
T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

it 1/2012

Distinguished Dissertations

Virtual Separation of Concerns:
Toward Preprocessors 2.01

Virtuelle Trennung von Belangen: Ein Schritt zu Präprozessoren 2.0

Christian Kästner, Laureate of the GI Dissertation Award 20102, Philipps University Marburg

Summary Conditional compilation with preprocessors like
cpp is a simple but effective means to implement variabil-
ity. By annotating code fragments with #ifdef and #endif
directives, different program variants with or without these
fragments can be created, which can be used (among others)
to implement software product lines. Although, preproces-
sors are frequently used in practice, they are often criticized
for their negative effect on code quality and maintainabil-
ity. We show how simple tool support – views, visualizations,
disciplined annotations, and variability-aware type systems –
can address these problems and emulate some benefits of
modularized implementations. Instead of separating source
code into files, we pursue a “virtual separation of concerns”.

��� Zusammenfassung Bedingte Kompilierung ist ein
einfaches und häufig benutztes Mittel zur Implementierung
von Variabilität in Softwareproduktlinien, welches aber auf-
grund negativer Auswirkungen auf Codequalität und Wart-
barkeit stark kritisiert wird. Wir zeigen wie Werkzeugunter-
stützung – Sichten, Visualisierung, kontrollierte Annotationen,
Produktlinien-Typsystem – die wesentlichen Probleme beheben
kann und viele Vorteile einer modularen Entwicklung emuliert.
Wir bieten damit eine Alternative zur klassischen Trennung
von Belangen mittels Modulen. Statt Quelltext notwendiger-
weise in Dateien zu separieren, erzielen wir eine „virtuelle
Trennung von Belangen“ durch entsprechende Werkzeugunter-
stüzung.

Keywords D.2.9 [Software: Software Engineering: Management]; Software product lines, variability, preprocessors, conditional
compilation, views, type systems ��� Schlagwörter Softwareproduktlinien, Variabilität, Präprozessoren, Bedingte
Kompilierung, Sichten, Typsysteme

1 Introduction
The C preprocessor cpp and similar lexical tools are
broadly used in practice to implement variability. By an-
notating code fragments with #ifdef and #endif directives,
these can later be excluded from compilation. With dif-
ferent compiler options, different program variants with
or without these fragments can be created.

The usage of #ifdef and similar preprocessor direc-
tives, as exemplified in the code fragment below, has

1This summary shares text with a previous overview: C. Kästner and
S. Apel. Virtual separation of concerns – A second chance for prepro-
cessors. Journal of Object Technology (JOT), 8(6):59–78, 2009.
2The dissertation of Dr. Christian Kästner has been awarded by the
GI Disseration Award 2010. The examiners were Prof. Dr. Gunter
Saake, Otto-von-Guericke-University Magdeburg, Prof. Don Batory,
The University of Texas at Austin, and Prof. Dr. Krzysztof Czarnecki,
University of Waterloo.

evolved into a common way to implement software prod-
uct lines. Commercial product-line tools like those from
pure::systems or BigLever explicitly support preproces-
sors. A software product line is a set of related software
systems (variants) in a single domain, generated from
a common managed code base [2]. For example, in the
domain of embedded data management systems, differ-
ent variants are needed depending on the application
scenario: with or without transactions, with or without
replication, with or without support for flash drives, with
different power-saving algorithms, and so forth. Variants
of a product line are distinguished in terms of features,
which are domain abstractions characterizing common-
alities and differences between variants – in our example,
transactions, replication, or flash support are features.
A variant is specified by a feature selection, e. g., the data-

42 it – Information Technology 54 (2012) 1 / DOI 10.1524/itit.2012.0662 © Oldenbourg Wissenschaftsverlag

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Virtual Separation of Concerns: Toward Preprocessors 2.0 ���

management system with transactions but without flash
support.

