
Large-Scale Variability-Aware
Type Checking and Dataflow Analysis

Jörg Liebig,∗ Alexander von Rhein,∗ Christian Kästner,† Sven Apel,∗ Jens Dörre,∗ Christian Lengauer∗

∗ Department of Informatics and Mathematics, University of Passau
{joliebig,rhein,apel,doerre,lengauer}@fim.uni-passau.de

† Institute for Software Research, Carnegie Mellon University
kaestner@cs.cmu.edu

Technical Report, Number MIP-1212
Department of Informatics and Mathematics

University of Passau, Germany
November 2012



Large-Scale Variability-Aware
Type Checking and Dataflow Analysis

Jörg Liebig,∗ Alexander von Rhein,∗ Christian Kästner,† Sven Apel,∗ Jens Dörre,∗ Christian Lengauer∗
∗University of Passau, Germany
†Carnegie Mellon University, USA

Abstract—A software product line is a family of similar
software products that share a common set of assets. The advent
of proper variability management and generator technology
enables end-users to derive individual products solely based
on a selection of desired features. This gives rise to a huge
configuration space of possible products. But the high degree
of variability comes at a cost: classic analysis methods do not
scale any more; there are simply too many potential products
to analyze. Hence, researchers have begun to develop variability-
aware analyses, which exploit the similarities of the products of
a product line to reduce analysis effort. However, while being
promising, variability-aware analyses have not been applied to
real-world product lines so far. We close this gap by developing
and applying two full-fledged analyses to two real-world, large-
scale systems: the Busybox tool suite and the Linux kernel. We
report on our experience with making variability-aware analysis
ready for the real world, and with applying it to large-scale
product lines. A key result is that variability-aware analysis can
outperform even very limited sampling heuristics with respect to
analysis time.

I. INTRODUCTION

Software product lines have gained considerable momentum
in academia and industry. A software product line is a set of
similar software products tailored to the requirements of the
stakeholders of a particular domain, with the goal of reusing
assets among the individual products [16], [36]. Typically, the
variabilities and commonalities of the products of a product
line are expressed in term of features (i.e., units of behavior or
other product characteristics visible to end-users) and feature
dependencies are described in a feature model [22].

While there are different approaches to product-line engineer-
ing [16], [36], generator-based approaches have proved success-
ful [2], [17]. For example, the Linux kernel can be configured
by means of thousands of configurations options [39], thus
giving rise to a product line whose products can be generated
based on a user’s feature selection.1

While advances in variability management and generator
technology facilitate the development of product lines with
myriads of products [2], [17], this high degree of variability is
not without cost. What are the properties of the multitude of
products that can be generated? Unfortunately, classic analyses
do not scale to that “brave new world”. For systems such as the

1For simplicity, we use the terminology of the product-line community:
features represent configuration options, products are configured programs,
configurations are specified by feature selections, and a feature selection is
valid if it conforms to the feature model’s dependencies.

Linux kernel, it is not even possible to generate all products
in order to analyse them, because they have so many products.

Recently, researchers have begun to develop a new class of
analyses that are variability-aware [43]. The key idea is not to
generate and analyze individual products, but to directly analyze
the variable code base with the help of configuration knowledge.
In the case of the Linux kernel, one analyzes the source C
code including preprocessor directives, instead of applying the
preprocessor to generate individual kernel variants. The key
idea behind variability-aware analysis is to take advantage of
the similarities of the products of a product line.

There are several proposals for variability-aware analyses in
the literature, including parsing [26], type checking [3], [25],
[42], dataflow analysis [11], model checking [4], [15], [30],
and deductive verification [44]. However, while this work is
promising, variability-aware analyses have not been applied
to real-world product lines so far; previous work concentrated
either on the formal foundation or is limited with respect to
practicality, as we discuss in Section II.

As variability-aware analysis considers all code and all
variations of a product line simultaneously, it is unclear whether
it really scales to large-scale systems, although experiments on
small-scale case studies are promising. To explore the feasibility
and scalability of variability-aware analysis in practice, we have
developed two full-fledged variability-aware analyses for C:
type checking and liveness analysis. We applied each of them
to two real-world, large-scale systems: the Busybox tool suite
and the Linux kernel. In terms of scalability, we compare the
variability-aware analyses to state-of-the-art sampling strategies
used in practice—generating all products is not even possible in
reasonable time in our case studies. While sampling strategies
can substantially reduce analysis effort and time (by analysing
only a subset of products), it reduces the analysis coverage
(i.e., not all valid feature combinations are considered). In a
nutshell, we found that both variability-aware analyses scale
well—even outperform some of the sampling strategies—while
still attaining coverage of all products.

Beside quantitative results, we report on our experience with
making variability-aware analyses ready for the real world, and
we discuss observations that provide insights into the nature of
variability-aware analysis, and that can guide the development
of further analyses.

Overall, we make the following contributions:
• An experience report of how to implement scalable

variability-aware analyses based on an existing variability-



aware parsing framework [26].
• Practical, variability-aware type checking and dataflow

analysis tools for product lines written in C, in which
variability is expressed with preprocessor directives and
the build system.

• A series of experiments that compare the performance
of variability-aware analysis with the performance of
corresponding state-of-the-art sampling strategies based
on two real-world, large-scale case studies.

• A discussion of our experience with applying variability-
aware analysis in practice, and of patterns we encountered
in our investigation.

The sample systems and all experimental data are available
on the supplementary website: http://fosd.net/vaa .

II. BACKGROUND AND RELATED WORK

Early approaches of product-line analysis (mainly testing)
rely on limited, well-scoped sets of products that are in the
focus of development and maintenance [36]. Such a set, called
product map [7] or product portfolio [36], is a subset of
all possible products of a product line that targets specific
customers and that is regularly analyzed.

With the advent of proper variability management and
generator technology [2], [17], the vision of creating highly
customized products, only based on a user’s specification,
without considerable overhead, came into reach. However,
this push-button approach comes at the cost of an exploding
space of possible products. To address this challenge, a whole
new class of product-line analyses has been developed. These
analyses can be classified according to the strategy of how
they cope with the possibly huge variant space of a product
line [43]. Since features can interact, it is usually not possible
or sufficient to analyze features in isolation, but also their
combinations need to be analyzed. In our experiments, we
consider two strategies: product-based analysis with sampling
and variability-aware analysis, which we discuss next.

