
Automated Physical Design in Database Caches
Tanu Malik1, Xiaodan Wang1, Randal Burns1, Debabrata Dash2, Anastasia Ailamaki2

1 Johns Hopkins University, USA
{tmalik,xwang,randal}@cs.jhu.edu

2 Carnegie Mellon University, USA
{ddash,natassa}@cs.cmu.edu

Abstract— Performance of proxy caches for database federa-
tions that serve a large number of users is crucially dependent on
its physical design. Current techniques, automated or otherwise,
for physical design depend on the identification of a repre-
sentative workload. In proxy caches, however, such techniques
are inadequate since workload characteristics change rapidly.
This is remarkably shown at the proxy cache of SkyQuery, an
Astronomy federation, which receives a continuously evolving
workload. We present novel techniques for automated physical
design that adapt with the workload and balance the performance
benefits of physical design decisions with the cost of implementing
these decisions. These include both competitive and incremental
algorithms that optimize the combined cost of query evaluation
and making physical design changes. Our techniques are general
in that they do not make assumptions about the underlying
schema nor the incoming workload. Preliminary experiments on
the TPC-D benchmark demonstrate significant improvement in
response time when the physical design continually adapts to
the workload using our online algorithm compared with offline
techniques.

I. INTRODUCTION

The performance of a database application crucially depends
on the underlying physical design of the database. Physical
design is often determined using a representative workload.
However, many applications such as proxy caches [1][2][3]
and content distribution networks [4] serve a continuous
stream of queries from tens and thousands of users such that
identifying a representative workload is difficult. Workload-
based physical design techniques [5][6][7] are useful additions
to these applications because they enable the exploration of
physical design alternatives that suit the current workload.
However, current techniques, automated or otherwise, are
offline in nature: they are invoked by the system administrator
using a representative workload and provide a static design for
the entire workload. Online physical design techniques benefit
database applications by detecting changes in the workload
and adapting the physical design automatically.

We are particularly interested in the physical design of
Bypass cache [8], a proxy database cache for the SkyQuery
[9] federation of Astronomy databases. In fact, performance
of Bypass cache critically depends upon its physical design.
Bypass caches store database objects such as tables or columns
close to users, providing dramatic reduction in both network
traffic and query response time [8]. However, the physical
design of cached objects is static in that it mirrors the design
at the backend databases. For instance, columns belonging
to the same physical table in the backend database are also

stored together in the cache. Grouping columns in this manner
translates into poor query execution performance in the cache,
which may offset the response time benefit of serving queries
locally.

Several techniques such as vertical partitioning [10][11] and
index selection [5] can be applied to improve the physical
design. Vertical partitioning, in particular, is an attractive
solution for improving the physical design of Bypass caches.
Construction of auxiliary data structures such as indices and
materialized views presents a trade-off between the alloca-
tion of cache space for creating auxiliary structures or for
caching more data. Vertical partitioning achieves performance
benefits for queries by grouping columns from the same
logical table into separate, non-overlapping physical relations.
Thus, vertical partitioning reduces the amount of I/O incurred
without introducing any redundant data that compete for
cache space. However, the application of current vertical
partitioning techniques to SkyQuery is difficult because they
require the identification of a representative workload. Finding
a representative workload in SkyQuery is hard; Astronomy
workloads exhibit considerable evolution (i.e. the manner in
which attributes are grouped by queries can change drastically
within a week).

In this paper, we analyze physical design issues associated
with Bypass caches and develop algorithms for online vertical
partitioning that are sensitive to workload evolution. Using
Bypass caches as a case study, we examine its sensitivity to
physical design decisions, determine the degree of evolution
in the workload, and quantify the cost of offline vertical
partitioning in a cache. We also describe an online vertical
partitioning solution that is inspired by task systems [12].
Task systems are general systems that capture the cost of
transitioning between two states in addition to the cost of
executing a task in a given state. The transition cost prevents
oscillations into states that are sub-optimal in the long run.

Our contributions include a three-competitive algorithm
when there are only two alternatives for grouping attributes.
We also provide a workload-adaptive, incremental algorithm
for vertical partitioning when there are N possible alternatives.
Both algorithms minimize the combined cost of query execu-
tion and of making physical design changes. Our algorithms
are general in that they can improve the physical design,
using vertical partitioning, of proxy database caches without
making assumptions about the underlying physical design or
the incoming workload. As a first step towards evaluating these

DB

DB

DB

Bypass
Cache

Mediator
Queries Sub−Queries

W
A

N
LA

N

Fig. 1. Proxy caching in SkyQuery.

algorithms, we implement them using queries from the TPC-D
benchmark. We compare our solution with a workload-based,
offline vertical partitioning tool. Our experiments show a 17%
improvement in average query response time when a single
relation is continually reorganized in an online manner that
adapts to workload changes. We are currently implementing
our solution within SkyQuery and expect similar performance
benefits.

II. VERTICAL PARTITIONING FOR BYPASS CACHING

In this section we first describe the Bypass cache application
[8] and explain why caching provides an interesting case
study for physical design. We then consider the advantages
of physical design and examine the degree of evolution in the
workload.

Bypass caches are proxy caches that reside at the mediator
site in the SkyQuery federation (Figure 1). A database cache is
manifested for each participant in the federation. Queries are
submitted to the mediator which divides them into sub-queries
for member databases. Each sub-query is either satisfied lo-
cally at the cache or bypassed to the remote database. A query
is satisfied if all columns 1 that it accesses are cached, else it is
bypassed. Our vertical partitioning module is collocated at the
cache and suggests physical design changes independently for
each sub-database. The module sees only a subset of queries
that are received by the cache, since some are bypassed due
to caching decisions.

