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O. A b s t r a c t  

]n automated theorem In'oving different kinds of proof systems have been used. Tradi- 
tional proof systems, such as Iiill)ert-style proofs or natural deduction we call non-analytic, 
while resolution or mating proof sysi.ems we call analytic. There are many good reasons to 
study the connections between analytic and non-analytic proofs. We would like a theorem 
prover to make efficient use of both analytic and non-analytic methods to get the best of 
both worlds. 

hi this paper we present an algorithm for translating from a particular non-anMytic 
proof system to analytic proofs. Moreover, some results about the translation in the other 
direction are refornmlated and known algorithms improved, hnplementation of the algorithms 
presented for use in research and teaching logic is under way at Carnegie-Mellon University 
in the framework of TPS and its educational counterpart ETPS. 

Finally we show how to obtain non-analytic proofs from resolution refutations. As an 
application, resolution refutations can be translated into comprehensible natural deduction 
proofs. 

1. I n t r o d u c t i o n  

In automated theorem proving different kinds of proof systems have been used. Tradi- 
tional proof systems, such as Hilbert-style proofs or natural deduction we call non-analytic, 
while resolution or mating proof systems we call analytic. There are many good reasons to 
study the connections between analytic and non-analytic proofs. We would like a theorem 
prover to make efficient use of both analytic and non-analytic methods to get the best of 
both worlds. 

The advantages of analytic proofs are well known. One of the most important advantage 
is that  they seem to be ideally suited for an efficient automatic search for a proof on the 
computer. 

On the other hand there is much to gain from the use of non-anMytic proof systems 
in addition to analytic methods. Non-analytic proofs can be presented in a comprehensible 
and pleasing format. If we can translate, say, resolution refutations into legible non-anMytic 
proofs, we can help the mathematician understand the atttomatically generated proof. Valu- 
able work here has been done by Miller [10]. The natural deduction proofs obtained from 
mating refutations are often elegant and easy to understand and use such mathematically 
common concepts as proof by contradiction and case-analysis, and make use of intuitive op- 
erations such as backchaining. Better translations which arc the object of current research 
would make this even more useful for a wider class of theorems. 

The ability to freely translate between analytic and non-analytic proofs also gives us a 
tool for creating a more elegant natural deduction style proof from a given one. We would 
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translate a given proof into an analytic proof, possibly transform this analytic proof into a 
shorter one, and then buiht a new natural  deduction style proof from it in a canonical fashion. 

Good translation procedures can also serve as a valuable research tool. tleuristics and 
lemmas of use to a theorem prover can often be discovered and formulated naturally in some 
non-analytic proof style. The ability to translate these into an analytic format may help 
to incorporate them into a theorem 1)rover. Moreover, if we can translate automatic proofs 
ol)tailmd with and without a certain heuristic, we may gain deeper insight into the natttre 
and performance of the heuristics. 

Another perhaps more immediately important  apl)lication is in the use of these proce- 
dures in computer-aided instruction in h)gic. The student will a t tempt  his proof in a deductive 
fi)rmat, e.g. in a natural deduction style, on the comlmter. The analytic proof of the exercise 
can be h)l,nd beforehand by aa automated theorem prover employil~g resolution or a mating 
procedure, or even constructed from a sample natural deduction proof given by the teacher. 
This analytic proof can then be used to guide the student through his own at tempts  to prove 
the theorem by suggesting which inference rules may be appropriate when the student asks for 
help. Moreover, when the student is done, a ':normalizing" procedure like the one described 
above can demonstrate to the student how he might have proven the theorem more elegantly 
or efficiently. A system called ETPS,  which will contain all these features, is currently under 
development at Carnegie-Mellon University. 

There is also a very good complexity-theoretic reason why a theorem prover may want 
to make use of non-analytic as well as analytic methods. A result by Statman [14] shows tha t  
there are theorems which have "short" non-analytic proofs, but no "short" analytic proofs 
whatsoever. He exhibits a sequence of theorems (from the theory of combinators) whose "'2| } 
shortest  possible analytic proof is 2 2" ~. (d is the number of connectives and quantifiers 
of a theorem X, and l the length of a non-analytic proof for X.) This lower bound is not 
Kalmar-elementary, and there are therefore theorems which cannot be practically proven by 
purely analytic methods which have short non-analytic proofs. 

Let us now try to make more precise the distinction between analytic ,and non-analytic 
proof systems. The term "analytic" was introduced by Smnllyan in [13] and conveys the idea 
t ha t  the proof (or refutation) procedure analyzes the given formula. An analytic proof has 
a very strong subformula property: Only subfornmlas of the theorem and their instances will 
appear  in an analytic proof. 