Product-based analysis and sampling: In a brute-force
product-based strategy, every product of the product line is
generated and analyzed individually. However, due to the
sheer size of real-world product lines (the number of products
can grow exponentially with the number of features), this
is infeasible in practice. To handle this problem, product-
line developers typically analyze only a subset of products,
called the sample set. The idea is that, even though we
cannot analyze all products individually, we can still strive
for analyzing a representative sample set to be able to draw
informed conclusions about the entire product set (e.g., in
terms of defect probability and non-functional properties). The
sample set is either selected by domain experts or automatically
generated according to a sampling heuristic. Researchers and
practitioners have proposed different sampling heuristics, of
which we selected three that are most relevant in practice:
single conf, pairwise, and code coverage, which we motivate
and explain next.

The simplest sampling heuristic, called single conf, is to
analyze only a single product that contains most, if not all, of

Product line

(reusable artifacts and 

config. knowledge)

Results with 

variability

(for all products)

Result

(for one product)

(4a) generate 

  
(4b) aggregate

(1) generate

(2) traditional

analysis

(3) variability-aware

     analysis

Product

(generated artifacts)

Fig. 1: The underlying pattern of variability-aware analysis.

the features of the product line. The benefit of this heuristic is
that we need to analyze only a single product, hence it is fast.
By selecting many features, the heuristic tries to cover a large
part of the product-line’s implementation, however, it cannot
cover mutually exclusive features or intricate interactions
specific to individual feature combinations [21]. According
to Dietrich et al. [19], in the Linux development community,
it is common to test only one predefined product with most
features selected, called allyes-config in Linux.

The pairwise sampling heuristic is motivated by the obser-
vation that many faults in software systems are caused by
interactions of, at most, two features [12], [29], [35], [38].
Using pairwise sampling, the sample set contains a minimal
number of products that cover all pairs of features, whereby
one product is likely to cover multiple feature pairs. For our
experiments, we use the tool of Henard et al. to compute
the sample set, as described in Section IV-C. Following the
heuristic, we can discover first-order interactions (between
two features, which are most common [29]), but may miss
higher-order interactions (between more than two features).

Finally, code-coverage sampling is inspired by the statement-
coverage criterion used in software testing [46], which states
that a test suite must execute every statement of a program, at
least, once. Code-coverage sampling in product-line engineering
pursues a similar approach [41], but is targeted at product
generation. It selects a minimal sample set of products, such that
every lexical code fragment of the product line’s code base is
contained in at least one product (but not necessarily all possible
combinations of individual code pieces are checked). For an
overview of other sampling strategies, some of which require
more sophisticated upfront analyses, see a recent survey [43].

Variability-aware analyses: Variability-aware analyses
(also known as family-based analyses) take a different approach
to cope with the possible huge variant space of a product line.
The key idea is to take advantage of the similarities between
the products of a product line in order to speed up the analysis
process. Although individual variability-aware analyses differ
in many details, an idea that underlies all of them is to analyze
code that is shared by multiple products only once.

Variability-aware analyses do not operate on generated
products, but on the reusable code artifacts and configuration
knowledge, which are the input for the product generator,
as illustrated in Figure 1. Depending on the implementation
technology, reusable artifacts are some kind of components or
modules that can be composed in different combinations or
code fragments that are conditionally included from a common
code base [24]. Our experiments are based on systems that

http://fosd.net/vaa


express variability using the latter approach: C code with
conditionally included or excluded code fragments, controlled
by preprocessor directives such as #ifdef and #define.

As reusable artifacts such as C code with preprocessor
directives cannot be processed directly by standard analyses,
the code or the analysis has to be prepared—it has to be made
variability-aware (preprocessing does not help, as it removes
variability). There are different approaches to do so. First,
one can adapt existing analyses to empower them to work at
the level of variable and reusable artifacts such as individual
components. This approach has been pursued for adapting
existing type-checking, model-checking, and testing techniques
to product lines [3], [5], [15], [25], [28], [30]. As an example,
Apel et al. compared variability-aware model-checking with
several sampling strategies; they found that variability-aware
analysis outperforms existing sampling strategies both in
terms of verification time and number of detected errors [5].
Second, one can encode variability in the artifact code (or
representations thereof) to analyze. For example, for applying
model checking and deductive verification to entire product
lines, it has been proposed to create a product simulator for
a given product line, which incorporates code and behavior of
all individual products, as has been used in variability-aware
model checking, deductive verification, and testing [4], [28],
[37], [44]. Then, the analysis is applied to the simulator. The
variability-aware parsing framework, on which we base our
implementations, is a special instance of a lifted analysis [26];
given C code with preprocessor directives, it produces a single
abstract syntax tree that covers the code of all products, as we
will discuss in Section III. With the knowledge of which parts of
the tree correspond to which feature combinations, a variability-
aware analysis can simultaneously analyze all products.

Several instances of variability-aware analysis have been
proposed in the literature; we discuss the analyses that
influenced our work. In earlier work, we have developed two
variability-aware type systems for Featherweight Java, a subset
of Java [3], [25]. While the variability-aware type checker we
present and evaluate here is inspired by this previous work, it
targets a full-fledged language and real-world systems. Only this
practical setting allows us to explore the tradeoffs and merits of
variability-aware analysis, for example, with regard to specific
analysis patterns (which we introduce later), which have not
been considered (or only implicitly) in previous work. Other
researchers have sketched similar strategies [6] and developed
variability-aware type systems for the lambda calculus [13] and
dialects of Java [18], [42]. A prior version of our type checker
has been used in a study on variable module systems, but
without empirical assessment and comparison to product-based
analysis and sampling [27].

As with type checking, researchers proposed variability-
aware approaches to a dataflow analysis. Closest to our
work, Braband et al. compared three different algorithms for
variability-aware, intra-procedural dataflow analysis for Java
against a brute-force product-based approach [11]. Similarly,
Bodden proposed an approach to extend an existing information-
flow analysis framework to make it variability-aware [10]. Both

approaches are limited to an academic setting in which the
input Java programs contain #ifdef-like variability annotations
managed by a research tool; to the best of our knowledge,
there are no substantial product lines that use this technique.
Furthermore, both approaches make limiting assumptions on
the form of variability (in particular, type uniformity [25] and
annotation discipline [23], [32]), which do not hold in real-
world product lines [31], [32]. For a detailed overview of
existing variability-aware analyses, see a recent survey [43].

III. VARIABILITY-AWARE ANALYSIS

Although variability-aware analysis has been applied in
academic projects, showing promising performance results,
it has never been applied to real-world product lines. Since
most industrial product lines are implemented in C and use
#define and #ifdef directives of the C preprocessor (and a
build system) to implement compile-time variability, we set
the goal of implementing two variability-aware analyses for C
and of applying them to large-scale projects. In this section,
we describe our analyses and our experience before we get to
our evaluation with Busybox and Linux in Section IV.

