394

Analytic and Non-analytic Proofs

Frank Plenning
Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

0. Abstract

In automated theorem proving different kinds of proof systems have been used. Tradi-
tional proof systems, such as Hilbert-style proofs or natural deduction we call non-analytic,
while resolution or mating proof systems we call analytic. There are many good reasons to
study the connections between analytic and non-analytic proofs. We would like a theorem
prover to make cflicient use of both analytic and non-analytic methods to get the best of
both worlds.

In this paper we present an algorithm for translating from a particular non-analytic
proof system to analytic proofs. Moreover, some results about the translation in the other
direction are reformulated and known algorithms improved. Implementation of the algorithms
presented for use in research and teaching logic is under way at Carnegie-Mellon University
in the framework of TPS and its educational counterpart ETPS.

Finally we show how to obtain non-analytic proofs from resolution refutations. As an
application, resolution refutations can be translated into comprehensible natural deduction
proofs.

1. Introduction

In automated theorem proving different kinds of proof systems have been used. Tradi-
tional proof systems, such as Hilbert-style proofs or natural deduction we call non-analytic,
while resolution or mating proof systems we call analytic. There are many good reasons to
study the connections between analytic and non-analytic proofs. We would like a theorem
prover to make efficient use of both analytic and non-analytic methods to get the best of
both worlds.

The advantages of analytic proofs are well known. One of the most important advantage
is that they seem to be ideally suited for an eflicient automatic search for a proof on the
computer.

On the other hand there is much to gain from the use of non-analytic proof systems
in addition to analytic methods. Non-analytic proofs can be presented in a comprehensible
and pleasing format. If we can translate, say, resolution refutations into legible non-analytic
proofs, we can help the mathematician understand the automatically generated proof. Valu-
able work here has been done by Miller [10]. The natural deductjon proofs obtained from
mating refutations are often elegant and easy to understand and use such mathematically
cominon concepts as proof by contradiction and case-analysis, and make use of intuitive op-
erations such as backchaining. Better translations which are the object of current research
would make this even more useful for a wider class of theorems.

The ability to frecly translate between analytic and non-analytic proofs also gives us a
tool for creating a more clegant natural deduction style proof from a given one. We would

395

translate a given proof into an analytic proof, possibly transform this analytic proof into a
shorter one, and then build a new natural deduction style proof from it in a canonical fashion.

Good translation procedures can also serve as a valuable research tool. Heuristics and
lemmas of use to a theorem prover can often be discovered and formulated naturally in some
non-analytic proof style. The ability to translate these into an analytic format may help
to incorporate them into a theorem prover. Morcover, if we can translate automatic proofs
obtained with and withoutl a certain heuristic, we may gain deeper insight into the nature
and performance of the heuristics.

Another perhaps more immediately important application is in the use of these proce-
The student will attempt his proof in a deductive
format, e.g. in a natural deduction style, on the computer. The analytic prool of the exercise
can be found beforchand by an antomated theorem prover employing resolution or & mating
procedure, or even construcled {rom a sample natural deduction proof given by the teacher.
This analytic proof can then be used to guide the student through his own attempts to prove
the theorem by suggesting whicl inference rules may be appropriate when the student asks for
help. Moreover, when the student is done, a “normalizing” procedure like the one described
above can demonstrate to the student how he might have proven the theorem more elegantly
or efficiently. A system called ETPS, which will contain all these features, is currently under
development at Carnegie-Mellon University.

dures in computer-aided instruction in logic.

There is also a very good complexity-theoretic reason why a theorem prover may want
to make use of non-analytic as well as analytic methods. A result by Statman [14] shows that
there are theorems which have “short” non-analytic proofs, but no “short” analytic proofs
whatsoever. He exhibits a sequence of theorems (from the theory of combinators) whose

atf
shortest possible analytic proof is 2% }d. (d is the number of connectives and quantifiers
of a theorem X, and ! the length of a non-analytic proof for X.) This lower bound is not
Kalmar-elementary, and there are therefore theorems which cannot be practically proven by
purely analytic methods which have short non-analytic proofs.

Let us now try to make more precise the distinction between analytic and non-analytic
proof systems. The term “analytic® was introduced by Smullyan in [13] and conveys the idea
that the proof (or refutation) procedure analyzes the given formula. An analytic proof has
a very strong subformula property: Only subformulas of the theorem and their instances will
appear in an analytic proof.

In the field of automated deduction the discovery of amalytic proof systems such as
resolution [12] went hand in hand with the beginning of research. The mating approach [3]
and a similar method by Bibel [4] are other examples of analytic proof systems.

Examples of non-analytic methods in automated theorem proving can be found in Bled-
soe’s survey [6] of non-resolution theorem proving. This includes approaches like term-
rewriting, built-in inequalities, forward-chaining, models, and even counterexamples. Some
of these approaches may be called non-analytic, since they sometimes consider formulas not
part of the proposed theorem. Many of the stimuli here come from mathematics rather than
pure logic. Hilbert-style, Gentzen-style [7], or natural deduction style systems are all exam-
ples of traditional non-analytic proof systems. In general they do not obey the subformula
property. Usually Cut or Modus Ponens is used to eliminate the helpful formulas, which are
not part of the theorem, but substitutivity of equivalence or equality may be used as well.
The use of Cut itsell does not characterize non-analytic proof systems, as can be seen [rom
the case of resolution, where the cut formulas are all subformulas of the given theorem.

396

Andrews has shown in [2] how to convert matings into natural deduction proofs. Miller |9]
took this work further by generalizing it to higher-order logic and also addressing questions
of style in these proofs. Sowme related work was also done by Bibel in [5]. An algorithm
translating in the other direction is the main contribution of this paper. The ability to
readily translate in either direction between analytic and non-analytic proofs (in the case of
the implementation in TPS between expansion proofs and natural deduction style proofs)

gives us all the aforementioned advantages.