In the field of automated deduction the discovery of analytic proof systems such as 
resolution [12] went hand in hand with the beginning of research, The mat ing approach [3] 
and a similar method by Bibel [4] ,axe other examples of ,analytic proof systems. 

Examples of non-analytic methods in automated theorem proving can be found in Bled- 
soe's survey [6] of non-resolution theorem proving. This includes approaches like term- 
rewriting, built-in inequalities, forward-chaining, nmdels, and even counterexamples. Some 
of these approaches may be cMled non-analytic, since they sometimes consider form.ulas not  
par t  of the proposed theorem. Many of the stimuli here come from mathematics  rather  than 
pure logic. Hilbert-style, Gentzen-style [7], o1" natural  deduction style systems are all exam- 
ples of traditional non-analytic proof systems. In general they do not obey the subfornmla 
property. Usually Cut or Modus Ponens is used to eliminate the helpful formulas, which are 
not par t  of the theorem, but  substi tut ivi ty of equivalence or equality may be used as well. 
The use of Cut  itself does not characterize non-analytic proof systems, as can be seen from 
the case of resolution, where the cut formulas ~ e  Ml subfonnulas of the given theorem. 
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An(trows has shown in [21 how to convert matings into natural  deduction proofs. Miller [9] 
took this work f lnthcr  by generalizing it to higher-order logic and also addressing questions 
of style in these proofs. Some related work was also done by Bibel in [5]. An algorithm 
translating in the other dircction is the main contributi(m of this paper. The ability to 
readily translate in either direction between analytic and non-analytic proofs (in the case of 
the iml)lementatlon in TPS between expansion proofs and natural  deduction style proofs) 
gives us all the aforemeutlo~md a(lvantages. 

As a ret)reseniativc of non-analytic proof systems wc pick jr*, mainly for its concel)tua] 
clarity and simplicity of cut-elimination. 2"* which is described in section 2 is closely related 
to the system LK of (~,entzen 17 t and a related syste~u of Snmllyan [13]. 

Following Miller in [9], who works in the setting of higher order logic, we define a purely 
;malytic proof system in sectlou 3. Expansion proofs, as they arc called, are very natural and 
convenient and very concisely represent the information ct)ntained in an analytic proof. 

In section 4 we give a new exposition of part  of Miller's work in terms of our analytic 
~md non-analytic first-order proof systems. This exposition provides the reader with a self- 
contained and unified t reatment  of the translations between the w~rious proof styles. We also 
handle conjunction in a new way, thus creating stylistically different proofs. 

As the main par t  of this paper, we give an explicit algorithm which t rans la tes /*-proofs  
into expansion proofs in sections 5, 6, ,and 7. Expansion proofs are very much different from 
the kind of ,analytic proofs Gentzen or Smullyan considered, though some of their ideas, in 
particular for cut-elimination, are used. Our merge algorithm which deals with the inference 
rule Contraction is a significantly improved version of Miller's [9] MERGE, which generally 
produces much larger expansion trees. 

Andrews in [1] has given an algorithm which computes a mating from a resolution refuta- 
tion. tn section 8 we state a.nd prove the correctness of a different algorithm which translates 
resolution refutations into expansion proofs, which do not make use of Skolem-functiens or 
conjunctive normal forms and satisfy a quite different acceptability criterion from AndrewsL 
We thus give a two-step procedure by which resolution refutations can be translated into 
2"*-proofs, or~ in one more step~ into natural  deduction proofs. 

Space does not permit  to include here non-trivial examples illustrating the various algo- 
ri thms. Detailed examples for all the translation procedures presented here axe given by the 
author in [11], 

2. T h e  S y s t e m s  I a n d  r* 

Our non-analytic proof system is .7", which builds ut)on similar systems of Gentzen [7] 
mad Smullyml [13]. 2.* is particularly well suited for the description of our algorithms. Notice, 
for instance, tha t  az~y theorem derived in 2"" is automatically in negation normal form. The 
work done here can easily be generalized to other superficially richer systems of first-order 
logic. To sin-lplify some of our exposition we introduce a system 2. which is identical to 2"* 
but  does not  contain the rule of Mix (a variant  of Cut). 

