Multi-Robot Forest Coverage*

Xiaoming Zheng Sonal Jain

Sven Koenig David Kempe

Department of Computer Science
University of Southern California
Los Angeles, CA 90089-0781, USA

{xiaominz, sonaljai, skoenig, dkempe}@usc.edu

Abstract— One of the main applications of mobile robots
is terrain coverage: visiting each location in known terrain.
Terrain coverage is crucial for lawn mowing, cleaning, harvest-
ing, search-and-rescue, intrusion detection and mine clearing.
Naturally, coverage can be sped up with multiple robots. In this
paper, we describe Multi-Robot Forest Coverage, a new multi-
robot coverage algorithm based on an algorithm by Even et
al. for finding a tree cover with trees of balanced weights. The
cover time of Multi-Robot Forest Coverage is at most eight
times larger than optimal, and our experiments show it to
perform significantly better than existing multi-robot coverage
algorithms.

Index Terms— Cell Decomposition, Robot Teams, Spanning
Tree Coverage, Terrain Coverage.

I. INTRODUCTION

One of the main applications of mobile robots is terrain
coverage: visiting each location in known terrain to perform
a task. Terrain coverage is crucial for tasks ranging from
mundane lawn mowing, cleaning or harvesting to search-and-
rescue missions, intrusion detection or mine clearing. It is
frequently desirable to minimize the time by which coverage
is completed.

The single-robot coverage problem is solved essentially
optimally by Spanning Tree Coverage (STC), a polynomial-
time coverage algorithm that decomposes terrain into cells,
computes a spanning tree of the resulting graph, and makes
the robot circumnavigate it [3]. Naturally, coverage can be
sped up with multiple robots. The multi-robot coverage
problem is to compute a trajectory for each robot so that
the cover time (that is, largest travel cost of any robot) is
minimized. As we show in this paper, this problem is NP-
complete. It thus becomes necessary to consider heuristics
for solving it. Recently, STC was generalized to Multi-Robot
Spanning Tree Coverage (MSTC), a polynomial-time multi-
robot coverage heuristic [5]. While MSTC provably improves
the cover time of STC, it cannot guarantee its cover time
to be close to optimal. In this paper, we describe Multi-
Robot Forest Coverage (MFC), a polynomial-time multi-robot
coverage heuristic based on an algorithm for finding a tree
cover with trees of balanced weights, one for each robot [2].

*We thank Gal Kaminka for interesting discussions about multi-robot
coverage and for making his paper available on the web. This work is partially
supported by NSF Grants IIS-0350584 and IIS-0413196 to Sven Koenig.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

STC MSTC

Fig. 1.

Example of STC

Fig. 2. Example of MSTC

Our analytical results prove the cover time of MFC to be
at most eight times larger than optimal, and our experiments
show it to be significantly better than the worst-case bound,
and also superior to that of MSTC. MFC has the additional
benefit that it tends to return the robots close to their initial
cells, facilitating their collection and storage.

II. ASSUMPTIONS

The terrain to be covered is discretized into large square
cells, each of which is either entirely blocked or entirely
unblocked, and contains four small square cells. The robots
are of the same size as a small cell and also identical
otherwise. We assume that the robots always know their
current small cell, and can move between any two unblocked
(horizontally or vertically) adjacent small cells without error.
Unless specified otherwise, we assume that such moves takes
unit time. For ease of exposition, we assume that several
robots are able to occupy the same small cell simultaneously,
and never block each other; a brief discussion in Section VI
shows that this assumption is not truly essential.

Note that one could potentially use specialized region-
based coverage algorithms on unit-cost grid graphs instead of
the graph-based algorithms discussed in this paper. However,
even though (some of) our theorems are restricted to unit-cost
grid graphs, all of the coverage algorithms discussed in this
paper work on general graphs with positive edge costs.