1 //Adapted code excerpt of Oracle’s
Berkeley DB

2 s t a t i c i n t _ _rep_queue_filedone(dbenv,
rep, rfp)

3 DB_ENV *dbenv;
4 REP *rep;
5 _ _rep_fileinfo_args *rfp; {
6 # i f d e f NO_QUEUE
7 COMPQUIET(rep, NULL);
8 COMPQUIET(rfp, NULL);
9 return (_ _db_no_queue_am(dbenv));

10 # e l s e
11 db_pgno_t first, last;
12 u_int32_t flags;
13 i n t empty, ret, t_ret;
14 # i f d e f DIAGNOSTIC
15 DB_MSGBUF mb;
16 # e n d i f
17 // over 100 further lines of C code
18 }
19 # e n d i f

By this point, many readers may already object to pre-
processor usage – and in fact, preprocessors are heavily
criticized in literature as summarized in the claim “#ifdef
Considered Harmful” [11]. Numerous studies discuss the
negative effect of preprocessor usage on code quality and
maintainability [4; 5; 11]. The use of #ifdef and similar
directives breaks with the fundamentally accepted con-
cept of separation of concerns and is prone to introduce
subtle errors. Many academics recommend limiting or
entirely abandoning the use of preprocessors and instead
implement product lines with ‘modern’ implementation
techniques that encapsulate features in some form of
modules, such as components and frameworks [2], fea-
ture modules [10], aspects [9], and others.

Here, we take sides with preprocessors. We show how
simple extensions of concepts and tools can avoid many
pitfalls of preprocessor usage and we highlight some
unique advantages over contemporary modularization
techniques in the context of product-line development.
Since we aim for separation of concerns without dividing
feature-related code into physically separated modules,
we name this approach virtual separation of concerns.

We do not intend to give a definitive answer on how to
implement a product line (actually, we are not sure our-
selves and explore different paths in parallel), but we want
to bring preprocessors back into the race and encourage
research toward novel preprocessor-based approaches.

2 Criticism
There are many arguments against lexical preprocessors,
but the two most common are their lack of separation of
concerns and their sensitivity to subtle errors.

Separation of concerns. Instead of separating all code
that implements a feature into a separate module (or
file, class, package, etc.), a preprocessor-based implemen-

tation scatters feature code across the entire code base
where it is entangled closely with the code of other fea-
tures. Lack of separation of concerns is held responsible
for a lot of problems: To understand the behavior of
a feature such as transactions or to remove a feature
from the product line, we need to search the entire code
base instead of just looking into a single module. There is
no direct traceability from a feature as domain concept to
its implementation. Tangled code of other features dis-
tracts the programmer in the search. Additionally, textual
annotations can entirely obfuscate the source code and
its control flow. Scattering and tangling feature code is
contrary to decades of software engineering education.

Sensitivity to subtle errors. Using preprocessors can eas-
ily introduce errors at different levels that can be very
difficult to detect. This already begins with simple syntax
and type errors. Developers are prone to simple errors
like annotating a closing bracket but not the opening
one as illustrated in the code excerpt above (the opening
bracket in Line 5 is closed in Line 18 only when feature
NO_QUEUE is not selected). We introduced this error
deliberately, but such errors can easily occur in practice
and are difficult to detect. The scattered nature of feature
implementations intensifies this problem. The compil-
ers cannot detect such errors, unless the developer (or
customer) eventually builds a variant with a problem-
atic feature combination (with NO_QUEUE in our case).
However, since there are so many potential variants (2n

variants for n independent optional features), we might
not compile variants with a problematic feature combi-
nation during initial development. Simply compiling all
variants is also not feasible, due to their huge number, so,
even simple syntax and type errors might go undetected
for a long time. The bottom line is that errors are found
only late in the development cycle, when they are more
expensive to fix.

3 Virtual Separation of Concerns
Instead of suggesting abandoning preprocessors in favor
of more ‘modular’ mechanisms, as most critics do, we
investigate how we can improve preprocessors. We have
developed tool support that achieves a virtual separation
of concern. Although we cannot claim to eliminate all
disadvantages, we will point out some new opportunities
and unique advantages that preprocessors offer.

3.1 Separation of Concerns
One of the key motivations of modularizing features is
that developers can find all code of a feature in one spot
and reason about it without being distracted by other
concerns. Clearly, a scattered, preprocessor-based imple-
mentation does not support this kind of lookup and
reasoning, but the core question “what code belongs to
this feature” can still be answered by tool support in the
form of views [6].