A. Variable Abstract Syntax Trees and Presence Conditions

Most static analyses are performed on an abstract syntax tree
(AST) of the program to analyze. Since we want to analyze
entire product lines, we construct an abstract syntax tree that
contains all variability information of all products and the
corresponding configuration knowledge.

The desired variable AST is like a standard AST, but it
contains additional nodes to express variation. A Choice node
expresses the choice between two or more alternative subtrees
(similar to ambiguity nodes in GLR parse forests [45] and
explored formally in the choice calculus [20]). One alternative
of a choice may be empty (ε); this denotes an optional entry. We
illustrate Choice nodes in Figure 2. In principle, we could use a
single Choice node on top of the AST with one gigantic branch
per product; but the variable AST is more compact, because it
shares parts that are common across multiple products (e.g., in
Figure 2, we store only a single node each for the declaration of
r and the function name foo, which are shared by all products).
It is this sharing and keeping variability local, which makes
variability-aware analysis faster than a brute-force approach.

To reason about variability, we additionally need to incorpo-
rate configuration knowledge, more exactly, which subtrees of
the variable AST are included in which products. To this end,
we annotate subtrees with presence conditions. Propositional
formulas are sufficient to describe presence conditions and
efficient to reason about using SAT solvers in practice [34]. As
an example, in Figure 2, parameter b is only included if feature
B is selected, whereas the condition of the if statement has two
alternative subtrees depending on whether feature A is selected.
In our examples, presence conditions are atomic and refer only
to a single feature, but more complex presence conditions, such
as A ∧ ¬(B ∨C) are possible. By storing presence conditions
in Choice nodes, we can derive the abstract syntax of every
product of the product line, given the feature selection for



0 #ifdef A #define EXPR (a < 0)
1 #else #define EXPR 0
2 #endif
3
4 int r;
5 int foo(int a #ifdef B , int b #endif) {
6 if (EXPR) {
7 return −b;
8 }
9 int c = a;

10 if (c) {
11 c += a;
12 #ifdef B c += b; #endif
13 }
14 return c;
15 }

FunctionDef

int foo int a Stmt-Block

if

Condition Then-Block

return -b;
a < 0 0

Choice A

int b

Choice B

ε

int r

TranslationUnit

9

10

11

12
14 B

B  B¬

Fig. 2: Code example (left), excerpt of the corresponding variable AST (middle), and excerpt of the corresponding variable
CFG (right); for brevity, we underlined and integrated #ifdef directives within single code lines.

that product. Compact representations of variable ASTs in
this or similar forms are commonly used in variability-aware
analyses [11], [20], [25], [26].

B. Variability-Aware Parsing

Before we can actually analyze the AST, we need to create
it from the source code by parsing. The parsing step has been
the main obstacles causing variability-aware analysis being
used only in academic environments such as CIDE [23] so far.
Whereas parsing C code (and parsing most other languages) of a
single product is well established, parsing an entire product line
with its variability is problematic. To make matters worse, in the
C preprocessor, conditional-compilation directives (#ifdef, etc.)
interact with the build system, with macros (#define, etc.), and
with file-inclusion facilities (#include), across file boundaries,
in intricate ways.

It took us nearly two years to figure out a parsing process
that preserves the variability from C preprocessor directives
and build scripts and represents it in a variable AST, as
shown in Figure 2.2 Finally, we found and implemented a
sound and complete solution as part of the TypeChef project
(following the variability-awareness equivalence from Figure 1):
We have built a variability-aware parser for C based on a special
variability-ware lexer and parser-combinator framework [26].
By combining TypeChef with previous work on feature-model
extraction [9], [40] and build-system analysis [8], we are able to
produce variable ASTs for substantial systems such as Busybox
and the Linux kernel, both of which use the C preprocessor
and the Kbuild build system to express variability (and Kconfig
to describe a variability model). For details on the parser, see
the corresponding publication [26]; in the remainder of this
paper, we simply use this parser framework as a black box
and work on the resulting variable ASTs.

C. Variability-Aware Type Checking

A standard type-checking algorithm for C traverses the AST,
collects declarations in a symbol table, and attempts to find
types for all expressions. In principle, a variability-aware type

2Note how we resolve macro EXPR with two alternative expansions during
parsing.

checker works just the same, but covers all products, and it
must be aware of variability in each of the following three
steps (cf. Fig. 1).

First, a symbol may only be declared in some products
or may even have alternative types in different products.
Therefore, we extend the symbol table (similar to the proposal
of Aversano et al. [6]), such that a symbol is no longer mapped
to a single type, but to a conditional type (a choice of types or
ε). We illustrate a possible encoding of a conditional symbol
table in Table I. If a symbol is declared in all products, we
do not need Choice nodes; however, if symbol is declared in
a subtree of the AST that is only reachable given a presence
condition, we include the symbol and type in the symbol table
just under that condition. The same way, we may declare a
symbol with different types in different products. In our running
example, function foo has two alternative types, depending
on whether feature B is selected. Similarly, we also made the
table for structures and enumerations in C variability-aware.

Second, during expression typing, we need to lookup and
compare variable types (choices of types). For example, looking
up a name in a symbol table may return a variable type. When
checking that an expression (for example, the condition of
an if statement) has a scalar type, we need to check that all
alternative choices of the variable type are scalar. If the check
fails only for some alternative results, we can report a type
error for the product line and pinpoint the error to a subset
of products, as characterized by the corresponding presence
condition. Similarly, an assignment is only valid if the expected
(variable) type is compatible with the provided (variable) type
in all products. Therein, an operation on two variable types
can, in the worst case, result in the Cartesian product of the
types in either case, resulting in a variable type with many
alternatives. All other type checks are essentially implemented
along the same lines. In our running example, we would report
a type error in Line 7, because variable b cannot be resolved in
products without feature B (see also the symbol table in Table I).

Third, we can use the feature model of the product line (if
available) to filter all type errors that occur only in invalid
products, according to the feature model. To this end, we
simply check whether the presence condition of the type error



Symbol (Conditional) Type Scope

r int 0
foo Choice(B, int→ int→ int, int→ int) 0
a int 1
b Choice(B, int, ε) 1

TABLE I: Conditional symbol table at Line 5 of our running
example.

is satisfiable when conjoined with the feature model (checked
with a standard SAT solver).

D. Variable Control-Flow Graphs

To perform dataflow analysis, we first need to construct a
control-flow graph (CFG). A CFG is a graph that represents
all possible execution paths of a program. Nodes of the CFG
correspond to instructions in the AST, such as expressions,
assignment statements, or function calls; edges correspond
to possible successors according to the execution semantics
of the programming language used. A CFG is a conservative
static approximation of the actual behavior of the program.
As with type checking, we need to make CFGs variable to
cover all products of a product line.