III. SINGLE-ROBOT COVERAGE

Spanning Tree Coverage (STC) solves the single-robot
coverage problem in polynomial time [3]. It first computes

a spanning tree of the graph whose vertices are the large
cells, and whose edges connect adjacent unblocked large cells.
The robot then circumnavigates the spanning tree. STC never
visits any small cell twice and thus minimizes the cover time.
In addition, the robot essentially returns to its initial small
cell, facilitating its collection and storage. Figure 1 shows
an example of STC in operation, including the large cells
(squares), spanning tree (thick lines), robot (circle), and its
trajectory (arrow).

IV. COMPLEXITY OF MULTI-ROBOT COVERAGE

While the single-robot coverage problem can be solved
in polynomial time, the problem becomes significantly more
complex when we try to minimize the cover time using
multiple robots. Theorem 1 shows that two natural variants of
the multi-robot coverage problem are NP-complete. We thus
do not expect to be able to solve it exactly in polynomial time,
and it becomes necessary to consider heuristics for solving it.

Theorem 1: It is NP-complete to determine whether the
following two multi-robot coverage problems can be solved
with cover times that are smaller than a given value:

1) multi-robot coverage problems with two robots, where
the costs of moving from one small cell to an adjacent
one can be non-uniform (and large); and

2) multi-robot coverage problems with k robots, where k
is part of the input, the costs of moving from one small
cell to an adjacent one are uniform, and all robots must
return to their initial small cells.

Proof. Clearly, both versions of the multi-robot coverage
problem are in NP since one can easily guess the trajectories
of the robots and then verify their costs in polynomial time.
To prove their NP-hardness, we reduce from partitioning
problems, in which one seeks to partition a set of n integers
into k sets of equal sums. For k = 2, the problem is NP-hard
if the integers can be exponential in n, and is known as the
PARTITION problem [4]. If k is part of the input, then the
problem is NP-hard even if the integers have sizes that are
only polynomial in n.

We first give the reduction for the second version. The
3-PARTITION problem, known to be strongly NP-complete
[4], is defined as follows: Given a positive integer B and
positive integers aq, ..., as, strictly between B/4 and B/2
with Zf:l a; = B - n, can they be partitioned evenly into n
sets?

Given an instance of the 3-PARTITION problem, we con-
struct a multi-robot coverage problem with n robots as
follows: We start with a “corridor” consisting of 3n vertically
adjacent large cells, numbered from 1 (bottom) to 3n (top).
For i =1,...,3n, there is a “tunnel” of a; - 6n horizontally
adjacent large cells. The tunnel is connected to the i*" corridor
cell. The *" tunnel is to the left of the corridor for odd i and
to the right of the corridor for even ¢. All n robots start in the
lower left small cell of the first corridor cell. This completes
the construction, which can be done in polynomial time.

We claim that the smallest cover time is at most B - 24n +
12n if and only if the given integers can be partitioned evenly
into n sets.

If the given integers can be partitioned evenly into n sets,
then we let the j*" robot cover the i*" tunnel for each i € S,
ending in its initial small cell. It thus traverses the tunnels
for a cost of at most Ziesj 4-a;-6n = B-24n, and the
corridor for a cost of at most 12n. The total cost thus is at
most B - 24n 4 12n, meeting the requirement.

Conversely, if the robots cover all small cells with the
desired cover time, then let S; be the set of indices ¢ such that
the j'" robot is the first robot to cover the small upper cell
of the i*" tunnel cell that is farthest away from the corridor.
These sets partition the given integers. The total cost of the
j“‘ robot is at least 24n Zie s, is since it needs to traverse
its tunnels in both directions to return to its initial small cell,
and needs two moves to traverse each large tunnel cell. By
assumption, the total cost of any robot is at most B-24n+12n,
which implies that 35, g a; < B + 5. Since both 3=, a;
and B are integers, we have that Zie s, @i < B for all sets S;.
Since 3771 >, @i = S22" @i = B-n, all inequalities are
equalities, and the sets .S; partition the given integers evenly.