43

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Distinguished Dissertations

With relatively simple tool support, it is possible to
create an (editable) view on the source code by hiding
all irrelevant code of other features. That is, we filter
irrelevant files from a file browser and we hide irrelevant
code from editor windows (technically, this can be imple-
mented like code folding in modern IDEs). In the code
excerpt below, we show a view on feature NO_QUEUE.
Note that we cannot simply remove everything that is not
annotated by #ifdef directives, because we could end up
with completely unrelated statements. Instead, we need
to provide some context (italic and gray; e. g., in which
function is this statement located) and indicate hidden
code (‘[]’). Interestingly, similar context information is
also present in modularized implementations in the form
of extension points and interfaces.

1 static int _ _rep_queue_filedone([]) {
2 # i f d e f NO_QUEUE
3 COMPQUIET(rep, NULL);
4 COMPQUIET(rfp, NULL);
5 return (_ _db_no_queue_am(dbenv));
6 # e l s e
7 []
8 }
9 # e n d i f

With simple tool support for providing views, we
can even emulate challenging problems of modular ap-
proaches, such as the expression problem [12] or the
implementation of feature interactions [3]: Relevant
source code can simply appear in multiple views.

In addition to views on individual features, (editable)
views on variants are possible. That is, a tool can show
the source code that would be generated for a given fea-
ture selection and hide all remaining code of unselected
features. This goes beyond the power of modular ap-
proaches, with which the developers have to reconstruct
the behavior of multiple components/plug-ins/aspects in
their minds. Especially, when many fine-grained features
interact, from our experience, views can be a tremen-
dous help. Although some desirable features such as
separate compilation or modular type checking cannot
be achieved with views, in a similar context, Atkins et
al. have measured an increase in developer productivity
with views by 40% [1].

Beyond views, we also explored different visual repre-
sentations of annotations that obfuscate the source code
less. Among others we explored representing annotations
with background colors at tool level, instead of using tex-
tual directives at source-code level. In the example below,
we annotate a synchronization feature in Java code with
a background color. With these fine-grained annotations
at substatement level, the source code would have been
highly obfuscated with traditional #ifdef directives. Back-
ground colors and similar visual support are especially
helpful for long and nested annotations, which may oth-
erwise be hard to track. We are aware of some potential
problems of using colors (e. g., humans are only able to

distinguish a certain number of colors), but still, there
are many interesting possibilities to explore.

1 c l a s s Stack {
2 void push(Object o , Transaction txn) {
3 i f (o==null || txn==null) return;
4 Lock l=txn.lock(o);
5 elementData[size++] = o;
6 l.unlock();
7 fireStackChanged();
8 }
9 }

3.2 Sensitivity to Subtle Errors
Also various kinds of errors that can easily occur with
#ifdef annotations can be detected by adding tool sup-
port. We illustrate how disciplined annotations can help
regarding syntax errors and how new variability-aware
type systems can help regarding type errors. (We did not
focus on semantic errors, such as deadlocks, because they
are not a specific problem of annotations but can occur
equally in modular implementations.)

Disciplined annotations are an approach to limit the ex-
pressive power of annotations in order to prevent syntax
errors, without restricting the preprocessor’s applicabil-
ity to practical problems. Syntax errors arise from lexical
preprocessor usage that considers a source file as plain
text, in which every token (including individual brack-
ets) can be annotated. A safer way to annotate code is to
consider the underlying structure of the code and allow
programmers to annotate (and thus remove) only entire
syntactical program elements, such as classes, functions,
and statements. We say an annotation is disciplined, if it
aligns with the underlying structure. In our code example,
the DIAGNOSTIC annotation is disciplined as it aligns
with a local declaration, whereas the else branch of the
NO_QUEUE annotation is undisciplined. By enforcing
disciplined annotations, we can guarantee that variant
generation will not introduce syntax errors in any vari-
ant.

In addition, disciplined annotations enable a clear
mapping from features to code structures (instead of lex-
ical tokens), which is beneficial for many tools, including
views and type systems. Technically, disciplined annota-
tions require more elaborate tools, which have a basic
understanding of the underlying artifacts. Such tools
check whether annotations with a traditional preproces-
sor are in a disciplined form (this is equivalent to modular
approaches, in which each module can be checked for
syntax errors in isolation). Alternatively, there are tools
like CIDE [6] that manage annotations at tool level and
ensure that only structural elements can be annotated in
the first place.