To create a CFG for a single program, we need to compute
the successors of each node (succ: Node→Set[Node]). In a
product line, the successors of a node may differ in different
products, so we need a variability-aware successor function
that may return different successor sets for different products
(succ: Node→Choice[Set[Node]], or, equivalently but with more
sharing, succ: Node→Set[Choice[Node]]). Using the result of
this successor function, we can determine for every possible
successor a corresponding presence condition, which we store
as annotation of the edge in the variable CFG.

Let us illustrate variable CFGs by means of the optional
statement in Line 12 of our running example. In Figure 2 (right),
we show an excerpt of the corresponding variability-aware
CFG (node numbers refer to line numbers of the code listing).
The successor of the instruction c += a in Line 11 depends on
the feature selection: if feature B is selected, statement c += b
in Line 12 is the direct successor; if feature B is not selected,
return c in Line 14 is the (only) successor. Technically, we
add further nodes to the result set of the successor function,
until the conditions of the outgoing edges cover all possible
products, in which the source node is present (checked with a
SAT solver). By evaluating the presence conditions on edges,
we can reproduce the CFG of each product, as we would have
computed them in the brute-force approach.3

3Alternatively, we could have dropped the presence conditions on edges and
express variations of the control flow with if statements. On an if statement, a
normal CFG does not evaluate the expression, but conservatively approximates
the control flow by reporting both alternative branches as possible successor
statements (e.g., in Figure 2, both nodes 11 and 14 may follow node 9).
Such sound but incomplete approximation is standard practice to make static
analysis tractable or decidable. However, for static variability, we do not want
to lose precision, to preserve the equivalence of Figure 1. Furthermore, we
have only propositional formulas to decide between execution branches, which
makes computations decidable and comparably cheap, so we decided in favor
of presence conditions on edges.

Line Uses Defines In Out

9 {a} {c} {a, bB} {a, bB, c}
10 {c} {} {a, bB, c} {a, bB, c}
11 {a, c} {c} {a, bB, c} {bB, cB∨¬B}
12 {bB, cB} {cB} {bB, cB} {cB}
14 {c} {} {c} {}

TABLE II: Result of liveness computation of code example in
Figure 2; aB means that variable a is in the result set if feature
B is selected.

E. Variability-Aware Liveness Analysis

Based on the variable CFG, we have implemented variability-
aware liveness analysis, a standard dataflow analysis [1].
Liveness analysis computes all variables that are live (that
may be read before written again) for a given statement. Its
result can be used, for example, to conservatively detect or
eliminate dead code. In a product line, warnings about dead
code that occurs only in specific products are interesting for
maintainers; corresponding problems are regularly reported
as bugs.4 So, again, our goal is to make liveness analysis
variability-aware to cover entire product lines (cf. Fig. 1).

Liveness analysis is based on two equations: uses computes
all variables read, and defines computes all variables written
to. While, in a traditional liveness analysis, both equations
return sets of variables, in variability-aware liveness analysis,
both return variable sets (a choice of sets or a set with
optional entries). The computation of liveness is a fixpoint
algorithm that consists of two equations, in and out, which
denote variables that are live before respectively after the
current statement. The result of in and out is variable again.

In Table II, we show the results of variability-aware liveness
analysis for our running example. We show the result of each
equation as a set of variables together with their presence
condition as subscript. For example, only c is live in the return
statement on Line 14. The variables a and bB are live in the
declaration statement on Line 9 because, considering the control
flow from Line 9 to 12 (9 → 10 → 11 → B 12), both
variables can be reached.

F. Keeping Variability Local

Over the years, we have gained considerable experience with
making various analyses variability-aware (see Section II). We
learned that it is essential to preserve sharing during analysis
and to keep variability as local as possible in order to be able
to scale the analysis as we have done here. Specifically, two
patterns emerged that we have used in many of these analyses:
late splitting and early joining. We illustrate them using our
type checker and liveness analysis; this will also explain why
the variability-aware solution typically outperforms a brute-
force approach, as we will demonstrate in Section IV.

In contrast to a brute-force approach, variability-aware
analyses are conceptually much faster because they do not
recheck common parts of the source code over and over

4e.g., https://bugzilla.kernel.org/show bug.cgi?id=1664.

https://bugzilla.kernel.org/show_bug.cgi?id=1664


again. In our running example, there are two features and four
products. A brute-force approach would recheck all common
parts, such as int c = a, in every product. In variability-aware
analyses, we attempt to check common parts only once. Of
course, where variability occurs we need to check all variations.
But variability tends to be local already after parsing in the
variable AST; it leaks only moderately into other parts of the
program and remains largely orthogonal between features. So,
variability-aware analysis does not need to consider all possible
feature combinations as the brute-force strategy does.

The first pattern of late splitting means that we perform
the analysis without additional variability until we encounter
variability. For example, we process the declaration of symbol r
in Line 4 of our running example only once. Also, when we use
symbol r later, it has just one type. We only split and consider
smaller parts of the product space when we actually encounter
variability, for example, in the declaration of parameter b. Late
splitting is similar to path splitting in “on-the-fly” model check-
ing, where splitting is also only performed on demand [14].

However, we also keep variability local in intermediate
results. For example, instead of copying the entire symbol
table for a single variable entry, we have only a single
symbol table with conditional entries (technically, we use
Map[String,Choice[Type]] instead of Choice[Map[String,Type]]
to achieve this locality). Therefore, even after the conditional
declaration of parameter b, we only look up a single type for
a or r, independent of feature B.

Finally, due to locality, we can join intermediate results early
in many cases. For example, when determining the type of the
expression in Line 5 of our running example, we get a choice
of two scalar types (Choice(A, int, int)). For further processing,
we can join this variable type to a single type int. So, even if
we need to compute the Cartesian product on some operations
with two variable types, the result can often be joined again
to a more compact representation. This way, variability from
parts of the AST leaks to other parts if and only if variability
actually makes a difference in the internal representations of
types, names, or other structures. Also, we need to consider
only combinations of features that occur in different parts of
the AST if they actually produce different (intermediate) results
when combined, otherwise the results remain orthogonal.

We can observe the same local variability with late splitting
and early joining in CFG construction and dataflow analysis
as well. We need to split only when we actually encounter
variability, otherwise we compute invariable successor sets,
in sets, out sets, and so forth. Again, we encode variability
locally in intermediate data structures, which allows us to
join intermediate results. For example, if a node has the same
successor with presence conditions B and ¬B, we can return
a single successor with presence condition B ∨ ¬B = true
(cf. computation of out in Line 11 of our running example).
Our experience shows that joining is even more common in
CFG construction than in dataflow analysis and type checking,
because we can often join variable intermediate results again
after processing an optional statement, so the effect of a variable
statement typically remains quite local.