As a representative of non-analytic proof systems we pick I*, mainly for its conceptual
clarity and simplicity of cut-elimination. I* which is described in section 2 is closely related
to the system LK of Gentzen [7] and a related system of Smullyan {13].

Following Miller in [9], who works in the setting of higher order logic, we define a purely
analytic proof system in section 3. Expansion proofs, as they are called, are very natural and
convenient and very conciscly represent the information contained in an analytic proof.

In section 4 we give a new exposition of part of Miller’s work in terms of our analytic
and non-analytic first-order proof systems. This exposition provides the reader with a self-
contained and unified treatment of the translations between the various proof styles. We also
handle conjunction in 2 new way, thus creating stylistically different proofs.

As the main part of this paper, we give an explicit algorithm which translates I*-proofs
into expansion proofs in sections 5, 6, and 7. Expansion proofs are very much different from
the kind of analytic proofs Gentzen or Smullyan considered, though some of their ideas, in
particular for cut-elimination, are used. Our merge algorithm which deals with the inference
rule Contraction is a significantly improved version of Miller’s [9] MERGE, which generally
produces much larger expansion trees.

Andrews in [1] has given an algorithm which computes a mating from a resolution refuta-
tion. In section 8 we state and prove the correctness of a different algorithm which translates
resolution refutations into expansion proofs, which do not make use of Skolem-functions or
conjunctive normal forms and satisfy a quite different acceptability criterion from Andrews’.
We thus give a two-step procedure by which resolution refutations can be translated into
I*-proofs, or, in one more step, into natural deduction proofs.

Space does not permit to include here non-trivial examples illustrating the various algo-
rithms. Detailed examnples for all the translation procedures presented here are given by the
author in [11].

2. The Systems I and I*

Our non-analytic proof system is J*, which builds upon similar systems of Gentzen {7]
and Smullyan {13]. J* is particularly well suited for the description of our algorithms. Notice,
for instance, that any theorem derived in I* is automatically in negation normal form. The
work done here can easily be generalized to other superficially richer systems of first-order
logic. To simplify some of our exposition we introduce a system I which is identical to I*
but does not contain the rule of Miz (a variant of Cui).

Qur formulation of first-order logic includes the propositional connectives V, A, -, the
quantifiers 3 and V and an infinite number of individual varjables and constants. Function
constants of arbitrary finite arity are also permitted. An atomic formula is of the form
Pty ...t, for an n-ary predicate P and terms ti,...,tn. A literal is of the form A or —A for
an atomic formula A. A formula is in negation normal form if the scope of each negation is

397

atomic. Bach first-order formula has a classically equivalent formula in negation normal form,
and we generally assume our formulas to be in negation normal form. Xjv/a] is our notation
for the result of substituting a for the free occurrences of v in X. We wrile nnformula
for a formula in negation normal form. We do not assunie that formulas are alphabetically
normal, except in section 8 where we talk about resolution refutations. Sonietimes we write
X to indicate that an equation is valid for both conjunction and disjunction.

Nodes in a proof-tree in I we call lines. A line in I is a multi-set of formulas. This
formulation is hallway between Gentzen’s (sequents) and Simuflyan’s (sets). The reason for
choosing this particular representation lies in the fact that contraction is an extremely pow-
erful inference rule of our system. When we try to analyze how the effect of a contraction
induces a change in an associated expansion tree, we will see that the transformation is really
quite complicated. Thus we cannot leave contraction implicit, like Smullyan did, when he
introduced sets of formulas as objects in the prool. Structural rules like exchange, however,
have no impact on the logical contents of the formula or proof line. We therefore leave themn
implicit in the multi-set notation.

In general we let U and V stand for multi-sets of formulas, i.e. sets where we allow the
same formula to appear more than once as a member. We often write U, X to mean U U{X}
if U is a multi-set.

The axioms of I are of the form

U, A —-A
where A is an atomic formula.

The inference rules can be divided into structural rules, propositional rules, and quantifi-
cational rules. The only structural rule in I is eontraction {C). There is one propositional
rule for each propositional connective: V-introduction (VI} and A-introduction (AI). There is
also exactly one rule for the quantifiers: J-introduction (3I) and V-introduction (VI).

Structural rules
U,X,X

Countraction: T X c
Propositional rules
U XY UX V.Y
vxvr ¥ —uv,xay M

Quantificational rules

m—UI},};[I:))/(t] AI', t a term free for v in X.

U, X{v/a)

U ¥oX VI, a not free in U, Vv X,

U,V contain the side-formulas of an inference rule. They may be empty. The proposi-
tional and quantificational inference rules correspond to Smullyan’s [13] rules a, B, 7, 6.

System I is complete in the sense that we can derive the negation normal form of every
valid formula in classical first order logic. This follows almost immediatedly from Smullyan’s

398

form of the completeness result for Gentzen systems and we will not repeat the argument
here.

We shall also use the system I* which contains the rule of Miz:

U,X,...,X - ViZoX e xqU Xgv

X is the negation normal formy of 1 X. There must be at least one ocenrrence of X, the mix
formula, in the left premise and at Jeast one occurrence of X in the right premise. Miz was
introduced by Gentzen and is a variant of the rule of Cut, and the two are casily shown to
be equivalent.

3. Expansion Trees

Analytic proofs in this paper are presented as expansion trees. Expansion trees very
concisely and naturally represent the information contained in an analytic proof, as we hope
to show. They were first introduced by Miller [9] and are somewhat similar to Herbrand
expansions [8]. Some redundancies can easily be eliminated for an actual implementation as
done by Miller in the context of higher order logic. The shallow formula of an expansion tree
will correspond to the theorem; the deep formula is akin to a Herbrand-expansion proving
the theorem. Our formulation of expansion trees differs only trivially from Miller’s in {10},
if restricted to first-order logic. At several places it is convenient to allow n-ary conjunction
and disjunction instead of treating them as binary operations.