Databases in the SkyQuery federation possess complex
schema designs that often comprise of several star-schemas.
The database schema is fixed after the initial public release of
the data [13] and remains static thereafter. Thus, any changes
to the schema have to be done outside the repository. Most
relations in the published schema are bulky in that hundreds
of columns are grouped together. For instance, two frequently
accessed relations, PhotoObjAll and Field, consist of 446
and 422 columns respectively. While columns belonging to
the same relation are logically related, Astronomy queries do
not use all columns together. Moreover, the subsets of columns
that are used together by queries change over time such that
making workload-adaptive physical design decisions become
difficult. Figure 9 in the Appendix shows the most frequent
queries from the SkyQuery workload for three consecutive
weeks. The columns that are accessed together during each
week change and differ drastically from the grouping present
in the original schema.

1Bypass caches have lower response times when columns, instead of tables,
are cached.

Query Execution Performance

0 1000 2000 3000 4000

Cache

Cache (w/
AutoPart)

S
ys

te
m

 S
et

up

Avg Response Time (ms)

Fig. 2. Average response time of queries.

We quantify the impact of vertical partitioning in Bypass
caches by measuring improvements in query response time.
Figure 2 compares the performance of the cache for a given
workload in two instances: when vertical partitioning is not
applied and the cached columns are grouped according to the
physical design at the backend database, and when the columns
are grouped using AutoPart [10], an offline, workload-based
tool for vertical partitioning. For this experiment we maintain
the cache at 30% of the database size and use a month
long workload (February 2006) from the Sloan Digital Sky
Survey (SDSS) [14], a participant in the SkyQuery federation.
In Figure 2, AutoPart illustrates the advantage of vertical
partitioning when performed in an online manner. To suit this
experiment for Bypass caches, we use AutoPart in an online
manner by re-partitioning the cached objects prior to each
incoming query using the most recent, single query as input to
AutoPart. The result demonstrates a significant improvement
in response time for Bypass caches that is solely attributed to
online vertical partitioning. It does not take into account the
cost of implementing physical design changes nor the overhead
of running an offline partitioning tool. These costs become
significant if the column groupings change drastically over
time. While column groupings are re-evaluated on a per query
basis in Figure 2, our next experiment examines the periodicity
and frequency at which column groupings change.

We take the SDSS workload and plot an affinity matrix
of the column groupings. The basic premise is that columns
that occur together and have similar frequencies should be
grouped together in the same relation [15]. In Figure 3, we
show the affinity matrix for ten attributes from a single table
in which each grid entry corresponds to the frequency with
which a pair of attributes are accessed together (ordering of
attributes are the same along the row and column). Figure 3
demonstrates that column groupings change on a weekly basis.
This means that re-partitioning columns over time can benefit
query performance in Bypass caches. While a static analysis of
the workload shows that groupings change on a weekly basis,
an entirely different workload may reflect changes within the
span of a day. Thus, it is difficult to ascertain a fixed time
span for regrouping columns. An online algorithm, which
weighs the benefits amongst various column groupings with
each incoming query, can decide when to make this change.
Section IV provides a formal framework for making online
decisions.

An online vertical partitioning problem should include the
transition cost; that is, the cost of changing the physical

Data Release 3 Frequency
9000

4500

0

exprad_r
modelmag_u

flags
extinction_u

obj
type

camcol
cx

r
z

May 2006 July 20062/8-2/14 2/15-2/21 2/22-2/28

Fig. 3. Affinity matrix (co-access frequency) for ten select attributes from the PhotoPrimary table.

rosat.match 2 23.89104
rosat.hard1err 3 23.89104
rosat.exposure 4 23.89104
rosat.poserr 5 23.89104
rosat.hard1 6 23.89104
rosat.extent 7 23.89104
rosat.objid 8 23.89104
rosat.delta 9 23.89104
rosat.hard2 10 23.89104
rosat.hard2err 11 23.89104
rosat.cpserr 12 23.89104
rosat.detectlike 13 23.89104
specphoto.zstatus 14 34.35168
specphoto.zwarning 15 34.35168
specphoto.primtarget 16 40.3776

0
100
200
300
400
500
600
700

1 51 101 151 201 251

Attributes

A
vg

 R
es

id
en

t T
im

e
(h

r)

Fig. 4. Average cache resident times.

organization of columns through vertical partitioning [11][16].
Similar to query execution cost, transition cost can be quan-
tified in terms of I/O. In Bypass caches, this cost should
be considered along with the cache resident time of each
column, which varies significantly across columns (Figure 4).
For instance, there is little advantage to reorganizing short-
lived columns, while other columns can amortize the transition
cost over a longer period of time. The result from Figure 4
shows that many columns fall in the latter category.

III. RELATED WORK

Physical design is defined a priori in several proxy caching
systems [1][2][17]. In Cache Tables [2] a table, column, or
materialized view is declared using the declarative cache
tables construct. Similar flexibility is available in TimesTen
[17] through the definition of cache groups and MTCache [1]
through the use of select-project views. The schema elements
that are materialized in the cache are specified during cache
initialization, and do not adapt to workload changes.