IV. EMPIRICAL STUDY

To evaluate its feasibility and scalability, and to learn
about the merits and challenges of large-scale variability-aware
analysis, we compared our variability-aware implementations
of type checking and liveness analysis with corresponding
product-based analyses. Specifically, we used three different
state-of-the-art sampling heuristics to generate products for
analysis (single conf, code coverage, and pairwise; cf. Sec. II).
A brute-force generation of all possible products was infeasible
as it would have required excessive execution time.

Our evaluation is based on two real-world, large-scale soft-
ware systems—a fact that increases external validity compared
to previous work, which concentrated on formal foundations
and which was backed on comparatively small and academic
case studies (cf. Sec. II).

A. Hypotheses and Research Questions

Based on the goals and properties of variability-aware and
product-based analyses, we pose two hypotheses and two
research questions.

1) Variability-aware vs. single conf: Analyzing all products
simultaneously using variability-aware analyses is slower
than analyzing a single product that contains all features.
One reason is that the variable AST covering all products
is larger than the AST of any single product, including
the largest possible product.

H1 The execution times of variability-aware type
checking and liveness analysis are larger than
the times to analyze the products derived by the
single configuration sampling heuristic.

2) Variability-aware vs. pairwise: The pairwise heuristics
assumes that most unwanted interactions in product lines
occur between two features. Therefore, it is reasonable
to select a test suite that covers as many feature pairs
as possible, while keeping the test suite relatively small.
While previous work has shown that pairwise sampling
is a reasonable approximation to analysis of all prod-
ucts [33], our experience is that such sampling heuristic
still generates quite large test suites. Hence, we expect a
variability-aware analysis to outperform the corresponding
product-based approach based on pairwise sampling:

H2 The execution times of the variability-aware type
checking and liveness analysis are significantly
smaller than the times to analyze all the products
derived by pairwise sampling.

3) Variability-aware vs. code coverage: With respect to the
comparison of variability-aware analyses and product-
based analyses based on code-coverage sampling, we
cannot make any informed predictions with respect to
analysis time. The code-coverage sampling algorithm
generates configuration sets depending on the usage of
features in the analyzed C-files. Because we do not know
details about feature usages, we cannot predict how many
products will be generated and how large these will be.



Therefore we cannot state a hypothesis and pose a research
question instead.

RQ1 How do the execution times of variability-aware
type checking and liveness analysis compare to
the times for analysis of the products derived by
code-coverage sampling?

4) Scalability: Finally, we pose the question of the scalability
of variability-aware analysis.

RQ2 Does variability-aware analysis scale to systems
with thousands of features?

The background for questioning scalability is that
variability-aware analysis reasons about variability by
solving SAT problems (cf. Sec. III). Generally, solving
SAT problems is NP-hard, but previous work has shown
that the problems that arise in variability-aware analysis
are typically tractable for state-of-the-art SAT solvers [34],
and that caching can be an effective optimization [3].

B. Sample Systems

To test our hypotheses and to answer our research questions,
we selected two sample systems for evaluation. We looked
for publicly available systems (for reproducibility) that are of
substantial size, actively maintained by a community of devel-
opers, used in real-world scenarios, and that implement compile-
time variability with the C preprocessor. As a prerequisite, the
system must be developed as a product line or, at least, provide
a variability model that describes features and their valid
combinations (a requirement which excluded several systems
from our previous study [31]). Eventually, we selected Busybox
and Linux. In this context, we would like to acknowledge the
pioneering work on feature-model extraction [9], [40] and build-
system analysis [8], which enabled us, for the first time, to
conduct two substantial, real-world case studies on variability-
aware analysis.
• The Busybox tool suite is a medium-sized product line

that reimplements most standard Unix tools for resource-
constraint systems, especially in the embedded-systems
domain. With 792 features it is highly configurable;
most of the features refer to independent and optional
subsystems. We analyze Busybox version 1.18.5 (522
files and 206 815 lines of source code, measured with
cloc (http://cloc.sf.net)).

• The Linux kernel (x86 architecture, version 2.6.33.3) is a
large-sized product line of configurable operating-system
kernels with millions of installations worldwide, from high-
end servers to mobile phones. It is highly configurable
with 6 918 features. In a previous study, we identified
the Linux kernel as one of the largest and most complex
publicly available product lines [31]. It has 7 665 source
code files with 6.7 million lines of code. Note that already
the feature model of Linux is of substantial size: the
extracted formula in conjunctive normal form has over
60 000 variables and nearly 300 000 clauses; answering a
single satisfiability question requires over half a second
on our machines.

Type
Checking

Liveness
Analysis

Type
Checking

Configurations

AST
Variable AST

Product
Line

Variable CFG

CFG

Liveness
Analysis

Fig. 3: Experimental setup.

C. Experimental Setup

We use TypeChef as underlying parsing framework. As
explained in Section II, TypeChef generates a variable AST per
file, in which choice nodes represent optional and alternative
code. Our implementations of variability-aware type checking
and liveness analysis are based on variable ASTs, and they are
integrated into and deployed as part of the TypeChef project.
The entire project is implemented in Scala.

To avoid bias due to different implementations of the
analyses, we compare different executions of our own im-
plementation. To analyze an individual product, we run the
same analysis on an AST without variability. We create this
AST for a given configuration by pruning all irrelevant branches
of the variable AST, so that no Choice nodes remain. Since
there is no variability in the remaining AST, the analysis never
splits and there is no overhead due to SAT solving, because
the only possible presence condition is true.

Due to the sheer size of Busybox and Linux, we could
not analyze all possible products individually in a brute-force
fashion.5 Instead, we used the three sampling strategies of
Section II: single conf, pairwise, and code coverage.

For single-conf sampling, we used Linux’s allyes configura-
tion, as provided by the Linux configuration tool KConfig.6

For Busybox, we created a large configuration using the
configuration toolkit (we selected as many features as possible).

For the generation of pairwise product configurations, we
employed Henard’s tool,7 which uses a genetic algorithm to
generate product configurations that cover as many pairs of
features as possible. To evaluate the coverage of the resulting
set of products, the tool also computes the number of feature
pairs that are valid in at least one product. For Busybox, we
need only 20 product configurations to achieve a coverage rate
of 97 % of all valid feature pairs. For Linux, we were not able
to compute how many valid feature pairs exist due to the size
of the feature model; so based on recommendations of Henard
et al., we set the number of products for sampling to 50.

For code-coverage sampling, we computed a set of product

5In fact, in an attempt to compute the number of possible products of
Busybox, we encountered an integer overflow, which means that the number
exceeds 232.