3.1. Definition. We define Expansion Trees inductively. Simultanecusly, we also define
QP, the deep formula of an expansion tree, which is always quantifier-free, and @5, the
shallow formula of an expansion tree. We furthermore place the restriction that no variable
in an expansion tree may be selected more than once.

(i) A literal [(signed atom) is an expansion tree. QP(l) = Q¥(I) = I. Literals form the
leaves of expansion trees.

(it} I Qi,...,Qn, n > 2, are expansion trees, so is
X
Q= Then Q‘Sz f»(m)«QD,
amd Q5 = Qn--n@S.
Ql Qn

(it} If Qy,...,Q, are expansion trees such that ¥ Qf = S[/t;},... ,QF = Slu/t,), t; aterm
freeforvin Sfor 1 <i<n,n>1, then

s

D_pDy...y0P
[is an expansion tree. T:;ﬁ gs ;3% IS'V V@,

(451 Qn

JuS is called an expansion node; v is the expanded variable; ty,...,t, are the
expansion terms.

(iv) If Qq is an expansion tree such that Qf = S[v/a] for a variable a, so is

399

VuS
Q- o Then QV=0¢,
and Q7 == Vus.
Qo
Vu§ is called a selection node; a is the variable selected for this occurrence of v.

To improve legibility of our diagrams we will frequently draw for an expansion
tree with Q9 = X.

Since traditional proofl systems do not contain Skolem-lunctions, we nced a different
niechanism to insure the soundness of our prools. Following an idea of Bibel [4], which was
picked up by Miller [9], we introduce a relation < on occurrences of expansion terms. The
condition that < be acyclic replaces Skolemization in our analytic proof system. The reason
for this definition will become clear in section 4. <¢ is dual to < defined in [10], and it is
shown in [9] that they are equivalent. Laler in section 8 we shall see how this relates to
Skolemization.

3.2. Definition. Let Q) be an expansion tree. <?3 is a relation on occurrences of expansion
terms such that ¢ <?2 s iff there is a variable selected for a node below ¢ in @ which is free in
s. <, the dependency relation, is the transitive closure of <‘<’2.
We define clauses only for quantifier-free nnformulas, since this is the only case we will
need.
3.8. Definition. Let X be a quantifier-free nnformula. A clause in X is a list of literal
occurrences defined inductively by
(i) X =1, aliteral. Then C = (I) is the only clause in X.
(i) X = AvB. Then for all clauses (ay,...,a,) in A and (b1,...,bm) in B, C = (a;,...,n,
b1y...,b.n) is a clause in AV B.
{(iiiy X = A A B. Then all clauses in A and all clauses in B are clauses in A A B,
3.4. Definition. A relation on literal occurrences in a quantifier-free nnformula X is a

mating M if -/ = k for every pair (I,k) € M and there is at least one clause in X containing
both i and k. If (I,k) € M, | and k are said to be M-mated.

3.5. Definition. A mating M is said to span a clause C if there are literals [,k € C such
that (I, k) € M. A mating M is said to be clause-spanning on a quantifier-free nnformula
X if every clause in X is spanned by M.

The significance of this definition is of course that a quantifier-free nnformula X is
tautologous iff there is a mating clause-spanning on X (see Andrews (3], [1], and Miller [9}).

3.6. Definition. A pair (@, M) is called an expansion tree proof for a nnformula X if
) @°=x.

(ii) No selected variable is free in Q5.

(iii) <g is acyclic.

(iv) M, a mating on QP, is clause-spanning on Q.

Our translations establish soundness and completeness of expansion tree proofs with
respect to nnformulas. We rely on the soundness and completeness of I'*, which is a simple
consequence of results by Smullyan [13]. A similar, but necessarily less constructive argument
was carried out by Miller [9] for expansion iree prools in higher-order logic.

400

4. Building I-Proofs from Expansion Tree Proofs

The algorithm follows ideas of Miller [9], but we provide a different. trealment of con-
junction. Our algorithm results in shorter proofs than the more naive algorithm that always
applies case (vii) below for a conjunction, but we do not achieve the full power of Miller’s
Jocusing method. In return, our method is computationally faster.

In the exposition below we sometinies assume that there is a unique correspondence
between the formulas in a line and an associated expansion tree, even though we like to think
of the line as a multi-set where several identical members are indistinguishable. In general it
is suflicient to pick any correspondence between those multiple occurrences of a formula in a
line and the unique subtrees of the associated expansion tree.

4.1. Definition. A pair (@, M) is an expansion tree proof for a line L = Xy, ..., X, in an
I-proof iff (@, M) is an expansion tree proof for X; V- v X,.

4.2. Definition. Let (@, M) be an expansion tree proof for a line L in an J-proof, and
let X be a subformula of an element in L. Then Q|x is the part of the expansion tree @
representing X (Q|% = X) , and M|x is the restriction of M to pairs both of whose elements
lie in @|5. We will sometimes talk about X instead of Q|2, if the expansion tree Q is clear
from the context.

We shall describe an algorithm which constructs an I-proof from an expansion tree
proof, starting with the nnformula to be proven and working upwards until every branch in
the proof tree begins with an axiom. The cases given below can in principle be applied in
any order. The ordering below will often, but not in general, result in the shortest proof that
can be constructed with this algorithm.

If an X € L is such that Q|% has no Hteral in a pair in M, then X is to be ignored and
can only be part of a side-formula in an inference above L.

Now assume L is a given line in an I-proof, and (@, M) is an expansion tree proof for L.

(i) L=U,A,—A. Then L is an axiom.

(#) L=U,XVY. Infer L by—[—]glx% VI. (@, M) is an expansion tree proof for U, X,Y.
o U,S[v/a]
(iii) L =U,VvS. Infer L by m\ﬂ,

where a is the variable selected for this occurrence of S{v/a).