Our formulation of first-order logic includes the propositional connectives V, A, -~, the 
quantifiers S mid V mid an infinite number of individual variables ,'tad constants. Function 
constants of arbitrary finite arity are also permitted. An atomic fornmla is of the form 
PQ . . . tn  for an n-ary predicate P and terms Q , . . .  , tn.  A literal is of the form A or -~A for 
an atomic formula A. A fornmla is in negation normal form if the scope of each negation is 
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atomic. Each first-order formula has a classically equivalent fornmla in negation normal form, 
and we generally assume our formulas to be in negation normal form. XIv/a ] is our nota t ion 
for the result of subst i tu t ing a for the free occurrences of v in X. We write  n n f o r m u l a  
for a formula in negation normal form. We do not  assume tha t  formulas are alphabetically 
normal,  except  in section 8 where we talk about  resolution refutations.  Somet imes  we wri te  
A to indicate tha t  an equation is wdid for both conjunction and disjunction.  

Nodes in a proof-tree in 2" we call l ines .  A line in 2" is a multi-set of formulas. This  
rormulation is halfway 1)ctwecn Ccutzcn 's  (sequent.s) and Smullyan's (sets). The reason fi~r 
choosing this par t icular  representat ion lies in the fact that  contraction is ml extremely pow- 
erful inference ruh; of our system. When we try to analyze how the effect of a contraction 
induces a change in aa associated expansion tree, we will see thai ihe t ransformat ion is reall); 
qui te  complicated.  Thus  we cannol leave contraction implicit, like Smullyan did, when he 
in t roduced sets of formulas as objects  in the proof.  Structural  rules llke cxchm)gc, however,  
have no impac t  on the logical contents  of tile formula or proof  line. We therefore leave them 
implicit  in the  mult i -set  notat ion.  

In general we let U and V s tand for mult i-sets  of" formulas, i.e. sets where we allow the  
same formula to appear  more than  once as a member .  We often write U, X to mean U U {X} 
if U is a mult i-set .  

The  axioms of 2" are of the form 
U,A,-,A 

where A is an a tomic formula. 

The  inference rules can be  divided into structural rules, propositional rules, and quantifi- 
cational rules. The  only structural  rule in 2" is contraction (C). There  is one proposi t ional  
rule for each proposi t ional  connective: V-introduction (V/) and A-introduction (AI) .  There  is 
also exactly one rule for the quantifiers: 3-introduction (3I) and V-introduction (VI). 

S t ructura l  rules 
U,X,X  

Contract ion:  U, X C 

Propositional rules 

U, X, Y 
U , ~  VI 

U,X V,Y 
U,V, X A ~ - -  AI 

Quantifieational rules 

u,x[~/t] 
U,~vX 3 I ,  t a term free for v i n X .  

V,X['/a] U, VvX VI , a not  free in U, VvX. 

U, V contain the  side-formulas of an inference rule. They may be empty.  The proposi-  
tionM and quantif icational  inference rules correspond to Smullyan's [13] rules cq 8 ,  7, 6. 

Sys tem ! is complete in the sense tha t  we can derive the negation normal  form of every 
valid formula in classical first order logic. This follows almost immediatedly from Smullyan's  
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form of the completeness result for Gentzea systems and we will not repeat  the argument  
here. 

We shall also use the system I* which contains the rule of Mix: 

U, X, ._::_, X ......... -V~-X-~ : ::-'-X Mix 
U, V x c u ,  x c v  

is the neg;tl.ion normal form of ,X. There mu~t b e a t  least one occurrence o f X ,  the m i x  
f o r m u l a ,  in the left premise and at least one occurrence of X in the right premise. Mix was 
introduced by (hmi.zen and is a wtriant or the rub! of Cut, and the two are easily shown to 
he equivalent. 

3. E x p a n s i o n  Trees  

Analytic proofs in this paper are presented as expansion trees. Expansion trees very 
concisely and naturally represent the information contained in an ~ma]ytic proof, as we hope 
to show. They were first introduced by Miller [9] and are somewhat similar to t Ierbrand 
expansions [8]. Some redundancies can easily be eliminated for an actual implementat ion as 
done by Miller in the context of higher order logic. The shallow formula of an expansion tree 
will correspond to the theorem; the deep formula is akin to a }]erbrand-expanslon proving 
the theorem. Our formulation of expansion trees differs only trivially from Miller's in [10], 
if restricted to first-order logic. At  several places it is convenient to allow n-s ty  conjunction 
and disjunction instead of treating t~em as binary operations. 

3.1o Def in i t i on .  We define E x p a n s i o n  Trees  inductively. Simultaneously, we also define 
Q D  the deep  f o r m u l a  of an expansion tree, which is Mways quau~ifier~free, and Q S  the 
s h a l l o w  f o r m u l a  of an expansion tree. We furthermore place the restriction tha t  no variable 
in an expansion tree may be selected more than once. 

(i) A literal l (signed atom) is an expansion tree. QD(l) = QS{l) = l. Literats form the  
leaves of expansion trees. 

