUI
will show you the javadocs
for existing learner
classes.

1. Be creative

• Look for useful main() programs:
– minorthird.text.SpanDifference compares two label sets and prints

precision/recall/F1
– minorthird.text.EncapsulatedAnnotator lets you bundle a collection

of mixup, dictionary, and class, files into a single self-contained file
that can be run with any minorthird program.

• Talk to other systems: UIMA, Lucene?, Mallet?
• Play games with annotations:

– cat, awk, grep are all valid tools
• Load any combination of documents & annotations

– use API in minorthird.text.TextBaseLoader, .TextLabelsLoader
– use beanshell script files as arguments to -labels
– build a repository

But wait! you also get...
• SecondString is a separate Java SDK for string

comparisons
• Source is at http://secondstring.sourceforge.net/

and
• Javadocs are at

http://secondstring.sourceforge.net/javadoc/
• Executables are included as a .jar library in

Minorthird
– so, you can call it directly if you have M3rd installed

• Some sample code is in the com.wcohen.ss.expt
package, or for another example...

More on secondstring...
• A distance may need to prepare a string for lookup

(eg tokenize it)—and there’s access to the
“prepared” form, for efficiency
– Prepared form is a StringWrapper

• A distance (eg TFIDF) might need to compute
statistics over a set of strings, or might need to be
trained from matching pairs. A
StringDistanceLearner has various train()
functions, and returns a trained StringDistance.
– Most non-adaptive StringDistance classes also

implement StringDistanceLearner