YuS

In @ we replace the corresponding subtree |a by

By definition 3.6 and the inductive assumption that (@, M) forms an expansion tree
proof for U,YvS, a cannot be free in U or VuS, since a is a selected variable in Q.
(iv) L =1U,3vS and JuS has n, n > 2 successors in Q.
U,38S,...,T0S
Infer Lby —___= — (n—1)xC.
U, S

v

(vi)

(vid)

401

&%)
@
n

Change @ = to R = Ju§ 8

t; oo (3 ta
‘["/tll A[”/tn

YD

Since QP = RP, (R, M) is again an expansion tree proof for U, 3vS, ..., IvS.

L = U,7vS, and JvS has exactly one successor S|v/t], and no free variable in { is a
variable to be selected in Q.

Jo8

Infer L by {;}Sgg é] 31, and replace Lin Q by

From the restriction on 1 it is clear that no variable to be selected will be free in S{v/t],
and therefore by inductive hypothesis in U, S{v/t}.

L=U,V,X AY such that M = M|y x U M|v,y, Le. no literal in U? or XP is M-mated
to any literal in V2 or ¥ P,

Here we have to consider three subcases,

() M|y is clause-spanning for U?. Then restrict the mating to N = M|y. Then
no literal in V, X AY is involved in the mating and they will only appear as side
formulas in any inference above L.

{b) My is clause-spanning on V2. This case is symmetric to case {a): Let N = M|y.

(c} Neither case {a) nor case (b} apply. Then infer L by %—«XW—- AL

Since the problem is symmetric, we will simply show that (Qlyx, Mjy,x) is an
expansion tree proof for U, X. It then follows analogously that (Qly.y, Mlyy) is an
expansion trce proof for V,Y. The only condition we have to test is whether M|y x
is clause-spanning on Q‘ﬁ,){‘ Let P be a clause in Q]g' x- Since neither case (a)
nor case (b) applies, there is a clause O in VP not spanned by M. Let P’ be the
extension of P to a clause in QP such that P’y = O and P'|y,x = P. By inductive
assumption, P’ is spanned by {I;k) € M. Not both [and k are in V7, since M does
not span O. We also assumed M = M|y x U Mly,y and hence (I,k) € Mju,x.

L=U,XAY and case (vi) does not apply.

UUX/\YC
U XAY

v
Modify @ = toget R=
U XAY U

For every occurrence of a literal I in U, there are two occurrences of | in U,U. Call
these [! and {2 for the occurrences in the left and right copies of U, respectively. Let

Then infer L by

402

Mt x [M|\2',Y] be the result of replacing every occurrence of a literal I from UP in M|y x
[Mly.y] by I' {12]. Then N = M|} U M|Z, spans every clause in RP. To sec this,
fet P be a clause in RY. Then P contains literals from either X or Y, but not both.
Without loss of generality, assume I’ contains literals in X, and let O be the clause in
QP which agrees with P on X and contains a literal [in UP ilT ! is in P. By inductive
assumption, O is closed by a pair (k,m) € M. But then also (k',m) € M|}, ¢ ¥ (if m
is in QIR), or (k',m!) ¢ Ml 5 < N (il mis in Q7). Thus P is spanned by N. Since
P was arbitrary, N spans every clause in RP.

Now the case (vi) can be applied immediatedly, thus reducing the complexity of L =
U, X AY to the complexities of the lines U, X and U, Y.

Since the size of connected subformulas of the unjustified lines in the J-proof is dimin-
ished in each step, all we need to show Lo prove correcluess is thatl at least one of the cases
always applies. One can see that only one problem may arise: all top-level nnformulas are
existentially quantified, each of them has just one substitution term, and all of the substitu-
tion terms contain a free variable whicli is still to be selected. Since <¢ has no cycles, there
is a term t such that for no s, s <¢ ¢. If ¢t contained a free variable a, which were still to
be selected, then the node where a is selected has to lie below one of the top-level existential
quantifiers in @. But if s is the substitution term for this node, then by definition 3.2, s <g t.
This is a contradiction, since <) is acyclic and therefore case (v) must apply for at least one
of the quantifiers.

5. Building Expansion Tree Proofs from I-proofs

In this section we show how to construct an expansion tree proof from a proof in I. This
translation plays an important role in giving a translation procedure from I'* into expansion
tree proofs. Some ideas of Miller [9] are used, but we proceed entirely constructively. Also,
the procedure for merge presented in case (vi) below results in much smaller expansion trees
than the ones obtained by Miller’s MERGE algorithm. Moreover, because of the way we set
up I*, a merge is necessary only for contraction and not inherently tied to any quantifier or
logical connective. This allows a clearer exposition of the ideas which underly the translation
from I-proofs into expansion tree proofs.

The construction proceeds by induction on the I-proof tree. Note that all cases except for
Contraction are very simple. This supports our claim that the expansion tree proof induced
by an I-proof cerresponds to the I-proof “in a natural way”. The basic “idea” underlying
the original proof is retained.

We now assume we are given an inference (or axiom) in 7, and we have already con-
structed expansion tree proofs for the premise. We shall call this expansion tree proof (@, M)
((Q1, M1) and (Q2, M2) in the case of AI). The expansion tree proof for the conclusion will
be (R, N).

(i) We have an axiom U, A, -A.

Then N = {(~4,A)} and R =

A -A

In @[y, let each existentially quantified variable expand to itself, and select a new unique
variable for cach universally quantificd variable.

(i)
(iif)

(iv)

™)

403

UX,Y
VI : VXY Here (R, N) = (Q, M).
X v,V
Al': l’f, FXAY . Here N = MU M3 and

In the new tree we may have to rename the sclections for some universal variables, to
make sure that no free or selected variable from one branch of the I-proof tree is selected
in the other branch.

ar: g—lj—szgﬂﬂ t free forvin S.

A%
S e S
From Q = />\we passto R= /U, WS
U Sw/t] !

ZON

If v does not appear in S, we pick a new variable a to be ¢, a not selected in @ and not
free in U, S.