This reduction has to be slightly adapted to prove the
NP-hardness of the first version. When reducing from the
PARTITION problem, the given integers a; can be exponential
in n, so building tunnels of length a;-6n cannot necessarily be
done in polynomial time. Instead, we collapse each tunnel to a
single large cell, but make the cost of entering and leaving the
large cell from the corridor a;-10n. Once we use non-uniform
costs for moving between large cells, we can also avoid the
requirement that the robots return to their initial small cells,
by adding two more large “destination cells” which have very
high cost (36n? - >, a;) to enter and leave. Then, both robots
end in destination cells if their cover time is small, and thus
have entered and left each of their tunnel cells. A very similar
proof to the one above then shows that the cover time is
bounded by a certain constant if and only if the given integers
can be partitioned evenly into two sets.]

Currently, we cannot prove that the second version of
the multi-robot coverage problem is NP-hard without the
requirement that the robots return to their initial small cells. It
is also open whether the second version is NP-hard for fixed
k, although we conjecture it to be.

V. EXISTING MULTI-ROBOT COVERAGE ALGORITHMS

While single-robot coverage algorithms have received a
lot of attention, there are currently many fewer algorithms
for the multi-robot coverage problem. An overview is given
in [1]. Many of the multi-robot coverage algorithms are for
robots that interact and plan only locally [9], often called ant
robots [8]. Naturally, global planning can lead to significantly
smaller cover times since it allows the robots to coordinate
their trajectories much better.

Recently, STC was generalized to Multi-Robot Spanning
Tree Coverage (MSTC), a polynomial-time multi-robot cov-

erage heuristic [5]. MSTC first computes the same spanning
tree as STC, and considers the tour that circumnavigates the
spanning tree. Each robot follows the tour segment clockwise
ahead of it, with one exception: To improve the cover time, the
longest segment is divided evenly between the two adjacent
robots. A few small adjustments, detailed in [5], then ensure
that MSTC reduces the cover time of STC by a factor of at
least 2 (or 3/2) for k£ > 3 robots (or two robots, respectively).
Each small cell is visited by only one robot, so there are never
any collisions or blockages. Figure 2 shows an example of
MSTC in operation.

While the improvement in cover time of MSTC over STC
is significant for two or three robots, it does not necessarily
increase further as the number of robots grows. Indeed,
Figure 2 gives a bad example for MSTC, showing that the
factor remains two even when a much larger speedup is
possible. This is due to the fact that the construction of the
spanning tree does not take into account that it will be split up
afterwards, resulting in unbalanced travel costs of the robots.
This observation motivates our idea of constructing a tree
cover with one tree for each robot right away, where we
ensure during the construction that the weights of the trees
are balanced.

VI. A NEW MULTI-ROBOT COVERAGE ALGORITHM

We now describe Multi-Robot Forest Coverage (MFC),
a new polynomial-time multi-robot coverage heuristic. It is
based on an algorithm by Even et al. [2] that gives a four-
approximation for the problem of finding a tree cover with
given roots, minimizing the weight of the heaviest tree.

A. Algorithm

MEFC operates on the graph whose vertices are the large
cells, and whose edges connect adjacent unblocked large cells.
If r robots start in a large cell, then MFC makes r identical
copies of that vertex. MFC first finds a rooted tree cover for
this graph in polynomial time, where the roots are the vertices
that contain robots. (The graph is allowed to be disconnected,
so long as each of its components contains at least one robot.)
Each robot then circumnavigates its tree.

We now explain what a rooted tree cover is. Let G =
(V,E) be a graph and R C V be a set of roots. An R-rooted
tree cover of G is a forest of |R| trees that cover V. The
trees can share vertices and edges, but their roots have to be
distinct vertices from R. The weight of a rooted tree cover is
the largest weight of any of its trees. The (min-max) rooted
tree cover problem then is to find a weight-minimal rooted
tree cover for a given graph and given roots. This problem
is NP-complete, which can be proved by reducing the NP-
hard bin-packing problem to it [2]. However, TREE COVER
is a polynomial-time algorithm by Even et al. that finds a
rooted tree cover whose weight is at most four times larger
than optimal [2]. It performs a binary search to determine the
smallest value B such that it can find a rooted tree cover of
weight at most 48. If TREE COVER does not succeed in
finding such a tree cover for the given B, then there is no

rooted tree cover of weight at most B. As a result, TREE
COVER gives a four-approximation for the rooted tree-cover
problem. It operates as follows:

1) Remove all edges with edge costs larger than B.