6http://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
7http://research.henard.net/SPL/

http://cloc.sf.net
http://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
http://research.henard.net/SPL/


configurations per file, such that every piece of code is present
in at least one product of the sample. We reimplemented the
conservative algorithm of Tartler et al. for this task [41].8

For intraprocedural liveness analysis, it would have been
more efficient to apply brute-force or sampling strategies
to individual functions, not to files, as done by Braband et
al. for Java product lines [11]. Unfortunately, preprocessor
macros in C rule out this strategy, as we cannot even parse
functions individually without running the preprocessor first
or without performing full variability-aware parsing. In our
running example, we would not even have noticed that function
foo is affected by feature A, because variability comes from
variable macros defined outside the function. Unfortunately,
variable macros defined in header files are quite common in
C code [26]. Hence, since there is no practical solution for
function-level analysis, we used samples at file level.

In Figure 3, we illustrate the experimental setup. Depending
on the sampling strategies one or multiple configurations are
checked. For each file of the two sample systems, we measured
the time spent in type checking and liveness analysis, each
using the variability-aware approach and the three sampling
strategies (the latter consisting of multiple inner runs)—in total
4 analyses per case study (1 variability-aware + 3 sampling).

We ran all measurements on a Linux machine (Ubuntu
12.04) with Intel Core i7-2600, 3.4 GHz, and 16 GB RAM. To
remove measurement bias, we minimized disk access by using
a ramdisk and warmed up the JVM by running each experiment
once before the actual measurement run. We cleaned caches
after each measurement.

D. Results

In Table III, we list the sum over all measurement results for
each analysis strategy and sample system. (We report sequential
times, though massive parallelization is possible in all cases,
because all files are analyzed in isolation).

In Figures 4 and 5, we plot the distribution of analysis
times for each strategy for Busybox and Linux (using notched
boxplots). Each data point represents the measurement of one
file in the respective project. We highlight the median of
the variability-aware analyses to simplify comparison with
the medians of the sample-based analyses. In addition, we
provide the number of analyzed products for each of the
sample-based analyses (below the name of the analysis).
Because the number of necessary product configurations differs
between files for code-coverage sampling, we provide the
mean±standard deviation over all files.

With a paired t-test at confidence level 95 %, we performed
tests corresponding to our research hypothesis. In both sample
systems and for both analysis, variability-aware analysis
is significantly slower than single-conf sampling (H1) and

8Although there is an algorithm to compute an optimal solution (a minimal
set of sample products) by reducing the problem to determining the chromatic
number of a graph, we use the heuristics-based approach of Tartler et al.
Unfortunately, determining the optimal solution is NP-complete and too slow
for practical usage for instances of the required size for Linux. For more details
on the optimal algorithm, see https://github.com/ckaestne/OptimalCoverage.

Type checking Liveness analysis

B
us

yb
ox

(5
21

fil
es

) Single conf 15.5 8.82
Code coverage 71.6 33.7
Pairwise 344 187
Variability-aware 70.2 20.1

L
in

ux
(6

98
5

fil
es

) Single conf 4050 1040
Code coverage 19800 9340
Pairwise 140000 44100
Variability-aware 71200 2610

TABLE III: Total times for analysis of the case studies with
each strategy (time in seconds, with three significant digits).

L
iv

en
es

s
an

al
ys

is

●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●

●●●● ●●●●● ●●● ●● ●● ●●●●● ●●● ●●●●●●● ●●●●● ●●●● ●● ●●●●●● ●●

●● ● ●●● ●●● ●●● ●●●●● ●●●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●●●● ●● ●● ●●●

●● ●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●● ●●●●●●●●

Variability−aware

Pairwise
 ( 20  configs per file)

Code coverage
(2.65±4.02 c. p. f.)

Single conf
 (1 config per file)

1 5 10 50 100 500 1000

Ty
pe

ch
ec

ki
ng

●●● ● ●●●● ●●●●●●●● ●●●●●●●● ● ●●● ● ● ●● ● ●● ●●●●●●●

●●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●● ● ●● ●●●●●●●●●

●● ● ●● ●●● ●●● ●● ●●●● ●●●● ●● ●● ● ●●●● ●●●● ●●● ●●●● ●● ●● ●●●

●●●● ●●●●●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●●

Variability−aware

Pairwise
 ( 20  configs per file)

Code coverage
(2.65±4.02 c. p. f.)

Single conf
 (1 config per file)

1 5 10 50 100 500 1000

Fig. 4: Distribution of analysis times for Busybox (times in
milliseconds; logarithmic scale).

significantly faster than pairwise sampling (H2). The results
regarding code-coverage sampling (H3) are mixed: variability-
aware analysis is significantly faster for liveness analysis in
Linux, significantly slower for liveness analysis in Busybox and
type checking of Linux, and there is no statistically significant
difference for type checking Busybox. Table IV summarizes
the actual speedups of all comparisons.

It is worth noting that we did not find any confirmed defects
during our experiments. Nevertheless, for Linux, we found a
defect, but it is not confirmed so far; for Busybox, we found
several defects in earlier versions that have been fixed in the
current version, which we used for our experiments. 9

E. Discussion

Variability-aware vs. Type checking Liveness analysis

B
us

yb
ox Single conf 0.23 0.44

Code coverage ( 0.61 ) 0.86
Pairwise 4.99 9.56

L
in

ux Single conf 0.07 0.39
Code coverage 0.26 2.91

Pairwise 2.27 16.60

TABLE IV: Speedup of variability-aware analysis based on
median analysis times (non-significant result in parentheses).

The results confirm hypotheses H1 and H2: variability-
aware analysis is faster than product-based analysis using

9Bug reports: https://bugs.busybox.net/show bug.cgi?id=4994 and
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html

https://github.com/ckaestne/OptimalCoverage
https://bugs.busybox.net/show_bug.cgi?id=4994
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html


L
iv

en
es

s
an

al
ys

is

●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●●●●● ●●●●●●●● ●● ●●● ●●●●● ●● ●●●● ● ●●●●●●●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ● ●●●●●● ● ●●● ●●●●● ● ● ●●●●● ●●●

● ●● ● ●● ●●●●●●● ● ●●●●● ● ●● ●●● ●● ●● ● ●● ●●●● ●●●● ● ● ●●●●●●● ●● ●●●●●● ● ● ●●●●

●● ●● ●●●● ●●●●● ●●●●●●●●●● ●●●●● ● ●●●●●●●●● ●● ● ●●●● ● ●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ●● ●● ●●●●●●●●● ●●●● ●●●● ●●● ●● ●●●● ●●●●● ●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●● ●●●●●● ●●● ●●●●● ●● ● ●●●● ●●●●● ●●●● ●●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●● ● ●●●●● ●●●

●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●● ●●●● ●●●● ● ● ●●●●●●●●● ●● ● ●●●●●●●●● ● ●● ●●●●● ●●●

Variability−aware

Pairwise
 ( 50  configs per file)

Code coverage
(12.1±16.6 c. p. f.)