Variability-aware type systems can check that all vari-
ants in the product line are well-typed (i. e., can be
compiled), without checking each variant in isolation [8].
This detects typical problems, such as functions or types
that are removed in some variants but still referenced,

44

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Virtual Separation of Concerns: Toward Preprocessors 2.0 ���

like in the code fragment below (such problems that are
less common in modular approaches since often common
interfaces and separate compilation are used).

1 i n t[] readData() { ... }
2 # i f d e f WRITE
3 i n t storeData(...) { ... }
4 # e n d i f
5 i n t main() {
6 readData();
7 ...
8 storeData(...);
9 }

Whereas a conventional type system checks whether it
can resolve all function calls, our variability-aware type
system knows about variability and checks whether all
function calls can be resolved in all variants. If both, ref-
erence and target are annotated with the same feature, the
reference can be resolved in every variant; otherwise, we
have to check the relationship between both annotations
(the call’s annotation must imply the target’s annotation,
a check that we can encode and solve efficiently with SAT
solvers). If there is any variant in which the target but not
the reference is removed (as in our example above), the
type system issues an error. That is, the entire product
line is checked in a single step by comparing annotations
of all invocations and their respective targets, instead of
checking every variant in isolation.

A variability-aware type system can efficiently check
entire product lines, usually with almost constant over-
head, avoiding the exponential explosion of checking
variants in isolation. Type checking annotations emu-
lates some form of modules and dependencies between
them. So instead of specifying that one component im-
ports another, we check these dependencies in scattered
code using relationships between features in a product
line. With disciplined annotations and variability-aware
type systems, we avoid or detect the typical problems that
make preprocessors so error prone.

3.3 Unique Advantages of Preprocessors
Despite all their problems, preprocessors also have unique
advantages over modular approaches.

First, and most important, preprocessors have a very
simple programming model: Developers annotate and op-
tionally remove code. Preprocessors are very easy to use
and understand. In contrast to modular approaches, no
new languages, tools, or processes have to be learned. We
conjecture that this simplicity drives practitioners to still
use preprocessors despite all disadvantages.

Second, preprocessors are usually language indepen-
dent and provide a uniform experience when annotating
different artifact types. We applied our tools mostly to
Java code, but explored also C code, C# code, Haskell
code, grammars, documentation and other artifact types.
Instead of providing a tool or language extension per

language (e. g., AspectJ for Java, AspectC for C, Aspect-
UML for UML), preprocessors (and most improvements)
can be applied uniformly across languages.

Finally, annotating code does not prohibit traditional
means of separation of concerns. In fact, it is reason-
able to still decompose the system into modules and use
preprocessors only where necessary. Preprocessors only
add additional expressiveness, where traditional mod-
ularization techniques come to their limits regarding
crosscutting concerns or multi-dimensional separation of
concerns [12]. In exactly those cases, views on scattered
code can be helpful for understanding. We even explored
automated refactorings from annotations to modular im-
plementations (and vice versa) [7].

3.4 Tools and Evaluation
We implemented all presented improvements in our pro-
totype product-line tool CIDE, available as open source
at http://fosd.net/CIDE. We evaluated the concepts and
their combinations with 13 non-trivial case studies, in-
cluding a product-line version of the database system
Berkeley DB. We proved correctness of the variability-
aware type system formally for a subset of Java.

To evaluate visualizing annotations with background
colors, we conducted controlled experiments.

Currently, we explore scaling variability-aware type
checking to the Linux kernel with over 10 000 features,
all implemented with #ifdef directives and build system
variability.

4 Conclusion
We have argued that preprocessors are not beyond hope
for product-line development. With little tool support,
we can address many problems for which preprocessors
are often criticized. Views on the source code emulate
modularity and separation of concerns, and disciplined
annotations and variability-aware type systems detect
implementation errors. Together, we name these ef-
forts virtual separation of concerns, because, even though
features are not physically separated into modules, a sepa-
ration is emulated by tools. While we do not eliminate all
problems of preprocessors (for example, separate compi-
lation is still not possible), preprocessors also have some
distinct advantages like ease of use and language unifor-
mity.

