Planar Catoms Modular Robots using Magnetic Force Effectors

Carnegie Mellon University

Brian Kirby

Burak Aksak

James F. Hoburg

Todd C. Mowry

Seth Copen Goldstein

Intel Research Pittsburgh

Casey Helfrich Padmanabhan Pillai Jason D. Campbell

Motivation

- Investigated as part of the Claytronics Project
- How can robotic modules be scaled down in size and up in quantity?

Ensemble Axiom

Each module contains the minimum functionality necessary to contribute to the ensemble as a whole.

Hardware Design Criteria

- Cylinders on a plane
 Try 2D before 3D
- No moving parts
- Onboard control
 - Actuation
 - Planning
 - Communication
- As small as feasible

Ensemble Motion

(Actual Speed)

Planar Catom Modules

- Electromagnets
 - No moving "parts"
 - Relative motion only
- Two rings of 12 magnets, 24 total
 - Lattice flexibility
 - Intermediate configurations
- Torque
 - 12 mN-m at motion start
 - 200+ mN-m at motion end
- 100g 45mm diameter modules

Engineering Challenges

Typical Stepper Motor

Concentric Simple Negligible Negligible Hard Stator/Rotor Switching Friction Misalignment Motion Contraints Adjacent Complex Plane Surface Potentially Fatal Soft

Planar Catoms

Controlling Magnet Arrays

- Electromagnets require up to 30W in brief bursts
- Onboard power switching must fit 45mm diameter
- PWM control for torque/heat management
 - High power for actuation, low power for "locking"
 - Limiting factor is heat dissipation in coils
- Packing limitation allows simpler 1-of-4 muxing

Packed modules

12 magnet driver array, top / bottom

Sensing and Communications

- Key for coordinating all actuation
- IR emitter/detector array
 - localization
 - local communications
- 802.15.4 wireless serial
 - Basic module maintenance
 - Ties into DPRsim to drive hardware

...But what about the magnets?

Electromagnetism Revisited

- Not only actuation a multipurpose effector
- Inductive Coupling Allows:
 - Local Communication
 - Neighbor Sensing
 - Power Transfer

Most of our ensemble contributions can be made with an array of identical features

Holds true for Electrostatics as well

Conclusions

 Modules with no inherent movement capability capable of ensemble motion

Possible

 An array of identical magnetic effectors can contribute most ensemble functionality Scalable

Acknowledgements

Darpa NSF Intel Research Pittsburgh

Questions?