Vertical partitioning groups columns that are accessed to-
gether in order to improve memory and disk performance
[10][11][15][18][19][20]. Early work [15] derived affinity
measurements from the workload as an indicator for grouping
columns together. Columns are grouped by applying clustering
algorithms on the affinity values. However, affinity values
are decoupled from actual I/O cost, and thus are poor pre-
dictors of query performance. Recently, cost estimates from
the optimizer or analytical cost-based models that capture
the I/O of database operations are used to evaluate vertical
partitions [10][11][19]. For instance AutoPart[10] interfaces
with a commercial optimizer to obtain cost estimates for
queries. However, existing solutions are offline, requires a
representative workload, and provides a single, static physical
design for the entire workload.

Identifying a representative workload is easy in applications
in which the workload is fairly stable or is template-based [3]
(i.e. users generate queries from pre-defined templates). How-
ever, these properties do not exist in SkyQuery for Astronomy
workloads. Even if a representative workload is found, the
process of evaluating when to run physical design tools is
DBA dependent. Current research emphasizes the need for
design tools that are always-on and can continuously adapt
the physical design to changes in the workload [7]. Such tools
have been studied for index selection [16], but not for vertical
partitioning.

IV. ONLINE VERTICAL PARTITIONING

We provide a formulation for online vertical partitioning that
captures the cost of implementing physical design decisions
in addition to query evaluation. Let Q = {q1, . . . , qm} be an
online sequence of queries, and let C = {c1, . . . , cn} be the
set of possible vertical partitions. In this section, we refer to
each vertical partition cx ∈ C as a configuration. Let a query
qi incur cost qi(cx) if evaluated in configuration cx ∈ C, and
let a transition from configuration cx ∈ C to cy ∈ C incur cost
d(cx, cy). Finally, let φ be a function [1,m] →C in which φ(i)
is the database configuration prior to the evaluation of qi.

Given a database, a cache space constraint, and an initial
configuration s, the goal of the online vertical partitioning
problem is to find a φ that minimizes the cost of processing
Q:

cost(φ,Q) =

n∑

i=1

qi(φ(i)) + d(φ(i − 1), φ(i))

in which φ(0) = s.
The above formulation is similar to that of task systems

introduced by Borodin et al. [12]. Task systems have been
researched extensively, particularly when the transition costs
form a metric [21][22]. Our costs are not symmetric and do
not form a metric; that is, provided configurations cx and
cy , d(cx, cy) is not necessarily equivalent to d(cy, cx). This
is true because the sequence of operations (i.e. additions or
deletions of tables or columns) required for making physical
design changes in a database exhibits different costs.

An online algorithm ALG chooses from configurations in
C = {c1, . . . , cn} without seeing the complete workload Q =
{q1, . . . , qm}. In particular, prior to evaluating query qk, it
decides on a configuration from C using only knowledge of
queries {q1, . . . , qk}. ALG is said to be α-competitive if there
exists a constant b such that for every finite query sequence Q,

2Conf(qk :query)
// initially δmax(0) = 0, C =current config,
// C = opposite config
01 π(k) = qk(C) - qk(C)
02 δmax(k) = max{π(k), δmax(k − 1) + π(k)}
03 if δmax(k) > D
04 δmax(k) = 0
05 Transition to C

Fig. 5. Online Algorithm for Two Configurations.

cost(φALG,Q) ≤ α ∗ cost(φOPT ,Q) + b. OPT is the offline
optimal that has complete knowledge of Q.

In the remainder of this section, we describe a three-
competitive online algorithm for the two-configuration sce-
nario and extend our solution to N -configurations. For sim-
plicity, our analysis is restricted to the partitioning of a single
table T .

A. Two-Configuration Scenario

Given a relation T with n attributes, we restrict the solution
to two configurations: configuration S in which each attribute
is stored in a separate physical relation, and configuration
M in which all attributes are merged into a single physical
relation. In terms of query evaluation, S reduces the cost of
scanning unused attributes while M minimizes join overhead
for queries accessing many attributes. We make no assump-
tions about the transition costs d(S,M) and d(M,S).

Borodin et al.[12] give a general algorithm for metrical
task systems that can be extended to task systems that are
non-metric. We present a three-competitive algorithm 2Conf
designed specifically for the two-configuration scenario. Our
main observation is that 2Conf should transition to the
opposite configuration if remaining in the current configura-
tion incurs a substantial amount of “extra cost” from query
execution.

Let D denote d(S,M) + d(M,S), qk be the current query,
and C and C denote the current and opposite configurations
respectively. The penalty π(k) of remaining in C is defined
as qk(C) − qk(C) (i.e. the difference between the cost of
evaluating qk in C compared with the opposite configuration
C). Let qi be the earliest query prior to qk such that no
transition occurs from qi onwards. For any j in which i ≤ j ≤
k, define cumulative penalty δ(j, k) as

∑k

x=j π(x). Further,
define the maximum cumulative penalty δmax(k) at qk as
maxi≤j≤k δ(j, k). We are interested in the cumulative penalty
incurred by a contiguous sequence of queries from qj to qk

such that δ(j, k) is maximized. In other words, for all j ′ in
which j ≤ j′ ≤ k, δ(j, j′) ≥ 0.

The pseudo-code for 2Conf is provided in Figure 5. 2Conf
makes a transition before evaluating the current query qk if
δmax(k) > D.

Theorem 1: 2Conf is three-competitive.