(ii) If Q~ , . . . ,Q , , ,  n > 2, are expansion trees, so is 
rg 

/ ~  Then D D D 
Q =  and s s s Q = Q ~ . . . ~ Q ~ .  

QI Q,~ 

(iii) If Q l , - . - ,  Q.,, are expansion trees such that  If Q~" = S[v/Q] . . . .  , QS = S[v/t,~], t, a term 
free for v in S for 1 <: i <: n, n > 1, then 

3vS 

t l / ~ t , ~  is an expansion tree. Then QD _ QD V . - -  V Q D, Q 
and Qs = 3vS. / \  

QI Q,, 

3vS is called an e x p a n s i o n  n o d e ;  v is the e x p a n d e d  v a r i a b l e ;  Q , . . .  ,t,~ are the 
e x p a n s i o n  t e r m s .  

(iv) If Qo is an expansion tree such tha t  Q~" := S[v/a] for a variable a, so is 
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VvS 
i 

[. Then QD =Q~D, Q 
I and Q'" ::  VvS. 

Qo 

VvS is called a s e l e c t i o n  n o d e ;  a is the v a r i a b l e  s e l e c t e d  for this occurrcnce of v. A 
To impruw; h.'gihility of our diagrams we will frequently draw / X ' X ~  for an expansion 

tree with Q'~ = X.  

Since tradit ional  proof  systems do not  contain Skolem-functions, we need a different 
mechanism to insure the soundness of our proofs, l~'ollowiug an idea of Bibel [41, which was 
picked up by Miller [9], we introduce a relation <Q on occurrences of exp;msion terms. The  
condition that  <~, he acyclic replaces Skolemization in our analytic proof system. 'l'lne reason 
for this delinition will become clear in section 4. <td is dual to -< delined in [10], and it is 
shown in [9] that  they are equivalent. Later  in section 8 we shall see how this relates to 
Skolemization. 

3.2.  D e f i n i t i o n .  Let Q be an expansion tree. < 0  is a relation on occurrences of expansion 
terms such tha t  t < ~  s iff there is a variable selected for a node below t in Q which is free in 
s. <,~d, the d e p e n d e n c y  r e l a t i o n ,  is the transit ive closure of <~ .  

We define clauses only for quantifier-free nnformulas,  since this is the only case we will 
need. 

3.3. D e f i n i t i o n .  Let X be a quantifier-free nnformula.  A c l a u s e  in X is a list of l i teral 
occurrences defined inductively by 

(i) X = l, a literal. Then  C = (l) is the only clause in X.  

(ii) X = AVB.  Then  for all clauses (a: . . . .  ,a~)  in A and ( b : , . . .  ,b in) in  B,  C = ( a l , . . .  ,a , , ,  
bl . . . .  ,b,~) is a clause in A V B. 

(iii) X : A A B.  Then all clauses in A and all clauses in B are clauses in A A B. 

3.4. D e f i n i t i o n .  A relation on literal occurrences in a quantifier-free nnformula X is a 
m a t i n g  34 if -~l = k for every pair  (l, k) E 34 axtd there is at least one clause in X containing 
bo th  l and k. If ( l ,k)  E 34, I and k axe said to be .M-mated. 

3.5. D e f i n i t i o n .  A mat ing  J~ is said to s p a n  a c l a u s e  C if there axe literals l,k E C such 
tha t  (l, k) E 34. A mat ing  34 is said to be c l a u s e - s p a n n i n g  on a quantifier-free nnformula  
X if every clause in X is spanned by 34. 

The  significance of this definition is of course tha t  a quantifier-free nnformula X is 
tautologous iff there  is a mat ing  clause-spanning on X (see Andrews [3], [1], and Miller [9]). 

3.6.  D e f i n i t i o n .  A pair  (Q, 34) is called an e x p a n s i o n  t r e e  p r o o f  for a nnformula X if 

(i) Qs = x .  

(ii) No selected variable is free in QS. 

(iii) < o  is acyclic. 

(iv) 34, a m a t i n g  on Qo, is c lanse-spanning on Q o .  

Our  t ransla t ions  establish soundness and completeness  of expansion tree proofs wi th  
respect  to nnformulas.  We rely on the soundness ,'rod completeness  of )'*, which is a simple 
consequence of results  by Smullyan [13]. A similar, bu t  necessarily less construct ive a rgument  
w ~  carried out  by Miller [9] for expansion tree proofs in higher-order  logic. 
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4. B u i l d i n g  I - P r o o f s  f r o m  E x p a n s i o n  T r e e  P r o o f s  

Tile algoritlml follows ideas oFMiller [9], but we provide a different t rea tment  of con- 
junct ion.  Our  algori thm results in shorter  proofs than the more naive algorithnl tha t  always 
applies case (vii) below {'or a conjunction,  bu t  we do not  achieve the full power of Miller 's 
focusing method.  Àn return,  our method is computat ional ly faster. 