We do not have a definitive answer whether physi-
cal or virtual separation of concerns is better (and this
depends very much on what one measures). We are
investigating different approaches in parallel and have
a look at possible integration scenarios. With our work,
we want to encourage researchers to overcome their prej-
udices (usually from experience with cpp) and to consider
annotation-based implementations. At the same time, we
want to encourage current practitioners that are currently
using preprocessors to look for improvements. Since tool
support is necessary for product-line implementation
anyway, it is well worth investing also into tool support

45

http://fosd.net/CIDE

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Distinguished Dissertations

for new preprocessors and virtual separation of concerns.
Give preprocessors a second chance!

References

[1] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case
study of the Version Editor. In: IEEE Trans. Softw. Eng. (TSE),
28(7):625–637, 2002.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison-Wesley, Boston, MA, 1998.

[3] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Fea-
ture interaction: A critical review and considered forecast. In:
Computer Networks, 41(1):115–141, 2003.

[4] M. Ernst, G. Badros, and D. Notkin. An empirical analysis of C
preprocessor use. In: IEEE Trans. Softw. Eng. (TSE), 28(12):1146–
1170, 2002.

[5] J.-M. Favre. Understanding-in-the-large. In: Proc. of Int’l Work-
shop on Program Comprehension, page 29, Los Alamitos, CA, 1997.
IEEE Computer Society.

[6] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In: Proc. of Int’l Conf. Softw. Eng. (ICSE), pages 311–
320, New York, 2008. ACM Press.

[7] C. Kästner, S. Apel, and M. Kuhlemann. A model of refactoring
physically and virtually separated features. In: Proc. of Int’l Conf.
Generative Programming and Component Eng. (GPCE), pages 157–
166, New York, 2009. ACM Press.

[8] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. In: ACM Trans. Softw. Eng.
Methodol. (TOSEM), 2011. accepted for publication.

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-oriented programming. In: Proc.
of Europ. Conf. Object-Oriented Programming (ECOOP), LNCS
1241, pages 220–242, 1997. Springer-Verlag.

Preview on issue 2/2012

The topic of our next issue will be “Reactive Security” (Editor: U. Flegel) and it will contain the
following articles:

• Laskov, P. and Grozea, C.: Anomaly detection at supersonic speed

• Willems, C. and Freiling, F.: Reverse Code Engineering – State of the Art and
Countermeasures

• Riviere, L. and Dietrich, S.: Experiments with P2P botnet detection

• Eschweiler, S. and Gerhards-Padilla, E.: Platform-independent Recognition of Procedures
in Binaries based on simple Characteristics

[10] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In: Proc. of Europ. Conf. Object-Oriented Programming
(ECOOP), LNCS 1241, pages 419–443, 1997. Springer-Verlag.

[11] H. Spencer and G. Collyer. #ifdef considered harmful or porta-
bility experience with C news. In: Proc. USENIX Conf.,
pages 185–198, Berkeley, CA, 1992. USENIX Association.

[12] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N degrees of
separation: Multi-dimensional separation of concerns. In: Proc. of
Int’l Conf. Softw. Eng. (ICSE), pages 107–119, Los Alamitos, CA,
1999. IEEE Computer Society.

Received: October 1, 2011, accepted: October 9, 2011

Dr. Christian Kästner, Laureate of the GI Dis-
sertation Award 2010 is a PostDoc at Prof. Klaus
Ostermann’s Group for Programming Languages
and Software Engineering at the Philipps Univer-
sity Marburg, Germany. He received his Ph. D. in
Computer Science for his work on virtual separa-
tion of concerns in May 2010 from the University
of Magdeburg, Germany, where he was a mem-
ber of Prof. Gunter Saake’s Database Research
Group since 2007. For his dissertation, he re-
ceived the GI Dissertation Award. His research
focuses on correctness and understanding of sys-
tems with variability, including work on imple-
mentation mechanisms, tools, variability-aware
analysis, type systems, feature interactions, and
refactoring. He is the author or coauthor of over
fifty peer-reviewed scientific publications.

Address: Philipps University Marburg, Hans-
Meerwein-Straße, D-35032 Marburg, Germany

46

	1 Introduction
	2 Criticism
	3 Virtual Separation of Concerns
	3.1 Separation of Concerns
	3.2 Sensitivity to Subtle Errors
	3.3 Unique Advantages of Preprocessors
	3.4 Tools and Evaluation

	4 Conclusion
	References

