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We propose a framework for learning a set of relations concurrently. The relations are set 
a priori. The system does the rest. This work expands on our experience with single-
relationship extraction during the first half of the semester. 

Single-Relation Extraction

Our algorithm for single-relation extraction attempts to find entity pairs (A,B) that are 
involved in relationship R. It bootstraps from learned entity pairs (A,B) and contexts (S).  

The probability that entity pair (A,B)i is in relation R is give by:
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The probability that context Si marks a relation R is given by:
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Problem:
One major problem with single-relation extraction is that often times entity pair (A,B)i

does not always occur in a context Sj that exclusively marks relation R. 

Consider trying to find entities that are in a causal relation.  We may find “Studies show 
that smoking causes cancer” and “This article talks about smoking and cancer”. The 
context “________ causes ________” exclusively marks causal relations. The context 
“________and ________” is not exclusively used to mark causal relations (e.g. “Tom 
and Jerry, “Apples and Oranges”, “Up and down”, etc.). Our single-relation extractor is 
not robust against overly general contexts and so precision decreases exponentially (or so 
it seems). 

We hope to mitigate this problem by extending our model to multiple-relation extraction. 

Multi-Relation Extraction

We will concurrently learn entities for a set of relations R . Each entity pair ),( BA will be 

represented as a vector of probabilities eP
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(1) and (2) above become:
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Tentative Solution 1 – Limit Scope

One concern with this approach is that we are implicitly making the assumption that our 
set of relations {R1, … Rn} represent a complete set of possible relations over any pair of 
learned entities (a,b). Although this is a strong assumption, we believe it will not cause a 
major problem with the algorithm and is logically consistent with many choices of 
relations to learn.

For instance, in the medical domain we may attempt to learn the three relations 
TreatmentFor(medication, disease), SideEffectOf(side-effect, medication) and 
SymptomOf(symptom, disease).  For a pair of entities sampled from a set of diseases, 
symptoms and side-effects, the stated relationships are the only logical connection 
between any (medication, side-effect), (disease, medication) or (disease, symptom) pair.
Thus, we would constrain the system to only consider local contexts (e.g. sentences) that 
contain one of these three entity-type pairs. 

Some complications are introduced when many of the relationships being learned can 
exist between a pair of entities, such as FatherOf and MotherOf over the set of pairs of 
person entities.  

Tentative Solution 2 – Proxy Catch-All Relation

Alternatively, we could also ensure complete coverage over all relations by introducing a 
proxy “catch-all” relation. For instance, if we wish to learn relations R1, R2, and R3, we 

would also introduce relation R∞, which would logically map to  321 RRR  . R1, R2, R3, 

and R∞ describe ALL possible relations over the space of entities we’re interested in.

If we limit our search to relations that are asynchronous or directional (Cause  Effect, 
Medicine  Side-effect, Illness  Symptom, etc.), we could learn entities for R∞ by 
reversing the directionality of our learned entities for relations {R1, R2… R∞ - 1}. As 
usual, we would use these entities to learn more contexts that mark R∞, and so forth. 
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Dependencies on other components:

Although our system should be able to operate on raw, un-annotated text, the addition of 
noun phrase annotations as well as some level of named entity annotation is likely to 
boost performance.  Ideally, the named entity tagging would focus on to the types of 
relations being learned.  For example, if we are learning the relations described above, 
tagging of diseases, medications, etc. should boost precision considerably.
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