In the exposition below we sometimes assume that  there is a UM(lue correspondence 
between the formulas in a line and an associated expansion tree, even though we like to think 
of the line as a multi-set  where several identical members  are indistinguishable. In general it 
is sufficient to pick any correspondence between those nmltiple occurrences of a formula in a 
line and the unique sul)trees of the associated expansion tree. 

4.1. D e f i n i t i o n .  A pair  (Q, J~) is an expansion tree l)roof for a ]i~e L :: XI~. . . ,X~ in an 
) ' -proof ill (Q, .M) is an expansion tree proof  for XI V . . .  V Xn. 

4.2.  D e f i n i t i o n .  Let (Q,)4)  be an expansion tree proof for a line L in ,'m I -proof ,  and 
let X be a subformula of an element in L. Then Qlx  is the par t  of the expansion tree Q 
represent ing X (Q].~ -- X ) ,  and .MIx is the restr ict ion of .M to pairs both  of whose elements 
lie in Q[~:. We will sometimes talk about  X D instead of Q]D, if the expansion tree Q is clear 
from the  context .  

We shall describe an algori thm which constructs  an 2"-proof from an expansion tree 
proof,  s tar t ing with the nnformula  to be proven and working upwards until every branch in 
the proof  tree begins with an axiom. The  cases given below can in principle be applied in 
any order.  The ordering below will often, but  not  in general, result in the shortes t  p roof  tha t  
can be const ructed  with this algorithm. 

If an X E L is such tha t  QIx D has no literal in a pair  in .M, then X is to be ignored and 
can only be  pa r t  of a side-formula in an inference above L. 

Now assume L is a given line in an ) '-proof,  and (Q, .M) is an expansion tree proof  for L. 

(i) L = U, A, ~A. Then L is an axiom. 

U, X,  Y 
(ii) L = U, X V Y .  Infer L bYu----X--~y VI. (Q,.M) is an expansion tree proof  for U,X,Y.  

v, S[v/~] 
(iii) L = U, VvS. Infer L by U, VvS VI, 

where a is the  variable selected for this occurrence of Sly~a]. 

VvS ~. 

In Q we replace the corresponding s u b t r e ~ b y ~ [ v / a ~  

By definition 3.6 and the inductive assumpt ion tha t  (Q, .M) forms an expansion tree 
proof  for U, VvS, a cannot be free in U or VvS, since a is a selected v~ iab le  in Q. 

(iv) L = U, 3vS and 3vS has n,  n > 2 successors in Q. 

U, 3vS,. . .  , 3vS 
Infer L by . . .  ( n -  1) × C. 

U, 3vS 
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V V 

C h a n g e Q - - ~  vS to R-= ~ v S  

Since QD = RD (R, .N) is agMn an expansion tree proof for U, 3vS,... ,3vS. 
(v) L = U,~lvS, and ~]vS has exactly one successor S[v/tl, and no free variable in l is a 

variable to be selected in Q. 

~vS 

Infer L by -0~3--3~-- 3I,  and repl by 

From the restriction on t it is clear that no variable to be selected will be free in Sly/t], 
and therefore by inductive hypothesis in U, SlY/t]. 

(vi) L :- U,V,X A Y such that At ---- ~lv,x U ~liv,v, i.e. no literal in U D or X n is M-mated 
to any literal in V D or y D  

Here we have to consider three subcases. 

(a) $1[u is clause-spanning for U ° .  Then restrict the mating to X t = ~[v .  Then 
no literal in V, X A Y is involved in the mating and they will only appear as side 
fornmlas in any inference above L. 

(b) 34[v is clause-spanning on V D. This case is symmetric to case (~): Let ) / - -  ~lv. 
t~,x v,Y (c) Neither case (a) nor case (b) apply. Then infer L by ^ I  

u > v , x ^ y  • 

Since the problem is symmetric, we will simply show that (Qlv,x, ~llu, x) is an 
expansion tree proof for U, X.  It then follows analogously that (Qlv,v, ~liv, v) is an 
expansion tree proof for V, Y. The only condition we have to test is whether ~lv,x 

D is clause-spanning on Qlu,x" Let P be a clause in Ql~,x. Since neither case (a) 
nor case (b) applies, there is a clause O in V D not spanned by J~. Let pi  be the 
extension of P to a clause in QV such that P'lv = 0 and P'itI,x = P. By inductive 
assumption, P' is spanned by (1, k) E ~ .  Not both l and k are in V D, since 34 does 
not span O. We also assumed J~ : J~lrs.x 12 J~lv, r ,'rod hence (l,k) e ~lu,  x .  