Proof: Consider any finite query sequence Q. in which
the ith query is qi. Modify Q into the sequence Q′: the ith
query q′i corresponds to qi and has costs q′i(S) = max{qi(S)−

qi(M), 0} and q′i(M) = max{qi(M) − qi(S), 0}. In other
words, q′i subtracts the cost of qi in each configuration by
the cost of qi in the cheapest configuration. This means that
under Q′, cumulative penalty is monotonically increasing and
more transitions are incurred. It is easy to verify that the ratio
cost(φALG,Q′)/cost(φOPT ,Q′) is at least as large as the
corresponding ratio with respect to Q. For the rest of the proof
we consider Q′ instead of Q.

In Q′, there can be queries in which 2Conf happens to be
in the cheaper configuration. For such queries, 2Conf incurs
no cost and the OPT may incur a cost depending on the
configuration it is in. In our accounting of the costs, we assume
that OPT incurs no cost for such queries, irrespective of the
configuration it is in.

Without loss of generality, assume 2Conf starts in S.
Let it make k ≥ 0 (k is even) transitions before ending at
configuration S. After transition k, 2Conf incurs k/2 cycles
of migrating from configuration S to M and back, result-
ing in a total transition cost of (k/2)(d(S,M) + d(M,S)).
Additionally, 2Conf incurs a total query evaluation cost of
k(d(S,M) + d(M,S)), which follows from the definition of
2Conf in which a transition occurs if maximum cumulative
penalty exceeds d(S,M)+d(M,S). Thus, 2Conf incurs cost
(3k/2)(d(S,M) + d(M,S)) after k transitions.

To lower bound the cost incurred by OPT during the
the first k transitions of 2Conf , note that OPT incurs no
cost as long as it is in the configuration opposite of 2Conf ,
but migrating there incurs a transition cost. If OPT remains
in the same configuration as 2Conf , it will incur a cost
of d(S,M) + d(M,S) prior to the decision by 2Conf to
change configurations. Thus, it is always better for OPT
to move to the opposite configuration when it finds itself
in the same configuration as 2Conf . In summary, the cost
of OPT for Q′ during the first k transitions of 2Conf is
(k/2)(d(S,M)+d(M,S)), which is the same as the transition
cost incurred by 2Conf . Hence, the cost of 2Conf on Q′ is
at most three times that of OPT .

B. N -Configuration Scenario

We extend 2Conf to N configurations and describe two
heuristics that deal with an exponential number of config-
urations. In the N -configuration scenario, our NConf al-
gorithm must consider, for each incoming query, all N − 1
possible transitions with respect to the current configuration.
This requires tracking the cumulative penalty of remaining in
the current configuration relative to to every alternative and
picking the one that benefits query performance the most. Let
x ∈ C be the current configuration and y ∈ C be an alternative
in which y 6= x. Define δy

max
(k) as the maximum cumulative

penalty of remaining in x rather than transitioning to y at query
qk (the penalty of remaining in x for qk is qk(x)−qk(y)). In the
two-configuration scenario, a transition is made when δmax(k)
exceeds a constant threshold D. In NConf , this threshold
is no longer constant and is a function of the configuration
immediately prior to x and the alternative configuration being
considered. Let z be the configuration immediately prior to

x in which the threshold required for transitioning to an
alternative configuration y is d(z, x) + d(x, y). The decision
to transition to a new configuration by NConf is greedy; that
is, NConf transitions to the first configuration y that satisfies
δy
max

(k) > d(z, x) + d(x, y).
NConf is not three-competitive because it transitions im-

mediately to the first configuration in which the cumulative
penalty exceeds the threshold. This greedy approach is sus-
ceptible to oscillations among configurations that exhibit low
migration cost, which is a problem in multi-configuration
scenarios. In particular, NConf may transition between con-
figurations that yield short-lived benefits with respect to query
performance and overlook configurations with a higher cu-
mulative benefit but incurs a large, one-time transition cost.
In practice, we expect minor oscillations after NConf finds
candidates that perform almost as well as the configuration
chosen by OPT because Astronomy workloads do not exhibit
rapid changes, such as on an hourly basis.

Performing configuration changes online means that an
exhaustive evaluation of every alternative configuration for
each incoming query is infeasible (e.g. over 51 trillion ways
exist to vertically partition a table with 20 attributes). We
adopt two heuristics to restrict the search space. First, con-
sider a configuration x ∈ C, which partitions attributes from
one logical relation into separate physical tables. Let each
physical grouping of attributes from the same logical relation
be denoted as a fragment. Thus, no two configuration will
have the same set of fragments. Next, we define a neighbor
relationship that describes the easiness, in terms of migration
cost, of transitioning between configurations. Denote Nx as
the set of neighboring configurations with respect to x in
which a configuration y ∈ Nx is considered a neighbor of
x if transitioning from x to y requires coalescing at most two
fragments in x or splitting exactly one fragment of x into two
disjoint fragments. Provided x is the current configuration,
our heuristic only considers the set of configurations in Nx

for transitioning.
Enumeration-based, offline vertical partitioning algorithms

[10][18] provide an intuition for neighboring configurations.
For instance, AutoPart [10] starts from a configuration in
which each attribute is a separate fragment and enumerates
candidate configurations by coalescing existing fragments in
a pairwise manner. The search space is restricted to small
permutations of the current configuration at each iteration,
producing candidates that gradually reduce the expected total
query execution cost for the workload. This approach to offline
vertical partitioning produces configurations that perform well
in practice. Neighboring configurations are similar in that
each transition changes at most two fragments from the
current configuration, which incurs low I/O for each transi-
tion. However, restricting the immediate solution to neighbors
does not prevent the exploration of the entire space, albeit
via small, incremental transitions. Neighboring configurations
also provide two desirable properties. First, since the cost
of transitioning to a neighbor is relatively low, there is a
lower threshold to overcome, which allows NConf to respond

quickly to workload changes. Moreover, transitions based on
small permutations of the current configuration amortizes the
I/O impact of partitioning multiple physical tables so as to
limit disruption on the normal operations of a database.