Single conf
 (1 config per file)

1 10 100 1000 10000

Ty
pe

ch
ec

ki
ng

●● ● ●●●●● ● ●● ●●●●●●●●●●● ● ●● ● ●● ●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●● ●● ●● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●●●● ● ●●● ●● ●●● ● ●● ●● ●●●● ●●●●●●●●● ● ●●●● ●● ●● ● ●●●●●● ●●●●●● ●●●● ●● ●●●● ●● ●●●●●● ●● ●●● ● ●●●● ●●●● ●●●●● ● ●●●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●● ●●● ● ●●●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ● ● ●●● ●●●● ●●●● ●● ●●●● ●● ●●●● ●●●●●●●●●●● ●●● ●●● ● ●● ●●● ●●●●●●●●●●● ●●●● ●●●● ●●●●● ● ●●●●● ● ●●● ● ●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ●●● ●●● ●●● ●●●●●● ●●●●●● ● ●●● ● ●● ●● ●●● ●●●●●● ●●● ● ●●● ●● ●● ●●●●●●● ●●● ●●●● ●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ● ●●●● ●●●

●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●●●●● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●● ● ●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ● ●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●● ●● ●●● ●● ●●●● ● ●●●● ●●●● ●● ● ●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●●●●● ●● ●●●●● ●●●

●●● ●● ●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●●●●●●●● ●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●● ●● ● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●

●●●● ●● ●●● ●● ●●●●● ●●●●●●● ●●●●●●●● ●● ●● ●● ●●●● ●● ●●●● ●●●●● ●● ●●●●● ●●● ●●●●● ●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●● ●● ●●● ●● ●●●●●●● ●● ●●●●●● ● ● ●●●●● ● ●●●● ●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●● ●●● ● ●● ●●● ●● ●● ●●●● ●●●●●●●●● ●●● ●● ●●● ●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●● ● ●● ●●●●●●●●● ●●●● ●●●● ● ●●● ●●● ●●● ●● ● ●● ●●●●●●●●●●●● ●●●● ●●●●●● ● ●●●●●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●●●●●● ● ●●●●●●●●● ●● ●●● ●●●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●●●● ●● ●● ●●● ●● ●●●●●●●●●●●●● ●● ●●●●● ● ●●● ●●●●●●●●

Variability−aware

Pairwise
 ( 50  configs per file)

Code coverage
(12.1±16.6 c. p. f.)

Single conf
 (1 config per file)

1 100 10000

Fig. 5: Distribution of analysis times for Linux (times in
milliseconds; logarithmic scale).

pairwise sampling, but slower than product-based analysis
using single-conf sampling on both case studies. With respect
to research question RQ1, there is no clear picture. The
performance of the code-coverage strategy depends on the
variability implementations in the respective files; number of
sampled products and performance differ strongly between files
inside each project (cf. Fig. 4 and 5). That is, performance
of the code-coverage heuristic is hard to predict and depends
strongly on the implementation in the individual files.

A further observation is that the speedup of variability-
aware liveness analysis in relation to sampling is higher than
the speedup of variability-aware type checking. This can be
explained by the fact that liveness analysis is intra-procedural
and type checking considers entire compilation units.

The experimental results for Busybox and Linux demonstrate
that variability-aware analysis is in the range of the execution
times of sampling strategies with multiple samples. So, with
regard to question RQ2, we conclude that variability analysis
is practical for large-scale systems. The overhead induced
by solving SAT problems for variability reasoning is not a
bottleneck, not even for large systems such as the Linux kernel.
Overall variability-aware type checking in Linux takes about
as much time as checking 27 products (4 products in Busybox).
Both values are very low compared with the number of possible
products of the product lines. For liveness analysis, the break-
even point is even only after two products (in both case studies).

To put variability-aware analysis into perspective, we illus-
trate the trade-offs compared to sampling by means of the
example of type checking Linux in Figure 6. The x-axis shows
the average number of products sampled for the respective
sampling heuristics (per file); the y-axis shows the average
analysis times for the products analyzed (per file). Clearly,
the more products are analyzed, the longer that analysis takes,
which illustrates the trade-off between analysis coverage and
analysis time. The interesting point is the break-even point at
which variability-aware analysis becomes faster (dashed line).
But recall that, using sampling, one can be fast but at the price
of losing information due to a limited analysis coverage.

Threats to validity: A key threat to validity is that our
implementations of variability-aware type checking and liveness

Analysis time
(milliseconds)

Number of products

Variability-
aware

Single conf
Code coverage

Pairwise

1 12 50
580

2 837

10 197

20 007

Fig. 6: Number of products versus mean analysis time for type
checking of Linux.

analysis support only ISO/IEC C, but not all GNU C extensions
used by the sample systems (especially Linux). Our analyses
simply ignore such code constructs. Also due to the textual
and verbose nature of the C standard, the implementation
does not yet align entirely with the behavior of the GNU C
compiler. Due to such technical problems, we excluded one
file of Busybox and 680 files of Linux from our analysis. All
numbers presented here have been obtained after excluding the
problematic files. Still, we argue that the large numbers of 521
files for Busybox and 6 985 files for Linux deem the approach
practical and our evaluation representative.

Second, the products generated by the sampling heuristics
represent only a small subset of possible products (which
is the idea of sampling). But, for pairwise sampling based
on Henard’s tool, it may happen that some variants of a file
are very similar, as the difference in the respective product
configurations does not affect the content of the file. However,
we argue that our conclusions are still valid, as this lies in the
nature of the sampling heuristics and all heuristics we used
are common in practice.

Finally, an obvious threat to external validity is that we
considered only two sample systems. We argue that this
threat is largely compensated by their size and the fact that
many different developers and companies contributed to the
development of both systems.

V. CONCLUSION

Variability-aware analysis is a promising approach to cope
with the complexity induced by feature combinatorics in
product-line engineering. We reported of our experience with
the implementation of practical, scalable, variability-aware anal-
yses for real-world systems written in C, including preprocessor
directives. In a series of experiments on two real-world, large-
scale case studies, we compared the performance of variability-
aware type checking and liveness analysis with the performance
of corresponding state-of-the-art sampling strategies. We found
that the performance of variability-aware analysis is well within
the spectrum of state-of-the-art sampling strategies, while,
in contrast to sampling, maintaining full analysis coverage.
Especially, the experiments with the Linux kernel suggest the
practical potential of variability-aware analysis at large scale



(despite the use of SAT-solving technology), which we were
able to demonstrate for the first time.