2) Contract all roots into a single vertex, find a minimum
spanning tree for the resulting graph, and then uncon-
tract the single vertex again, splitting the spanning tree
into |R| trees.

3) Decompose each tree into subtrees that can share ver-
tices but no edges. The weight of each subtree is in the
range B, 2B), with the possible exception of a leftover
subtree that contains the root of the tree, and whose
weight is less than B. (See [2] for details on this step.)

4) Find a maximum matching of all non-leftover subtrees
to the roots, subject to the constraint that a non-leftover
subtree can only be matched to a root if the non-leftover
subtree and leftover tree of the root (or root itself) are
at distance at most B. If some non-leftover subtrees
cannot be matched, this is proof that no rooted tree
cover of weight at most B exists.

5) For each root, return a tree consisting of the root, the
leftover subtree of the root (if any) of weight at most
B, the single non-leftover subtree matched to the root
(if any) of weight at most 25, and a cost-minimal path
of weight at most B from the non-leftover subtree to
the leftover subtree (or root). The weight of each tree is
at most 4B, resulting in a rooted tree cover of weight
at most 45.

We enhance TREE COVER in two ways. While these
improvements do not affect its worst-case guarantee, they can
potentially reduce the weight of the returned rooted tree cover:

1) The smallest value of B for which TREE COVER finds
a rooted tree cover may not be the value of B resulting
in the rooted tree cover of the smallest weight. Thus,
the improved version of TREE COVER stores all rooted
tree covers that are computed during the binary search,
and returns the best one rather than the last one.

2) When TREE COVER computes the maximum match-
ing in Step 4, it does not take the weights of the
resulting trees into account. In the improved version of
TREE COVER, a non-leftover subtree can therefore be
matched to a root only if the non-leftover subtree and
leftover tree of the root (or root itself) are at distance
at most B, and the weight of the resulting tree is at
most B’. The improved version of TREE COVER then
searches for the smallest value B’ for which such a
matching can be found.

Figure 3 shows an example of MFC in operation. The left
figure shows the initial spanning tree for |R| = 5 after it
was split into one tree for each robot. The other figures show
the non-leftover subtrees (solid thick lines), the cost-minimal
paths from the non-leftover subtrees to the roots (dashed thick
lines) and the trajectories of the five robots (arrows). In this
case, there are no leftover subtrees. MFC sends all robots
through the narrow passage and thus utilizes them to cover

MFC (MST) MFC (Robot 1) MEFC (Robot 2)

MFC (Robot 3) MFC (Robot 4) MFC (Robot |R|)

STC and MFC
cover time = 18 cover time = 9

SE====llG====2

Fig. 4. MFC and MSTC versus STC

MSTC

the terrain on the other side, resulting in balanced travel costs
of the robots and a small cover time of 45. Figure 2 showed
already that MSTC sends only two robots through the narrow
passage, resulting in unbalanced travel costs of the robots and
a cover time of 73.

B. Properties

If there is only one robot, MFC reduces to STC and
thus minimizes the cover time. If there is more than one
robot, recall that MSTC reduces the cover time of STC by a
factor of at least 2 (or 3/2) for k > 3 robots (or two robots,
respectively). MFC cannot make such a strong worst-case
guarantee about how good its cover time is with respect to
the smallest cover time of a single robot.

Theorem 2: The cover time of MFC can be equal to the
cover time of STC, but cannot be worse than it.

Proof. The cover time of MFC cannot be worse than that of
STC because MFC makes every robot circumnavigate a tree
that can be extended to a spanning tree. On the other hand,
Figure 4 shows an example where the cover time of MFC is
equal to the cover time of STC (where, in the case of STC,
the second robot does not move), no matter how long the
corridor is, even though the cover time of MSTC is only half
the cover time of STC. []

However, MFC can make a much more powerful guarantee,
namely a worst-case guarantee about how good its cover
time is with respect to the smallest cover time for the number
of available robots: it is only a constant factor larger than
optimal.