We introduce a pruning heuristic that further reduce the
set of neighboring configurations. Workload-based, offline
partitioning algorithms [10] invoke the query optimizer to
estimate the I/O cost of each query on each hypothetical
configuration. Cost estimates for the workload are then used
to evaluate candidate configurations. Similarly, to accurately
calculate penalty cost in NConf , the query optimizer is
consulted for each incoming query against every neighboring
configuration. Since the set of neighbors is on the order of
O(2n), cost estimation is a major overhead for an online
system such as SkyQuery in which query response time is
often less than a second. Our approach minimizes invocations
of the query optimizer by identifying promising configurations
based on groups of attributes that are used frequently in the
workload. Cost estimation is only performed for configurations
that are expected to have a large impact on query performance.

We describe a pruning heuristic based on the observation
that few attribute groupings (on the order of thousands)
dominate because Astronomy workloads are template-based
[23], which allows us to efficiently filter from a large pool of
neighboring configurations. (While many queries are template-
based, the set of templates change over time as new templates
are introduced and gain importance). This approach is similar
to association rules mining [24], which identifies sets of
related products in a store based on the purchasing pattern
of customers.

To illustrate our pruning heuristic, consider a relation con-
sisting of four attributes, a1-a4. Let Ak denote the set of
attributes accessed by query qk. A set of attributes g is an
attribute group of qk if g ⊆ Ak. Thus, g indicates a potential
grouping which is beneficial; that is, keeping attributes from
g in the same physical table lowers the cost of evaluating qk.
Given a query qk which accesses {a1, a3, a4}, the pruning
heuristic first enumerates all attribute groups of qk, producing
subsets a1, a3, a4, a1a3, a1a4, a3a4 , and a1a3a4. We
then identify groups that guide transitioning decisions and
ignore the rest. Specifically, attribute groups which show that
transitioning to a neighboring configuration reduces the cost of
evaluating qk. This includes splitting a fragment to reduce the
cost of scanning extraneous attributes or merging fragments to
reduce the join cost of selecting data from several attributes.

To illustrate this process, let the current configuration con-
sist of three fragments {a1a2}, {a3}, and {a4}. The attribute
groups of import for qk are a3a4, which supports the coalesc-
ing of fragments {a3} and {a4} to reduce join cost, and a1,
which supports the splitting of fragment {a1a2} to eliminate
the cost of scanning attribute a2. Attribute groups a3 and a4

are ignored because they correspond to existing fragments and
do not indicate a better alternative. a1a3a4 is pruned to avoid
double counting because physically manifesting this grouping
requires changing more than two fragments from the current
configuration (recall that neighbors are formed by coalescing

NConf(qk :query, c :current configuration)
// initially neighbors = {}, prevT = 0
01 u neighbors = updateWeight(qk,c)
02 for each n in u neighbors
03 if n.weight > prevT + d(c, n) and n /∈ neighbors
04 neighbors = neighbors ∪ n
05 for each n in neighbors
06 π(k) = qk(c) - qk(n)
07 δn

max(k) = max{π(k), δn
max

(k − 1) + π(k)}
08 if δn

max(k) > prevT + d(c, n)
09 neighbors = {}, prevT = d(c, n)
10 Transition to n

Fig. 6. Online Algorithm for N Configurations

at most two fragments or splitting one existing fragment).
Once attribute groups are evaluated and the neighboring

configurations of import are found, weights are assigned to
each neighbor that benefits qk. Weights should capture changes
in the relative importance, in terms of expected benefit to
query performance, of neighbors as queries evolve over time.
NConf uses the I/O cost of evaluating queries against the
current configuration for weights so that transitioning to a
neighbor with more weight is expected to have a greater
impact on query performance than a neighbor with less weight.
Thus, if qk supports a neighbor n, then n’s weight increments
by qk(c) in which c is the current configuration. Calculating
weights based on the current configuration helps bias optimiza-
tion efforts toward queries that benefit from re-partitioning.
Namely, if a group of queries performs poorly on the current
configuration and continues to incur high I/O costs, then
neighbors that benefit these queries receive higher weights.
In NConf , optimization efforts are focused on neighbors
that may have accumulated sufficient weight to overcome the
threshold for transitioning.

Figure 6 provides the pseudo-code for NConf . Lines 1-4
employ the pruning heuristic in which updateWeight incre-
ments the weights of neighbors that benefit qk. Neighbors
that have accumulated sufficient weights are considered as
candidates for transitioning (line 3). The threshold for weights
is prevT +d(c, n) in which prevT is the cost of the previous
transition and c is the current configuration. Lines 5-10 up-
date the maximum cumulative penalty for each neighbor and
transitions to the first neighbor n satisfying the threshold or
δn
max(k) > prevT + d(c, n).

V. EXPERIMENTS

In this section, we present an initial evaluation of our online-
partitioning algorithm. To prove the validity and generality of
our algorithm, we conduct experiments on the TPC-D [25]
database and query workload. We are still in the process of
evaluating our algorithm in SkyQuery databases. The size of
the datasets and the complexity of the workload require a
robust framework that we are currently working to establish.