(vii) L -- U, X A Y and case (vi) does not apply. 

U,U,X A Y _ 
Then infer L by ~ U. 

V V 

Modify Q = ~ g e t  R = ~  

For every occurrence of a literal l in U, there are two occurrences of l in U, U. Call 
these 1 1 and l 2 for the occurrences in the left and right copies of U, respectively. Let 
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1 .Mlv.x [~12p y] be the result of replacing every occurre,,ce of a lite,'al 1 from U D in .Mlu,x 

[ ~ t v .~ l  by l ~ [/21. Then A/ = Nl~t,.x V h lv .Y  spans every clause in R n. To see this, 
let t j lie a clause in R v.  Tllen I j contains literals fronl either X or Y, but not both .  
Wit]tout loss of generality, aSSUlllC 1' contains literals in X,  and let 0 be tile clause in 
QD wlfich agrees with P on X and cont.aills a literal l in V D in" l s is in P .  By inductive 
assumption,  0 is closed by a pair (k ,m)  ~ .M. But tiLen also (kS,m) C .MI]r. x C X / ( i f m  

is i,, QIx),D or (k ' ,  rot) (- ~t..xJ c 3¢ (Jr m is i,, QI~,J). "i'i,l,.~ P is spanned by iV. Since 
P wits arbitrary,  .J] spallS every clallse ill /~D, 

Now the case (vi) can lie applied innnedial;edly, thus reducing the complexity of L = 
Is', X A Y to the coniplexities of l.he lines U, X and U, Y. 

Since the  size of connected subforlnu]as of the unjustified lines in the I -p roo f  is dimin- 
ished in each step,  all we need |o  sliow Lo prove corl'ecLness is tilat at leasl. Olle of the cases 
always applies. One can see tha t  only one problem niay arise: all top-level nnfornlulas are 
existentially qumitified, each of them has just  one subst i tu t ion term, and all of the subst i tu-  
tion terms contain a free variable which is still to be selected. Since <¢¢ has no cycles, there  
is a term t such t i tat  for no s, s <~2 t. If t contained a free variable a, which were still to 
be selected, then the  node where a is selected has to lie below one of the top-level existentiM 
quantifiers in Q. But  if s is the  subst i tut ion te rm for this node,  then by definition 3.2, s <Q t. 
This is a contradict ion,  since <¢4 is acyclic and therefore case (v) must  apply for at least one 
of the quantifiers. 

5. B u i l d i n g  E x p a n s i o n  T r e e  P r o o f s  f r o m  / - p r o o f s  

In this section we show how to construct  an expansion tree proof  from a proof  in I. This 
t ranslat ion plays an impor tan t  role in giving a t ranslat ion procedure from I*  into expansion 
tree proofs. Some ideas of Miller [9] are used, but  we proceed entirely constructively. Also, 
the procedure for merge presented in case (vi) below results in much smaller expansion trees 
than  the ones obta ined by Miller 's M E R G E  algorit}nn. Moreover, because of the way we set  
up I* ,  a merge is necessary only for contraction and not  inherently tied to any qn,'mtifier or 
logical connective.  This allows a clearer exposition of the ideas which underly the t ransla t ion 
from ]'-proofs into expansion tree proofs. 

The construct ion proceeds by induction on the ] ' -proof tree. Note that  ,all cases except  for 
Contraction are very simple. This supports  our claim tha t  the expansion tree proof  induced 
by an J -p roof  corresponds to the  I -p roo f  "in a na tura l  way". The basic "idea" under ly ing 
the original proof  is retained.  

We now assume we are given an inference (or ,axiom) in I ,  and we have already con- 
s t ructed expansion tree proofs for the premise. We shM1 call tllis expansion tree proof  (Q, J~) 
((Q j ,  )4s) and (Q2, ~ 2 )  in the case of AI). The expansion tree proof  for the  conclusion will 
be  (R, 9V). 

(i) We have an ,axiom U, A,-~A. 
V 

Then N = {(-~A, A)} and R : ~ A  

In Qiv ,  let each existentially quantified variable expand to itself, and select a new unique 
variable for eaeli universally quantified wtriable. 
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U , X , Y  l tere (I?,)4) -- (Q,.M). (ii) V l :  /.]:-X -~;-Y ' 

(iii) A1 : II, X V, Y Here X / = JM1 0 ~ 2  and 
U, V, X A Y " 

Civ) 

(v) 

V 

In tile new tree we may have to renanm tile selections for some unlw:rsa] wtriables, to 
make sure tha t  no free or selected variable from one branch of the ) ' -proof tree is selected 
in tile o ther  branch.  