Theorem 3: The cover time of MFC is at most a factor of
eight larger than optimal (plus a small constant).

Example of MFC

Proof. Let C be the weight of the rooted tree cover found by
TREE COVER, C' the weight of the weight-minimal rooted
tree cover, 1T the cover time of MFC, T the smallest cover
time, and Tul the smallest cover time if the robots only need
to cover the upper left small cells of all unblocked large cells.
First, because circumnavigating a tree of weight C' requires
entering 4C 4 4 small cells, we have T' < 4C + 4. Second,
by the approximation guarantee proved in [2], the tree cover
found by TREE COVER is at most four times larger than
optimal, so C' < 40, Third, because the weight-minimal
rooted tree cover (shifted slightly up and to the left) connects
exactly all of the upper left small cells, it provides a lower
bound on the smallest cover time if the robots only need to
cover the upper left small cells, so 20 < Tul. The factor of
two results from the fact that traversing each edge between
large cells requires entering two small cells. Finally, because
only a subset of the small cells need to be covered if the
robots only need to cover the upper left small cells, we have
Ta<T. Putting all of these inequalities together, we obtain
T <AC+4<16C +4 < 8Ty +4 < 8T +4. n

MSTC cannot claim that its cover time is only a constant
factor larger than optimal. Consider again Figure 2, but this
time for an arbitrary number of robots | R| in a terrain of size
|R| + 4 by |R| large cells instead of nine by five large cells.
The unblocked terrain of size |R|+2 by |R| large cells above
the wall contains 4|R|? + 8| R| unblocked small cells. MSTC
covers this terrain with only two robots, and its cover time
thus is at least 2|R|? 4 4|R|. On the other hand, the smallest
cover time is no larger than the travel cost needed for each
robot to completely circumnavigate its tree shown in Figure 3
(left to extreme right), which is 8| R| + 12. Thus, the cover
time of MSTC is at least a factor of (2| R|?+4|R|)/(8| R|+12)
larger than optimal, and this factor grows unboundedly as | R|
increases. MFC also has disadvantages. For example, even if
the robots start in different small cells, it is possible for several
robots to occupy the same small cell at the same time. Thus,
some robots might have to wait for other robots to leave their
cell if our assumption that several robots are able to occupy
the same small cell simultaneously is unjustified.