The online partitioning algorithm is evaluated on the 500MB
configuration of the TPC-D benchmark [25]. Secondary in-
dices were dropped from the raw database to isolate the
benefits of vertical partitioning on query performance. Of the
22 decision support queries from the benchmark, we took a

subset of those queries that referenced the Orders relation.
(These include queries: Q3, Q4, Q5, Q7, Q8, Q9, Q12, and
Q13). The Orders relation consists of 750,000 rows and eight
attributes. One column in particular, o comment, occupies over
half of the relation’s total size and is accessed only by Q13.
Vertical partitioning is performed on the Orders table using
two 10k query workloads that consist of the eight query
types. In the first workload Wkld Rand, queries are generated
randomly and each query occurs with equal probability. The
second workload Wkld Dom represents a query access pattern
that closely matches the SkyQuery workload. In this workload,
a few queries dominate with equal probability for a certain
length of the query sequence. TPC-D queries Q3, Q4 and
Q12 dominate in the initial one-third of the query sequence,
queries Q5, Q8, and Q9 dominate for the next one third of the
query sequence, and Q13 dominates in the last one-third. The
dominance factor is 80%.

We evaluate the NConf algorithm against AutoPart [10],
a workload-based, offline partitioning tool. The unpartitioned
Orders relation serves as our base table. We use query re-
sponse time as the metric for comparing the performance of
each approach. To make the comparison fair, we adapt the
cost estimation module from AutoPart for evaluating queries
against various candidate configurations. The module provides,
for a query qi, an estimate for qi(x) in which x can be any
candidate configuration. AutoPart relies on the query optimizer
for estimating the I/O cost of a query by first constructing
virtual configurations. The configurations are virtual in that
the cost module creates the schema for each candidate con-
figuration but does not populate the configuration with data.
To ensure accurate estimates, AutoPart’s cost estimation tool
supplies the query optimizer with up-to-date system catalog
entries and table statistics on the partitioned schema. The
statistics are generated from full table scans such that the
estimates for virtual configurations track closely with that of
real configurations [10]. To account for transition cost, we
assume a fixed cost for every transition of 30,000 logical page
reads (for 8KB page size). Logical page reads allow us to
compare directly with the I/O cost of query execution. We rely
on a fixed cost because we are still developing a framework
for estimating transition cost. In particular, it is difficult to
accurately estimate migration costs that include write overhead
and the cost of data definition operations (i.e. alter table) for
which estimates cannot be obtained from the query optimizer.

All experiments for the 500MB configuration of the TPC-
D database ran on Microsoft’s SQL Server 2000. Our main
workstation is a 3GHz Pentium IV machine with 1GB of main
memory and two SATA disks. For performance reasons, we
assign logging to one disk and store the database on a second
500GB disk.

Figure 7 shows the average query response time for the
online partitioning algorithm compared with AutoPart. On
Wkld Rand, AutoPart performs slightly better than the online
algorithm. This is due to the warm-up time required by the
online algorithm to migrate to the same configuration as that
obtained by running AutoPart offline. The online algorithm

3000

2500

2000

1500

1000

500

0
OnlineAutoPartNone

A
vg

 R
es

po
ns

e
Ti

m
e

(m
s)

Partitioning Strategy

Wkld_Rand
Wkld_Dom

Fig. 7. Query performance by partitioning strategy.

incurs just seven configuration changes prior to arriving at
a stable configuration for the remainder of the workload.
For Wkld Dom, the online algorithm outperforms AutoPart
by 17%. In fact, AutoPart suggests the same configuration
for both workloads and is not able to detect changes in the
workload sequence. In contrast, our online algorithm made
thirteen configuration changes during the course of evaluating
Wkld Dom. It adapts the configuration based on queries that
dominate the workload sequence.

Figure 8 shows, for the online algorithm, the estimated
I/O cost of a subset of queries from Wkld Dom (each data
point corresponds to the estimated I/O cost of a query in the
workload sequence). In the figure, each vertical line denotes
a configuration change. To better illustrate the performance
impact before and after each transition, we only plot the I/O
cost of Q3 in the first third of the sequence, Q5 in the second
third, and Q13 in the final third. Recall that the workload
evolves in that queries which dominate the initial third of
the workload differs from those that dominate in the second
and last third. The online algorithm detects these changes and
adapts the configuration accordingly. Seven transitions occur
in the initial third in which the configuration oscillates rapidly
during the first 500 queries as the algorithm re-groups each
attribute in the unpartitioned Orders relation. Similarly, in the
second and final third of the workload, the algorithm detects
the change and makes the appropriate transitions early on. This
result illustrates two things: the online algorithm successfully
detects changes in the workload and once it adapts to a change,
the configuration remains relatively stable thereafter.

The TPC-D benchmark results provide an initial validation
of our approach but is not without limitations. First, the
impact of caching is ignored in which column insertions and
deletions by the caching algorithm may change both workload
performance and transition cost. Further, our experiments
are limited to a single table with eight attributes, which
leave several questions unanswered. While we observe low
optimization overhead (only a few dozen configurations are
evaluated) on the TPC-D benchmark, it is unclear how the
algorithm scales to diverse workloads and larger tables since
relations in SDSS can contain several hundred attributes. Also,

10000666633330

E
st

im
at

ed
 I/

O
 C

os
t

Query Sequence for Wkld_Dom

Fig. 8. Estimated I/O Cost for queries in Wkld Dom.

we assume a fixed migration cost in our experiments and have
yet to explore both the proper metric for the cost of migrating
between configurations and how this cost can be accurately
estimated. Thus, deriving accurate cost estimates with low
overhead remains an important focus.