31 : u, S[~lt] U, 3vS ' t free for v in S.  

V 

From Q = ~ e  pass to R = S 

If v does not  appear  in S,  we pick a new variable a to be t, a no t  selected in Q and no t  
free in U, S. 

Since R D = QD, we can take ~ = .M. W h a t  remains to be shown in this case is tha t  <R 
is acyclic. Let  a be a variable selected below 3vS in R. There may be expansion terms 
si,  t < o  sl,  bu t  there is no term s such tha t  s < o  t. If s < o  t would hold,  there  had to be  
a variable b selected in R,  and b free ill t. But  then also b free in S[v/t] (otherwise t was 
selected to be a new variable), and hence b free in QS which contradicts  the  assumpt ion 
tha t  (Q, ~ )  is an expansion tree proof  for U, S[v/t]. 

u, s[~/.] 
VI : U, VvS , a a variable no t  free in U or VvS. 

V 

V to R =  From q - - ~ e  pass ~ V v S  

If  v does not  appear  in S ,  we pick a new variable a not  free in U or S or selected in Q. 

Since R D = QD, we can take ~ ---- ~t. Moreover,  since a is not  free in U, VvS, a is a valid 
selection. Moreover, a couhl not  have been.selected in Q, since a occurs free in S[v/a] 
or had  been  chosen not  to be selected in Q. Thus  a is selected in R only once. 
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U, X, X 
C ;  . . . . . . . . .  U, X 

Let Ql, Q2 be the subtrees of Q with the root node being the left and right occurrences 
of X in the prendse, respectively. We apply a rccursive merging algoritlnu to obtMn am 
expansion tree Qt • Q2 for the single occurrence of X in the conclusion. We will pass 
f r o n l  

V v 

Q = ~ ~ Q ,  Q to 1~ = ~QIO 
2 Q2 

In order to apply • to two expansion trees PI, P2, we require Pi ~' = PSi, which is 
certainly true of Ql and Q2. 

(a) Pl = Ii = I = /2 -- P2. Then Pl OP2 = 1. We say we identify the distinct 
occurrences of the literal t. 

(b) P I =  / ~  a n d P 2 =  / ~  

Y1 Y. Zj Z. 

A 

Then P1 @ P2 : / " ~  
/ x 

YI @ ZI Y,, @ Z,, 
VvS VvS 

}'1 Y2 
VvS 

I 

Then PI @ P2 = ]a 
! 

Y2[b/a] is the result of replacing every occurrence of b in the expansion tree I"2 by 
a. But not only do we have to apply this change of names in 112, but in the whole 
expansion tree in which our merge takes place. 

3vS 3vS 

ca) P~= P~ 

3vS 

Then PI @ P2 = ~ ~  

l ~ tWr  l]~la-lV lrk+ l l l p  -lV lrk +lj l 
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Here r t , . . . , r k  are tim expansion t e rms  which appear  only in one of t l , . . . , t n  and  
s l , . . . , s m ;  r~-+l , . . . , r / , -+t  are tile expans ion t e rms  which appear  in both .  S t [5 '2 ] 
s t ands  tk)r the occurrence of it subt ree  in P l  [1~2]- If rk+h ¢i -~ sJ we slty tha t  rk+h 
is the  resul t  of i d e n t i f y i n g  the  dis t inct  occurreuees  of the expansion t e rms  t i mid 
Sj. 

We now show lay induct ion  on the  number  of identif ications of ext)anslnn t e rms  in Ql  (9Q2 
tha t  <I~ is acyc]ic. We define a sequence of relat ions,  < ~ j = < l )  < l , . . . ,  < n = < l ¢  such 
t ha t  each <i ,  1 <_ i <_ n,  is acyclic. 

Note  first t h a t  <o is acyefic, since <¢d is acyclic. If no two literal occurrences were 
identified dur ing  the  merge,  < ° ~ < R  and we are doue.  Otherwise  let RI,P2,. . .  ,P.,L be 
all the  literal occurrences  iu R which resul t  front identifying expansion t e rms  ill QI  and  
(~2 ordered in such a way tha t  i < j whenever  pl is above pj in R. Now assunle  we 
have ,already defined <~. Let  ql in Qa mad q2 in Q2 be the  expansion te rms  which were 
identified to fornl Pi. We define t <i  ~l s iff t < i  s or t : pi and q2 <* s or qt < i  s bear ing  
in m ind  t h a t  each variable selected below ql is also selected below q2 after merging,  since 
ql and  q2 are identfied. This  can only in t roduce  a cycle into < i + l  if Pi < i + l  Pi which 
in tu rn  can  only h a p p e n  if ql <i  q2 or q2 <i  ql- Bu t  if for some s, s < i  ql ,  t hen  also 
s < i  q2i since ql and  q2 have the  same free variables.  T h u s  this  would m e a n  qt < i  qt or 
q2 < i  q2, which is a contradic t ion  to the  induct ive  hypothes i s  tha t  < i  ha s  no cycles. 