Empty Terrain

Outdoor-Like Terrain

Indoor-Like Terrain

Fig. 5. Screenshots of Different Kinds of Terrain
Terrain Robots | Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”
Max (Min) | Ratio | Max (Min) | Ratio Max (Min) | Ratio | Max_(Min) | Ratio Max (Min) | Ratio | Max (Min) | Ratio
Empty 2 30 4801 4878 (4731) 1.02 4877 (4730) 1.02 10538 (8666) 2.19 5269 (5048) 1.10 5337 (4410) 1.11 5269 (4346) 1.10
2 60 4801 4886 (4720) 1.02 4885 (4719) 1.02 10889 (8315) 227 5445 (5095) 1.13 5513 (4241) 115 5445 (4180) 1.13
2 none 4801 4888 (4725) 1.02 4886 (4723) 1.02 11057 (8147) 230 5529 (5161) 1.15 5602 (4168) 1.17 5529 (4107) 115
8 30 1200 1399 (838) 1.17 1396 (837) 1.16 7499 (73) 6.25 3752 (38) 3.13 3817 (45) 318 3751 (38) 3.13
8 60 1200 1415 (904) 118 1414 (902) 118 6923 (154) 577 3462 (77) 2.89 3539 (93) 295 3462 (77) 2.89
8 none 1200 1394 (956) 1.16 1391 (953) 1.16 6411 (248) 534 3210 (127) 2.68 3281 (146) 2.73 3206 (124) 2.67
14 30 685 841 (431) 1.23 836 (431) 1.22 7369 [6)] 10.76 3685 (2) 5.38 3756 (5) 548 3685 (2) 538
14 60 685 819 (522) 1.20 815 (522) 1.19 6774 (17) 9.89 3387 (8) 4.94 3461 (16) 5.05 3387 (8) 4.94
14 none 685 830 (513) 1.21 824 (511) 1.20 6005 (49) 8.77 3002 (25) 4.38 3072 (40) 4.48 3002 (25) 4.38
20 30 479 615 (307) 1.28 609 (307) 1.27 7224 3) 15.08 3612 (1) 7.54 3685 (3) 7.69 3612 (1) 7.54
20 60 479 604 (332) 1.26 599 (332) 1.25 6728 ()] 14.05 3364 (4) 7.02 3439 (9 7.18 3364 (4) 7.02
20 none 479 604 (321) 1.26 599 (319) 1.25 5591 (18) 11.67 2796 (9) 5.84 2867 (18) 5.99 2796 (9) 5.84
Outdoor 2 30 4321 4380 (4269) 1.01 4379 (4268) 1.01 9391 (7893) 2.17 4695 (4574) 1.09 4772 (4031) 1.10 4695 (3960) 1.09
2 60 4321 4382 (4266) 1.01 4381 (4265) 1.01 9556 (7728) 221 4778 (4627) 111 4854 (3957) 112 4778 (3890) 1.11
2 none 4321 4377 (4269) 1.01 4376 (4268) 1.01 9683 (7601) 224 4842 (4525) 112 4923 (3903) 1.14 4842 (3931) 112
8 30 1079 1263 (789) 1.17 1260 (788) 1.17 6985 (36) 6.47 3500 (18) 3.24 3561 (26) 3.30 3494 (18) 324
8 60 1079 1278 (790) 118 1274 (789) 118 6314 (113) 5.85 3158 (59) 293 3229 (70) 2.99 3157 (58) 293
8 none 1079 1247 (873) 1.16 1243 (871) 115 6032 (151) 5.59 3016 (76) 2.80 3099 (94) 2.87 3016 (76) 2.80
14 30 616 764 (450) 1.24 760 (451) 1.23 6759 (6) 10.97 3392 (3) 5.51 3452 (6) 5.60 3380 (3) 5.49
14 60 616 750 (482) 1.22 745 (481) 1.21 6311 27 10.25 3156 (13) 512 3228 (20) 524 3156 (13) 5.12
14 none 616 746 (464) 1.21 741 (463) 1.20 5497 (52) 8.92 2748 (26) 4.46 2819 (37) 4.58 2748 (26) 4.46
20 30 431 572 (280) 1.33 567 (281) 1.32 6723 3) 15.60 3362 (2) 7.80 3437 (3) 797 3362 (2) 7.80
20 60 431 557 (285) 1.29 552 (285) 1.28 6131 (10) 14.23 3066 (5) 7.11 3140 (9) 729 3065 (5) 7.11
20 none 431 551 (296) 1.28 547 (294) 1.27 5348 (23) 12.40 2674 (12) 6.20 2740 (18) 6.36 2674 (12) 6.20
Indoor 2 30 4090 4172 (4017) 1.02 4171 (4015) 1.02 8937 (7422) 2.19 4468 (4230) 1.09 4539 (3797) 1.11 4468 (3729) 1.09
2 60 4090 4196 (3995) 1.03 4194 (3994) 1.03 9243 (7116) 2.26 4621 (4290) 1.13 4690 (3648) 115 4621 (3585) 1.13
2 none 4090 4172 (4015) 1.02 4171 (4014) 1.02 9326 (7033) 228 4663 (4166) 1.14 4739 (3615) 1.16 4663 (3549) 1.14
8 30 1022 1232 (849) 1.21 1225 (849) 1.20 6501 24) 6.36 3262 (12) 3.19 3319 (17 325 3253 (12) 3.18
8 60 1022 1209 (846) 118 1202 (846) 118 6081 (86) 595 3042 (44) 298 3114 (55) 3.05 3041 (43) 2.98
8 none 1022 1209 (842) 1.18 1199 (839) 117 5815 (180) 5.69 2905 (90) 2.84 2981 (108) 292 2907 (90) 2.84
14 30 584 775 (438) 1.33 768 (439) 1.32 6348 “) 10.86 3192 (2) 547 3254 (4) 557 3190 (2) 5.46
14 60 584 748 (452) 1.28 741 (452) 1.27 5995 (22) 10.27 2999 (11) 5.14 3071 (16) 526 2998 (11) 513
14 none 584 732 (448) 125 725 (445) 1.24 5033 (46) 8.62 2517 (23) 431 2594 (31) 4.44 2517 (23) 431
20 30 408 617 (241) 1.51 608 (242) 1.49 6370 3) 15.61 3188 (1) 781 3248 (3) 7.96 3186 (1) 7.81
20 60 408 570 (270) 1.40 566 (271) 1.39 5732 (10) 14.05 2866 (5) 7.02 2939 (8) 720 2866 (5) 7.02
20 none 408 547 (279) 1.34 540 (277) 1.32 4696 (22) 1151 2348 (11) 575 2420 (17) 593 2348 (11) 575