VI. SUMMARY AND FUTURE WORK

In this paper, we have shown the need for a workload-
adaptive physical design solution in Bypass caches. Vertical
partitioning is an important technique for physical design
as it improves physical design without adding redundant
data. Bypass caches receive a continually evolving Astronomy
workload, and therefore need an online vertical partitioning
technique. We presented online and workload-adaptive al-
gorithms for the vertical partitioning problem that balance
improvements in query execution performance with the cost
of making physical design changes.

The effectiveness of physical design decisions depends on a
good cost estimation module. Cost-estimation in caches should
take into account the fact that objects exhibit varying cache
resident times. Further, caches are constrained resources, so
cost estimation must be efficient but accurate. We plan to inte-
grate fast techniques [26], which cache query plans to improve
the efficiency of cost estimation. Currently, these techniques
are suited to index selection. While vertical partitioning is an
attractive solution for physical design in caches, it may be
useful to consider constructing indices for long-lived objects.
We plan to study the impact of index selection given that
indices will compete for the same cache space. Constructing
indices will reduce the response time of queries on objects
in the cache but will increase the response time of queries
on objects that were evicted because they are bypassed to the
backend database. Addressing this trade-off is crucial to the
integration of indices.

REFERENCES

[1] P. Larson, J. Goldstein, H. Guo, and J. Zhou, “MTCache: Mid-Tier
Database Caching for SQL Server,” in ICDE, 2004.

[2] M. Altinel, C. Bornhvd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and
B. Reinwald, “Cache Tables: Paving the Way for An Adaptive Database
Cache,” in VLDB, 2003.

[3] M. Altinel, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. G.
Lindsay, H. Woo, and L. Brown, “DBCache: Database Caching for Web
Application Servers,” in SIGMOD, 2002.

[4] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson, “Reliability and
Security in the CoDeeN Content Distribution Network,” in USENIX,
2004.

[5] S. Chaudhuri and V. R. Narasayya, “An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server,” in VLDB, 1997.

[6] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated Selection
of Materialized Views and Indexes in SQL Databases,” in VLDB, 2000.

[7] S. Agrawal, E. Chu, and V. Narasayya, “Automatic Physical Design
Tuning: Workload as a Sequence,” in SIGMOD, 2006.

[8] T. Malik, R. Burns, and A. Chaudhary, “Bypass Caching: Making
Scientific Databases Good Network Citizens,” in ICDE, 2005.

[9] T. Malik, A. S. Szalay, A. S. Budavri, and A. R. Thakar, “SkyQuery: A
Web Service Approach to Federate Databases,” in CIDR, 2003.

[10] S. Papadomanolakis and A. Ailamaki, “AutoPart: Automating Schema
Design for Large Scientific Databases Using Data Partitioning,” in
SSDBM, 2004.

[11] S. Agrawal, V. R. Narasayya, and B. Yang, “Integrating Vertical and
Horizontal Partitioning Into Automated Physical Database Design,” in
SIGMOD, 2004.

[12] A. Borodin, N. Linial, and M. E. Saks, “An Optimal On-line Algorithm
for Metrical Task System,” J. ACM, vol. 39, no. 4, pp. 745–763, 1992.

[13] A. Szalay, J. Gray, A. Thakar, P. Kuntz, T. Malik, J. Raddick,
C. Stoughton, and J. Vandenberg, “The SDSS SkyServer - Public Access
to the Sloan Digital Sky Server Data,” in SIGMOD, 2002.

[14] The Sloan Digital Sky Survey. [Online]. Available: http://www.sdss.org
[15] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical Partitioning

Algorithms for Database Design,” ACM Trans. Database Syst., vol. 9,
no. 4, pp. 680–710, 1984.

[16] N. Bruno and S. Chaudhuri, “An Online Approach to Physical Design
Tuning,” in ICDE, 2007.

[17] The TimesTen Team, “Mid-tier Caching: The TimesTen Approach,” in
SIGMOD, 2002.

[18] M. Hammer and B. Niamir, “A Heuristic Approach to Attribute Parti-
tioning,” in SIGMOD, 1979.

[19] W. W. Chu and I. T. Ieong, “A Transaction-Based Approach to Vertical
Partitioning for Relational Database Systems,” IEEE Trans. Software
Eng., vol. 19, no. 8, pp. 804–812, 1993.

[20] D. W. Cornell and P. S. Yu, “An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases,” IEEE Trans.
Software Eng., vol. 16, no. 2, pp. 248–258, 1990.

[21] W. R. Burley and S. Irani, “On Algorithm Design for Metrical Task
Systems,” in SODA, 1995.

[22] W. Bein, L. L. Larmore, and J. Noga, “Uniform Metrical Task Systems
with a Limited Number of States,” Inf. Process. Lett., vol. 104, no. 4,
pp. 123–128, 2007.

[23] X. Wang, T. Malik, R. Burns, S. Papadomanolakis, , and A. Ailamaki,
“A Workload-Driven Unit of Cache Replacement for Mid-Tier Database
Caching,” in DASFAA, 2007.

[24] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” in SIGMOD, 1993.

[25] TPC-D Benchmark. [Online]. Available: http://www.tpc.org
[26] S. Papadomanolakis, D. Dash, and A. Ailamaki, “Efficient Use of the

Query Optimizer for Automated Database Design,” in VLDB, 2007, pp.
1093–1104.