Since RP = QP, we can take N = M. What remains to be shown in this case is that <p
is acyclic. Let a be a variable selected below E'US in R. There may be expansion terms
si, t <% s;, but there is no term s such that s <%, ¢. If s <%, ¢ would hold, there had to be
a variable b selected in R, and b frec in . But then also b free in S[v/t] (otherwise ¢ was
selected to be a new variable), and hence b free in Q¥ which contradicts the assumption
that (@, M) is an expansion tree proof for U, S[v/t].

VI : UUS\[;’{;] , @ a variable not free in U or VoS.
v
4
From Q = we pass to R = Yvs
U Slv/a &

N

If v does not appear in S, we pick a new variable a not free in U or S or selected in Q.

Since RP = QP, we can take N = M. Moreover, since a is not free in U,VvS, a is a valid
selection. Moreover, a could not have been selected in Q, since a occurs free in S{v/aj
or had been chosen not to be selected in @. Thus a is selected in R only once.

404

(vi) C: 2

Let @4, Q2 be the subtrees of @ with the root node being the left and right occurrences
of X in the premise, respectively. We apply a recursive merging algorithm to obtain an
expansion tree @y @ Q- for the single occurrence of X in the conclusion. We will pass

{rom
v
Q = to R =
v/ @ 0 U/ Qo
In order to apply @ to two expansion trees Py, Py, we require PP = P§, which is

certainly true of @ and Qa.
(&) Pi=1Il =1l =1 =P, Then Py ® P, = 1. We say we identify the distinct
occurrences of the literal [

X b3
(b) P = /\ and Py = /\
Y1 Yn Zl Zn
X

Then Py Po =
Yi9Z Y,.0Zn

YuS VuS
(¢) Pi= PandPy= |b
Y, Y,
Yu§
Then Py @ Pp = a
Y, @ Ya[b/a]

Yz[b/a] is the result of replacing every occurrence of b in. the expansion tree Y3 by
a. But not only do we have to apply this change of names in Y2, but in the whole
expansion tree in which our merge takes place.

BN JuS

(d)

Then PL@ Py =

SL{"//TM 1} Eh {”/Tk-&-l]

[87[o/resa]l[S*Tv/ri 1]

405

Here 7y,..., 7, are the expansion terms which appear only in one of ty,...,t, and
Sis--y8m) Thls---»Thtt are the expansion terms which appear in both. S* [S?]
stands for the oceurrence of a subtree in Py [1’2]. Wrppn - ti = s wesay thalt rpyp
is the resull of identifying the distinct occurrences of the expansion terms t; and
8;.

We now show by induction on the number of identifications of expansion terms in Q;DQ»
that <p is acyclic. We define a sequence of relations, <g=<?, <!, ... <™=<p such
that each <*, 1 <1z < n, is acyclic.

Note first that < is acyclic, since <¢ is acyclic. If no two literal occurrences were
identified during the merge, <"=:<p and we are doune. Otherwise let py,p2,...,pa be
all the literal occurrences in R which result from identilying expansion terms in @ and
Q2 ordered in such a way that « < 7 whenever p; is above p; in B. Now assumc we
have already defined <*. Let ¢; in @ and ¢o in Qy be the expansion terms which were
identified to form p;. We definet <**1 5iff t < sort = p; and g2 <* s or q; <* s bearing
in mind that each variable selected below ¢, is also selected below ¢y after merging, since
g1 and gy are identfied. This can only introduce a cycle into <**1 if p; <**+1 p; which
in turn can only happen if q; <% q; or g2 <! q;. But if for some s, s <? q;, then also
s <! ¢a, since ¢; and g, have the same free variables. Thus this would mean g; <* ¢; or
g2 <* g2, which is a contradiction to the inductive hypothesis that <* has no cycles.

One can finally see that <p=<™, since t <p s either since t <y s or because of one
of the identifications of distinct expansion term occurrences. The case where selected
variables are being renamed and identified does not contribute any new pairs to <p,
since a selection is below a given expansion before identifying the selections iff it is below
that expansion after identifying the selections.

To obtain N on R from M on @, we simply identify in M all literal occurrences which
were identified to form one literal occurrence. Then N spans every clause on R: Let [®
be defined as [@k, if [and k are literal occurrences which were identifed using case (a)
above when forming Q, ® @2, otherwise I® = [. Then N = {({®,k®) : ([,k) € M}. Now
let C be a clause in R”. Then there is a corresponding clause D in QP such that [€ D
iff 1® € C. D is spanned by a pair (I,k) € M. But then (I®,k®) € N and consequently
N spans C.

6. Cut Elimination in I*

Our cut elimination algorithm is based on similar algorithms of Gentzen [7] and Smullyan
[13]. We reformulate these algorithms in terms of the system I* in order to give a completely
self-contained and unified treatment to all the translations between analytic and non-analytic
proofs. If one wanted to write out the details of a procedure which computes an expansion
tree proof for a formula B, given those for A and —A VvV B directly in terms of expansion
tree proofs, one could use the cases below in an inductive proof to show that such a direct
procedure will result in the same expansion tree proof for B as the less direct procedure
described in section 7.

The proof of termination relies on a double induction argument: At each step we trans-
form one mix (which has no other mixes above it) into one or several mixes with lower degree,
or, if the degree stays the same, with smaller rank. The degree of a mix is the number of
quantifiers and connectives in the mix formula (the formula being eliminated). The left [right]

406

rank of a mix is the number of lines in the left [right] premise of a mix which contain the mix
formulas. The rank of a mix is the sum of left and right rank.

For many of the following cases there is an obvious symmetric case which can be treated
completely analogously. It is to be understood that there could be more occurrences of the
mix formula in the premises of a mix, but we.do not write this oul to keep the diagrams as
simple as possible. First we consider the case that one of the premises of the mix is an axiom.