Fig. 6.

VII. EXPERIMENTAL RESULTS

We now compare the cover times of MFC and MSTC
experimentally. We implemented the backtracking version
of MSTC as described in [5]. We evaluate them on two
different tasks, namely coverage [“cover”], and coverage with
the additional requirement that all robots return to their initial
small cells after coverage [“cover and return”]. Both MFC and
MSTC can easily be extended to the second task. For MFC,
each robot simply circumnavigates its tree until it reaches its
initial small cell. For MSTC, each robot that has covered its
cells backtracks until it reaches its initial small cell. Thus, in
both cases, the robots continue to move around the tree(s),
extending the original multi-robot coverage algorithms in a
very simple way.

We evaluate MFC and MSTC for both tasks in different
scenarios, namely different kinds of terrain [terrain], different
numbers of robots [robots], and different clustering of the
robots [clustering]. The size of the terrain is always 49 x 49
large cells. Figure 5 shows the three different kinds of terrain

Experimental Results for MFC and MSTC (“Max” = Cover Time)

used in the experiments. The first kind of terrain is empty
[empty]. The second kind is an outdoor-like terrain where
walls are randomly removed from a random depth-first maze
until the wall density drops to 10 percent, resulting in terrain
with random obstacles [outdoor]. The third kind is an indoor-
like terrain with walls and doors [indoor]. The position of
the walls and doors are fixed, but doors are closed with 20
percent probability.

We vary the number of robots from 2, 8, 14 to 20 robots.
A clustering percentage parameter x determines how strongly
their initial small cells are clustered. The first robot is placed
uniformly at random. Subsequent robots are then placed
within an area centered at the first robot, whose height and
width are (approximately) % of the height and width of the
terrain. (We ensure that no two robots will be placed in the
same small cell.) Thus, a small value of x results in a high
clustering of initial small cells, while x = 200 is equivalent to
no clustering at all [none]. For each scenario, we report data
that has been averaged over 100 runs with randomly generated

terrain (if applicable) and randomly generated initial small
cells. All cover times have been rounded to the nearest integer.

Table 6 reports for each scenario a lower bound that
represents an idealized cover time [ideal max]: it simply
divides the number of unblocked small cells by the number
of robots, and subtracts one, since the initial small cells of the
robots are automatically covered. The ideal cover time would
be the cover time if no robot needed to pass through already
covered small cells to reach other small cells that it needs to
cover. The table also reports the smallest [min] and largest
[max] travel cost of any robot for each combination of a
multi-robot coverage algorithm, scenario and task. The largest
travel cost is the cover time, and the difference between the
smallest and largest travel costs gives an indication of how
balanced the travel costs of the robots are. In addition, the
table also reports the ratio of the actual cover time and the
ideal cover time [ratio], giving an upper bound on how far
the actual cover time is away from optimum. The ratio is
indeed only an upper bound, since the ideal cover time may
not be achievable. For instance, several cells must be visited
by multiple robots in the example of Figure 3.