APPENDIX

Date Top 2 Queries
Freq

PhotoPrimary
Attributes

SELECT '<a target=cas.sdss.org/dr4/en/
explore/obj.asp' + cast(p.objId as
varchar(20)) + '>' + cast(p.objId
as varchar(20)) + '' as objID,
p.run, p.rerun, p.camcol, p.field,
p.obj, p.type, p.ra, p.dec, p.u,
p.g, p.r, p.i, p.z, p.Err_u,
p.Err_g, p.Err_r, p.Err_i, p.Err_z

FROM fGetNearbyObjEq(185,-0.5,3) n,
PhotoPrimary p

WHERE n.objID=p.objID

5585

0
2
/
0
8
-
0
2
/
1
4

(
1
7
k

q
u
e
r
i
e
s
)

SELECT distinct p.run, p.rerun,
p.camcol, p.field

FROM
fGetNearbyObjEq(77.699896,64.913318
,15.0) n, PhotoPrimary p

WHERE n.objID=p.objID

1864

camcol, cx, cy,
cz, dec, err_g,
err_i, err_r,
err_u, err_z,
field, g, htmid,
i, obj, objid,
r, ra, rerun,
run, type, u, z

SELECT p.objID, rc.name, s.name, p.ra,
p.dec, ph.name, p.u, p.g, p.r, p.i,
p.z, o.distance

FROM (((PhotoPrimary p inner join
PhotoType ph on p.type = ph.value)
left join RC3 rc on p.objid =
rc.objid) left join Stetson s on
p.objid = s.objid),
dbo.fGetNearbyObjEq(18.87837,-
0.86083,0.5) o

WHERE o.objid = p.objid and p.type =
ph.value order by o.distance

7229

0
2
/
1
5
-
0
2
/
2
1

(
1
9
k

q
u
e
r
i
e
s
)

SELECT ra, dec, type, flags, status,
primTarget, probPSF, run, rerun,
camcol, field, obj, psfMag_u,
extinction_u, psfMagErr_u,
psfMag_g, extinction_g,
psfMagErr_g, psfMag_r,
extinction_r, psfMagErr_r,
psfMag_i, extinction_i,
psfMagErr_i, psfMag_z,
extinction_z, psfMagErr_z,
texture_u, texture_g, texture_r,
texture_i, texture_z, lnLStar_u,
lnLStar_g, lnLStar_r, lnLStar_i,
lnLStar_z, mE1_i, ME2_i, mRrCc_i,
mCr4_i, isoA_i, isoB_i, isoPhi_i,
rowv, rowvErr, colv, colvErr

FROM PhotoPrimary
WHERE (type = 6) and (ra >= 160.000000

and ra < 161.000000) and (dec >= -
2.000000 and dec < -1.000000)

2259

camcol, colv,
colverr, cx,
dec,
extinction_g,
extinction_i,
extinction_r,
extinction_u,
extinction_z,
field, flags,
g, i, isoa_i,
isob_i,
isophi_i,
lnlstar_g,
lnlstar_i,
lnlstar_r,
lnlstar_u,
lnlstar_z,
mcr4_i, me1_i,
me2_i, mrrcc_i,
obj, objid,
primtarget,
probpsf,
psfmag_g,
psfmag_i,
psfmag_r,
psfmag_u,
psfmag_z,
psfmagerr_g,
psfmagerr_i,
psfmagerr_r,
psfmagerr_u,
psfmagerr_z, r,
ra, rerun, rowv,
rowverr, run,
status,texture_g
, texture_i,
texture_r,
texture_u,
texture_z, type,
u, z

SELECT '<a target=cas.sdss.org/dr4/en/
explore/obj.asp' + cast(p.objId as
varchar(20)) + '>' + cast(p.objId
as varchar(20)) + '' as objID,
p.run, p.rerun, p.camcol, p.field,
p.obj, p.type, p.ra, p.dec, p.u,
p.g, p.r, p.i, p.z, p.Err_u,
p.Err_g, p.Err_r, p.Err_i, p.Err_z

FROM fGetNearbyObjEq(185,-0.5,3) n,
PhotoPrimary p

WHERE n.objID=p.objID

5460

0
2
/
2
2
-
0
2
/
2
8

(
1
9
k

q
u
e
r
i
e
s
)

SELECT ra, dec, type, flags, status,
primTarget, probPSF, run, rerun,
camcol, field, obj, modelMag_u,
extinction_u, modelMagErr_u,
modelMag_g, extinction_g,
modelMagErr_g, modelMag_r,
extinction_r, modelMagErr_r,
modelMag_i, extinction_i,
modelMagErr_i, modelMag_z,
extinction_z, modelMagErr_z

FROM PhotoPrimary
WHERE (type = 3) and (ra >= -0.737262

and ra < 1.262757) and (dec >= -
0.750681 and dec < 1.249319)

4279

camcol, cx, cy,
cz, dec, err_g,
err_i, err_r,
err_u,
err_z,
extinction_g,
extinction_i,
extinction_r,
extinction_u,
extinction_z,
field, flags, g,
htmid, i,
modelmag_g,
modelmag_i,
modelmag_r,
modelmag_u,
modelmag_z,
modelmagerr_g,
modelmagerr_i,
modelmagerr_r,
modelmagerr_u,
modelmagerr_z,
obj, objid,
primtarget,
probpsf, r, ra,
rerun, run,
status, type, u,
z

Fig. 9. Top two most frequent query types during each week. The right-most
column lists attributes from the PhotoPrimary relation that are accessed by
these queries.