In further work, we aim at exploring variations of the
patterns of late splitting and early joining, at experimenting
with other sampling heuristics and with more case studies, and
at setting up an automated and incremental checking system
that semiautomatically produces bug reports.

Acknowledgments: We thank Christopher Henard for
help with the generation of pairwise configurations for Linux,
Tillmann Rendel for many fruitful discussions on patterns in
variability-aware analysis, and Klaus Ostermann for pushing
us to generalize the underlying concepts.

REFERENCES

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Priniciples,
Techniques, and Tools. Pearson, 2006.

[2] S. Apel and C. Kästner. An Overview of Feature-Oriented Software
Development. J. Object Technology, 8(5):49–84, 2009.

[3] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type Safety
for Feature-Oriented Product Lines. Automated Software Engineering,
17(3):251–300, 2010.

[4] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection
of Feature Interactions using Feature-Aware Verification. In Proc. of
ASE, pages 372–375. IEEE, 2011.

[5] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. Strategies
for Product-Line Verification: Case Studies and Experiments. In Proc.
of ICSE. IEEE, 2013. to appear.

[6] L. Aversano, L. Di Penta, and I. Baxter. Handling Preprocessor-
Conditioned Declarations. In Proc. of SCAM, pages 83–92. IEEE, 2002.

[7] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen,
and J.-M. DeBaud. PuLSE: A Methodology to Develop Software Product
Lines. In Proc. Symp. Software Reusability (SSR), pages 122–131. ACM,
1999.

[8] T. Berger, S. She, K. Czarnecki, and A. Wasowski. Feature-to-Code
Mapping in Two Large Product Lines. In Proc. of SPLC, pages 498–499.
Springer, 2010.

[9] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variability
Modelling in the Real: A Perspective from the Operating Systems Domain.
In Proc. of ASE, pages 73–82. ACM, 2010.

[10] E. Bodden. Inter-procedural Data-flow Analysis with IFDS/IDE and
Soot. In Proc. of SOAP, pages 3–8. ACM, 2012.

[11] C. Braband, M. Ribeiro, T. Tolêdo, and P. Borba. Intraprocedural Dataflow
Analysis for Software Product Lines. In Proc. of AOSD, pages 13–24.
ACM, 2012.

[12] M. Calder and A. Miller. Feature Interaction Detection by Pairwise
Analysis of LTL Properties: A Case Study. Formal Methods in System
Design, 28(3):213–261, 2006.

[13] S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to
Variational Programs. Technical report (draft), School of EECS, Oregon
State University, 2012.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
1999.

[15] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In Proc. of ICSE, pages 335–344.
ACM, 2010.

[16] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[17] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[18] B. Delaware, W. Cook, and D. Batory. Fitting the Pieces Together: A
Machine-Checked Model of Safe Composition. In Proc. of FSE, pages
243–252. ACM, 2009.

[19] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann.
Understanding Linux Feature Distribution. In Proc. of MISS, pages
15–19. ACM, 2012.

[20] M. Erwig and E. Walkingshaw. The Choice Calculus: A Representa-
tion for Software Variation. ACM Trans. Software Engineering and
Methodology, 21(1):6:1–6:27, 2011.

[21] B. Garvin and M. Cohen. Feature Interaction Faults Revisited: An
Exploratory Study. In Proc. of ISSRE, pages 90–99. IEEE, 2011.

[22] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, 1990.

[23] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In Proc. of ICSE, pages 311–320. ACM, 2008.

[24] C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring
Physically and Virtually Separated Features. In Proc. of GPCE, pages
157–166. ACM, 2009.

[25] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM Trans. Software Engineering and Methodol-
ogy, 21(3):1–39, 2012.

[26] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In Proc. of OOPSLA, pages 805–824.
ACM, 2011.

[27] C. Kästner, K. Ostermann, and S. Erdweg. A Variability-Aware Module
System. In Proc. of OOPSLA. ACM, 2012.

[28] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel, and
K. Ostermann. Toward Variability-Aware Testing. In Proc. of FOSD,
pages 1–8. ACM, 2012.

[29] D. Kuhn, D. Wallace, and A. Gallo. Software Fault Interactions and
Implications for Software Testing. IEEE Trans. Software Engineering,
30:418–421, 2004.

[30] K. Lauenroth, S. Toehning, and K. Pohl. Model Checking of Domain
Artifacts in Product Line Engineering. In Proc. of ASE, pages 269–280.
IEEE, 2009.

[31] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines.
In Proc. of ICSE, pages 105–114. ACM, 2010.

[32] J. Liebig, C. Kästner, and S. Apel. Analyzing the Discipline of
Preprocessor Annotations in 30 Million Lines of C Code. In Proc.
of AOSD, pages 191–202. ACM, 2011.

[33] M. Lochau, S. Oster, U. Goltz, and A. Schürr. Model-based Pairwise
Testing for Feature Interaction Coverage in Software Product Line
Engineering. Software Quality Journal, pages 1–38, 2011. Online
first.

[34] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT-based Analysis of
Feature Models is Easy. In Proc. of SPLC, pages 231–240. ACM, 2009.

[35] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Traon. Pairwise
Testing for Software Product Lines: Comparison of Two Approaches.
Software Quality Journal, 2011. Online first.

[36] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[37] H. Post and C. Sinz. Configuration Lifting: Verification meets Software
Configuration. In Proc. of ASE, pages 347–350. IEEE, 2008.

[38] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake. Predicting Performance via Automated
Feature-Interaction Detection. In Proc. of ICSE, pages 167–177. IEEE,
2012.

[39] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. Is
the Linux Kernel a Software Product Line? In Proc. of OSSPL, 2007.

[40] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Feature
Consistency in Compile-Time Configurable System Software. In Proc.
of EuroSys, pages 47–60. ACM, 2011.

[41] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Configura-
tion Coverage in the Analysis of Large-scale System Software. SIGOPS
Oper. Syst. Rev., 45(3):10–14, 2012.

[42] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In Proc. of GPCE, pages 95–104. ACM, 2007.

[43] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake.
Analysis Strategies for Software Product Lines. Technical Report FIN-
004-2012, University of Magdeburg, 2012.

[44] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-Based Theorem
Proving for Deductive Verification of Software Product Lines. In Proc.
of GPCE. ACM, 2012. To appear.

[45] M. Tomita. LR Parsers for Natural Languages. In Proc. Int. Conf.
Computational Linguistics (COLING), pages 354–357. ACL, 1984.

[46] H. Zhu, P. Hall, and J. May. Software Unit Test Coverage and Adequacy.
ACM Comput. Surv., 29:366–427, 1997.