We make the following observations: The ratio of the cover
time and the ideal cover time increases with the number of
robots for both MFC and MSTC since the overhead (defined
as the number of already covered cells that a robot passes
through) increases with the number of robots. The ratio
increases very slowly with the number of robots for MFC, but
much faster for MSTC, implying that the cover time of MFC
remains close to optimal for large numbers of robots. The
ratio changes insignificantly with the amount of clustering
for MFC, but a lot for MSTC, implying that the cover time
of MSTC remains small if robots start in nearby cells — a
common situation since robots are often deployed or stored
together. The ratio changes insignificantly for MFC if the
task is changed from ‘“cover” to ‘“cover and return”, but
increases by about a factor of two for MSTC (because the
robot with the largest travel cost has to backtrack along most
of its trajectory), implying that all robots are close to their
initial small cells when coverage is complete for MFC, which
facilitates their collection or storage.

Overall, the ratio is small for MFC (at most 1.51) in all
tested scenarios, and in fact significantly smaller than the
factor of eight guaranteed by Theorem 3. The ratio is much
larger for MSTC (7.81 for “cover” and 15.61 for “cover and
return”). The reason is that MSTC does not balance the travel
costs of the robots as well, as evidenced by a large difference
between the smallest and largest travel costs of the robots.
When interpreting these results, however, one needs to keep
in mind that the cover times of both MFC and MSTC depend
on the initial spanning trees. Among the (large) number of
spanning trees for a given unit-cost grid graph, some may
yield significantly better cover times but we have not yet
experimented with different ways of constructing the initial
spanning trees.

We now discuss one important optimization. One can
reduce the cover times of both MFC and MSTC by moving

robots on cost-minimal paths to their initial small cells rather
than along the tree(s). This applies to “cover and return” when
the robots return to their initial small cells. For MSTC, it
also applies to “cover”, when the robots backtrack to their
initial small cells during coverage. We refer to a version of
MSTC with these improvements as optimized MSTC. We
observe that the improvements make almost no difference for
“cover” but a large difference for “cover and return,” where
the ratio is reduced by a factor of two and then no longer
differs significantly from the ratio for “cover.” However, even
without such optimizations, MFC continues to have much
smaller cover times than optimized MSTC, for both tasks
in all scenarios. The reason is that MFC takes the objective,
minimizing the cover time, already into account when finding
a tree for each robot to circumnavigate, whereas MSTC takes
the objective only into account when it decides how the robots
should circumnavigate the single tree.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new multi-robot coverage
algorithm, called Multi-Robot Forest Coverage (MFC). Our
experimental results show that the cover time of MFC is
smaller than the one of Multi-Robot Spanning-Tree Coverage
(MSTC) and close to optimal in all tested scenarios. It is
future work to make MFC robust in the presence of failing
robots, a property that MSTC already has. We intend to aug-
ment MFC to handle robot failures by replanning trajectories
for the functional robots that cover the remaining uncovered
small cells. Furthermore, it looks very promising to combine
the ideas behind MSTC and MFC, especially if several robots
start in nearby small cells. We also intend to investigate ideas
from other multi-robot coverage algorithms, such as [6] and

[7].
REFERENCES

[1] H. Choset. Coverage for robotics — a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31:113-126, 2001.

[2] G. Even, N. Garg, J. Koénemann, R. Ravi, and A. Sinha. Min-max tree
covers of graphs. Operations Research Letters, 32:309-315, 2004.

[3] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of Mathematics and Artificial Intelli-
gence, 31:77-98, 2001.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[S] N. Hazon and G. Kaminka. Redundancy, efficiency, and robustness
in multi-robot coverage (in print). In Proceedings of the International
Conference on Robotics and Automation, 2005.

[6] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Cooperative sweeping
by multiple mobile robots. In Proceedings of the International Confer-
ence on Robotics and Automation, pages 1744-1749, 1996.

[7]1 1. Rekleitis, G. Dudek, and E. Milios. ~Multi-robot exploration of
an unknown environment. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1340-1345, 1997.

[8] J. Svennebring and S. Koenig. Building terrain-covering ant robots.
Autonomous Robots, 16(3):313-332, 2003.

[9] L Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by
ant-robots using evaporating traces. IEEE Transactions on Robotics and
Automation, 15(5):918-933, 1999.