{i} The mix formula is the side-formula of the axiom. Then we eliminate the mix immedi-
atedly:

> UV, A, A

(if} The mix formula is not the side-formula of the axiom. Then we also eliminate the mix:

Add V as a side-
U, A V,A,-A .. formula to every inference
U,V,A Miz above U, A
UV, 4

We will now treat the case that the rank of the mix (which contains no other mix above it}

is 2.

(i) The mix formula is a literal A. Since the rank of the mix is 2, one of the previous two
cases must apply.

i) C=XvY,C=XAY.

U, X,Y Vi, X Vo, ¥ o U,XxY Vi, X ,,. -
TxVY Y v XAY = vy Mewy
U, V., V2 bt U,V1, V2
Each of the two new mixes has smaller degree.
(i) € =vuS, C= S,
U, S[v/a] Z’_?Ml repiace
U, VS 1 V, S EI. = by ¢
. UV Mizx @ by

U, 8ot} - V, Slv/t] Miz

Note that ¢ is free for v in X, hence in X, and therefore replacing a by t is a legal
operation, transforming one I-proof into another if we also rename some variables b
which are free in ¢.

Now we consider the case where the rank is greater than 2. We treat the case where the
left rank is greater than 1. The case where the right rank is greater than 1 can be treated
analogously.

This case again breaks up into two subcases. The new formula on the left hand side of
the premise may or may not be the same as the mix formula. First we show how fo reduce
a mix in case the new formula is not the same as the mix formula. Here we generally reduce
the mix to a mix with the same degree but lower rank.

U,A4,BX vF . U, ABX v, X
(i) U AvB X vV, X Misz = UV,A B VI
UV AVE UV, AVE

Miz

407

L UnAX VR UnBX VX,
(i) V. X = UV, A U”V’B/\I
- Miz U U, V,V,ANB
Ui, Us,V,AAB

If X appears in only one premise of the A, this case simplifies in the obvious way.

U, A0, X U, Ap/8,X VX,
(iii) Udva, X - ViX Miz = U,V, Alu/t] 37 u
UV, A U,V,3vA -
U, Alp/al, X U, Ajv/al, X VX .
(iv) twA X T vx A => A T
U,V,%A b UV, oA

If a happens to be free in V, replace a by a new variable b everywhere above V, X.

U AAX o U,AAX V,?M.
) UAX VX upe => UV, A4 b
TV, A UV, A

The last case remaining occurs when the mix formula is also the formula introduced by
the last inference rule on the left-hand side. The cases are analogous to the previous ones,
except that one mix is now reduced to one mix of lower rank and another mix of left rank 1.

U,AB,AvB V,AANB _ .
U,ABAVE o UV 4B |, Miz
(i) U, AVEB,AVE V,ANB, == UV,AVB V,AAB .
A iz U,V.V Miz
v ¢
Ui, A,AAB U, B,AAB ,; o
(i) U, U, ANB,AANB AAB V,AVBM.
UL, Us,V b
V,,ALAAB V,ZVEM. Us,B,AAB V,ZV‘EM.
U,,V,A v U V,B _ M
=> U,U.,V,V,AND VAVE .
UL U,V V,V "
hUI:V

This case simplifies if the mix formula does not appear in both premises of the Al

U, 38, S[v/t] AT
U308, 5lv/e] ., B U,V, S[u/i] e
(iid) U, %S, w8 V,VeS . = U,V, 38 LA
TV Miz A% Mix
v,v ©
U,vvS, Slv/a) V,Vv.—S"M.
U, ¥vS, Slv/a) Vi ~ U,V,Sv/q] =
(iv) U, %S, %03 V,w§ . = TV, %5 X vWws ..
lin% Mix A Miz
v ¢
U X, X, X _ -
) 5% ¢ v3X = UXXX VX piz

TV Mix Uy

408

7. Building Expansion Tree Proofs from [*-proofs

Since we already showed how to construct expansion tree proofs from I-proofs we have
only to show how to construct an expansion tree prool, given expansion tree proofs for the
two premises of a mix. We emphasize the constructiveness of our approach. Of course we
could simply use any theorem proving procedure and arrive at a proof, since we already know
we are dealing with a theorem. Our goal, however, is to construct an expansion tree proof
which most closcly reflects the structure of the two given original proofs, and moreover can
be explicitly obtained from thewm.

Here is our procedure: If we do not already have mix-free I-proofs for both premises,
construct them with the algorithm described in section 4. Bliminate the mix from the result-
ing proofl in I'* to obtain a proof in I using the algorithm in section 6. Finally, construct an

expansion tree proof from this J-prool using the procedure given in section 5.

In practice we do not have to explicitly contruct these I-proofs. The procedure may be
reformulated in terms of the expansion tree proofs themselves, but space does not permit to
write out the rather laborious details here.

By looking at one of the critical cases, case (i) where a mix of rank 1 is eliminated, one
can see the following: If d is the number of quantifiers and connectives in the mix formula
{degree of the mix), { is the length of the proof {say, above the leftv premise), and f{d,!) is
a worst case lower bound of the length of the resulting mix—fr{ee proof, the following relation

%

must hold: £(d,1) > f(£, f(2,1)). Thus we get f(d,1) > 2%

Since an I-proof is at most exponentially bigger than a corresponding expansion tree
proof, the lower bound remains non-Kalmar-elementary when the resulting I-proof is trans-
lated into an expansion tree proof. A result by Statman [14] mentioned in the introduction
tells us that this can not be significantly improved. There cannot be a Kalmar-elementary
translation from J*-proofs into I-proofs.

In practice, however, the translation is often feasible and it is not clear which class of
theorems will actually blow up the size of the proof by as much as f{d,{).

8, Building Expansion Tree Proofs from Resolution Refutations

When describing the translation procedure from resolution refutations into expansion
tree proofs care must be taken to avoid confusion between the different nnformulas and the
clauses in them. Resolution refutations are stated for the negation of a theorem; expansion
tree proofs are defined for the theorem itself. In both cases clauses play a central role. Thus
we will call clauses in an expansion tree paths, while clauses in a resolution refutation will be
called clauses., We say a path intersects a clause if they have a literal occurrence in common.
Notice that our definition of a clause is slightly different from the customary definition as a
set. Since matings are relations on literal occurrences, we cannot afford to regard different
occurrences of the same literal as identical. During a resolution of two clauses we delete all
occurrences of the literal resolved upon. Generally in this section we will assume nnformulas
also to be af-normal, i.e. no variable occurs both free and bound and each variable is bound
at most once.

Andrews [1] described an algorithm which translates resolution refutation into matings,
but the setting here is essentially different. We do not werk with conjunctive normal forms
or Skolem-terms in expansion tree proofs and the condition that matings in expansion tree

409

proofs must be clause-spanning is also quite different from Andrews’ condition that every
cycle in a mating must have a merge.

With the aid of this algorithm a resolution refutation can be translated into a non-
analytic proof by first translating it into an expansion tree proof and then inlo a proof in I'*
using the algorithm in section 5. This can be carried even further by translating the I'*-proof
into a proof in natural deduction style. A procedure for this translation is given by Miller in
[10]. This can help a mathematician understand a proof by a resolution theorem prover since
he can study it in a familiar format. It may also be a valuable rescarch tool as indicated in
the introduction.

8.1. Definition. Let X be an of-normal nnformula. Then X*, the Skolem-form of X,
is the result of replacing every subformula of the form FvS by S[v/f.(w),...,w,)], where
wy,...,w, are all the universally quantified variables in whose scope HvS lies, and then
deleting all the universal quantifiers. f,(wy,...,w,) and instances thereof are called Skolem-
terms, f, the Skolem-function for v.

8.2. Definition. Let X be an af-normal nnformula. A resolution refutation of X is a
list of clauses cy,...,c, such that

(i) 3m such that {¢; : 1 < j < m} is a subset of the set of clauses of X,
(ii) for each j > m either
{2) c¢; is a substitution instance ¢c; for some i < 7,

(b) ¢, is the resolvent of c,; and cs,, where a;,b; < j, and ¢; is formed by appending
the results of deleting all occurrences of a literal /; from ¢,, and -l from Ch, -

(c) c¢n =0 (the empty clause).

In our translation we will have to select unique variables for Skolem-functions and their
arguments. In general, if f({wj,...,w,) is a Skolem-term for arbitrary terms wy,...,wy,
then f(wy,...,ws) is a unique corresponding variable. Note that this is just a notational
convenience in our metalanguage. We must also occasionally model the effect of a substitution
into a Skolem-term on the corresponding variables.

8.3. Definition. Let f(w;,...,w,) be a variable, ¢ a substitution for variables which
do not come from Skolem-terms. We extend ¢ to terms and formulas in the usual way,
but also extend it Lo act on variables which come from Skolem-terms. Recursively define

¢f(w1)~"1w‘u) = f(¢w17""¢wn)-

We are now ready to define what it means to apply a substitution to an expansion tree.

Note that (¢Q)S = ¢(Qs)-

8.4. Definition. Let @ be an expansion tree. Then we define ¢Q inductively.

{i) @ is a literal [. Then ¢Q = ¢l.
X s

(i) @= .- Then ¢@Q =
Q1 Qn Q1 $Qn

410

EOR
Gi) @=

Ql Qn
We leave the original expansions intact, and add all terms which change under the
substitution as new expansion terms. Let ¢;,,...,t;,, be all the expansions terms ¢; such
that ¢t; 76 t;. Then

BN

Q=

@y ¢Qi1 ¢Qim
VoS VoS
(iv) @= Fwiy ..., w,) Then ¢Q = of(wy,. .., wp)

Qo #Qo

During the translation from resolution refutations to expansion tree proofs we associate
an expansion tree and a mating with each line in the resolution refutation. These expansion
trees have to satisfy all of the conditions of expansion tree proofs except that the mating does
not have to be clause-spanning. We therefore define:

8.5. Definition. A partial expansion tree proof (Q, M) for a nnformula X is an ordered
pair consisting of an expansion tree @ and a mating M on QP such that

i @%5=x.
(ii) No selected variable is free in Q5.
(iii) <g is acyclic.

A particular partial expansion tree will correspond to the part of the resolution proof
which is constructed solely from the clauses in the negated and Skolemized theorem.

8.6. Definition. Let X be an of-normal nnformula. The initial expansion tree Q(X)
for X is inductively defined for parts Y of X by

(i) Y =1for aliteral {. Then Q(Y) =1

(ii) ¥ =YiX---%Y,. Then Q(Y) =

FvS

(iii) Y =3vS. Then Q(Y) = |Y
Q(8)

411

VoS
(iv) Y =VvS. Then Q(Y) = Jolwiye .. wy)

Q(Slv/fulwy, ...y wa)))

where fo{wy,...,w,) is the Skolem-term for v in X.

Now we construct an expansion tree proof from a resolution refutation. Let a resolution
refutalion €1,...,€m, €mt1s- - -2 o = L1be given. For each clause ¢, 7 > m we will recursively
construct a partial expansion tree proof (Q;, M;) with the following property:

(#); Let ¢;, 1 < 7 be a clause in the resolution refutation. Then every path through QJI-’
which does not intersect ¢; contains a pair of M -mated literals.

If we can show that (); holds for all m < j < n, the correctness of our translation is
proven, since ¢, = [J and therefore no path through QP intersects ¢, by (),. Hence every
path through Q2 must be spanned by M, and (Q2, M,.) is an expansion tree proof for X.

Now we come to the construction of (Q;, M;).

Let (Qum, Mun) = (Q(X), {}). Since every path in O(X)P intersects every clause in X,
(Q:ns Mr) is a partial expansion tree proof for X and satisfies (%)m.

Now assume {Qm, Mim),...,{Qj—1, M;_1) are partial expansion tree proofs for X and
(%) is satisfied for m < 7 <7 — 1. We have to distinguish cases, since ¢; could either be a
substitution instance or a resolvent of earlier clauses.

(i) Assume ¢; is a substitution instance ¢c; for some 1 < ¢ < 7 ~ 1, ¢ a substitution for
the free variables in ¢;. If a variable is free in ¢; it must be existentially quantiified in
X. Now we pass to a substitution # such that @ agrees with ¢ if the substituent is not a
Skolem-term, and v = f(wy,..., wn) if dv = f(wy,...,wa)

Let @; = 0Q;.-1. {Q;, M;) is a partial expansion tree proof for X (M; to be contructed
later):

(a) QJS = Qf_ 1 = X by inductive assumption.

(b) From the way selections for universal variables in X are chosen and from the fact
that X was af-normal, it is clear that every variable is selected at most once and
that no selected variable is free in Qf.

(¢) <gq, is acyclic. Assume, to the contrary, that there is a cycle
0 0 0 =
ty <Q,‘ 2] <Q,‘ e <Q,’ tn =t1.

The first relation means that there is a variable selected below t; which is free in
t2. Since the variable is selected below t; in the expansion tree, it has the form of
a variable corresponding to a Skolem-term which contains £;. Thus {3 contains a
term of the form fi{...,%;,...}). Hence in the Skolem-form ¢ of the substitution, {3
is free in iy The next relation would say that there is a variable selected below £o
which is free in £3. Thus a term of the form fof...,ts,...) is free in {3. Combined
with the previous conclusion this gives us that ¢, is free in {3, Iterating this process
we finally arrive at the conclusion that ¢; is free in ¢, = t;. But this would mean
that the original substitution ¢ was not legal, which is a contradiction. Therefore
<@, must be acyclic.

(i)

412

Now we show how to construct M;. First note that because of definition 8.4 any literal
occurrence in ,P—»: is still present in QD Each new literal occurrence in QD is of the

form 8! for some !in QP ;. Then we sunply Tet My = M;. U {(0L,6k): (I, k} € M;1}.

{a) Consider cs, k < j, P a path through Q) not intersecting ¢;. Since paths in QP
can only be longer than paths in Q > there is a projection P’ of P-n Q . P
may be obtained by deleting all the new literals from P. Then P’ is sp'mncd by
M;_, by inductive hypothesis and hence P by M; D M;_;.

(b) Consider ¢;, P a path through QD not intersecting c;. Construct a path P’ through
QJD 1 as follows: Every literal occurrence ! in QD ; such that there is a new literal
occurrence 8 € P is included. Furthermore all htem] occurrences such that there is
no new literal occurrence 0l in QD but ! € P are also included. Then P’ does not
intersect ¢; and is therefore spnmud by a pair {{,k) € M;—,. But then 8,0k € P
{neither necessarily new) and (8/, Wc) € M;. Hence P is spanned by M;.

Assume c; is the resolvent of ¢,; and ¢p, upon the literal l; € cq;, —lj € ¢, where
aj,b; < j. Define @; = Q.. and let M; = M;_y U {(l,k) : { an occurrence of ; in c,y,
k an occurrence of -lj in ¢y, }.’

Since Q; = Q;_1, Q; is a partial expansion tree proof for X. What remains to be shown
is that M, spans every path through QD which does not intersect ¢;, for all 7 < 5. For
2 < § this is obvious by the inductive hypothe51s and the fact that M; D M;_;.

Now consider a path P through @ not intersecting ¢;. There are three cases:
{a)} P does not intersect ¢,,. By inductive hypothesis M;_; C M; spans P.
{b) P does not intersect ¢y, ;- By inductive hypothesis M;_; C M; spans P.

{c} P intersects both ¢,; and ¢5,. Since P does not intersect ¢;, P must intersect
€q; in one of the literal oceurrences I; resolved upon, and cp; in one of the literal
occurrences ~{;. But then M; spans P since {I;,~I;} € M;.

References

[1] Peter B. Andrews, Refutations by Matings, 1EEE Transactions on Computers C-25(1976),
801-807.

{2] Peter B. Andrews, Transforming Matings into Natural Deduction Proofs. in 5tk Conference
on Automated Deduction, Les Arcs, France, edited by W. Bibel and R. Kowalski. Lecture
Notes in Computer Science 87, Springer-Verlag. 1980, 281-292.

I3] Peter B. Andrews, Theorem Proving via General Matings, Journal of the Association for
Computing Machinery 28 (1981), 193-214,

[4] Wolfgang Bibel, Automatic Theorem Proving. Vieweg. Braunschweig, 1982.

[5] W. Bibel and J. Schreiber, Proof search in a Gentzen-like system of first-order logic.
Proceedings of the International Computing Symposium, 1975, pp. 205-212.

[6] W. W. Bledsoe, Non-resolution Theorem Proving, Artificial Intclligence 9 (1977).1-35.

413

[71 G. Gentzen, Investigations into Logical Deductions. In The Collected Papers of Gerhard
Gentzen, M. E. Szabo, Ed.,North-Holland Publishing Co., Amsterdam, 1969, pp. 68-131.

[8}). Herbrand, Logical Writings, Harvard University Press, 1972,

[9] Dale A. Miller, Proofs in Higher Order Logic, Ph.D. Th., Carnegie-Mellon University,
August 1983,

[10] Dale A. Miller, Expansion Tree Proofs and Their Conversion to Natural Deduction Proofs.
7th Conference on Automated Deduction, Napa, May 1984.

[11] Frank Pfenning. Conversions between Analytic and Non-analytic Proofs. Tech. Report,
Carnegie-Mellon University, 1984. (to appear)

[12] 3. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the
Association for Computing Machinery 12 (1965), 23-41.

[13] R. M. Smullyan, First-Order Lagic, Springer-Verlag, Berlin, 1968,

[14] R. Statman, Lower Bounds on Herbrand’s Theorem, Proceedings of the American
Mathematical Society 75 (1979), 104-107.