One  can finally see t h a t  < R = <  n, since t < n  s ei ther since t <(4 s or because  of one 
of the  identif icat ions of d is t inc t  expans ion t e rm occurrences.  Tim case where selected 
var iables  are be ing  r e n a m e d  and  identified does no t  cont r ibute  any new pairs  {o <R ,  
since a selection is below a given expans ion  before identifying the  selections iff it is below 
t h a t  expans ion  af ter  identifying the  selections. 

To ob ta in  )¢ on R from ~ on Q, we s imply  identify in )4 all literal occurrences which  
were identified to form one literal occurrence.  T h e n  M spans  every clause on R: Let  l $ 
be  defined as l @ k, if l and  k ~ e  literal occurrences  which were identifed us ing case (a) 
above when  fornfing Qx • Q2, otherwise 1 $ = l. T h e n  .~' = {(l~,  k ~)  : (l, k) E ~ } .  Now 
let C be  a clause in R D. T h e n  there is a cor responding  clause D in QD such t ha t  l E D 
iff l ~ E C.  D is s p a n n e d  by a pair  (l,k) @ .M. B u t  t hen  ( l~,k  e) E ~ and  consequent ly  

spans C. 

6.  C u t  E l | m i n a t l o n  in  J'* 

Our  cut  e l imina t ion  a lgor i thm is based  on similar  a lgor i thms  of Gentzen  [7] and  Smul lyan  
[13]. We refornmlate  these  a lgor i thms in t e rms  of the  sys t em 2"* in order to give a complete ly  
self-contained and  unified t r e a t m e n t  to all the  t rans la t ions  be tween analyt ic  and non-ana ly t i c  
proofs.  If one wanted  to write out  the  details  of a procedure  which eomlmtes  an  expans ion  
tree proof  for a fo rmula  B ,  given those  for A and  -~A V B directly in t e rms  of expans ion  
tree proofs,  one could use the  cases below in ,an induct ive  proof  to show tha t  such a direct  
procedure  will resul t  in the  same  expans ion  tree proof  for B as the  less direct  p rocedure  
descr ibed in sect ion 7. 

The  proof  of t e rmi na t i on  relies on a double induc t ion  a rgument :  At  each s tep we t rans-  
form one mix  (which ha s  no other  mixes  above it) into one or several mixes  with lower degree,  
or, if the  degree s tays  the  same,  wi th  smaller  rank .  The  degree of a mix  is the  n u m b e r  of  
quantif iers  and  connect ives  in the  naix formula  ( the fo rnmla  being e l iminated) .  T h e  left [right] 
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rank  of a n f i x  is the number  of lines in the  left [right] premise of a mix which conta in  the  mix  
formulas .  The  rank  of a mix is the  sum of left and r ight  rank.  

For m a n y  of the  following cases there is an obvious symmet r i c  case which can be t rea ted  
comple te ly  anMogously.  I t  is to be u n d e r s t o o d  t ha t  there couht be more  occurrences of the  
mix  formula  in the  premises  of a mix ,  b u t  we d o  no t  write this out  to kee t) the  d i a g r a m s  as 
s imple  as possible.  Firs t  we consider the  case t h a t  one of the  premises  of the  mix  is an  axiom.  

(i) T h e  mix  fornmla  is the  s ide-formula  of the  axiom. Then  we etinfinate the  mix  immedi -  
a tedly:  

~_[,A,-?_A, X__ ........ V ,X  Mix  ~* U, V, A, -A  
U, V, A, -~A 

(ii) T h e  mix formula  is not  the  s ide- formula  of the  axiom.  Then  we also elimim~te the  mix:  

Add V as a side- 
U, A V,A, ~A M i z  ~ formula to every iliference 

U, V, A _ _  above U, A . 
U,V,A 

We will now t rea t  the  case t ha t  the  r ank  of the  mix  (which conta ins  no o ther  nl lx above it) 
is 2. 

(i) T h e  mix  fo rnmla  is a literal A. Since the  r ank  of the  mix is 2~ one of the  previous two 
cases  n m s t  apply.  

(ii) C = X V Y ,  C = X A Y .  

U , X , Y  Va,X V~,Y ^S U,X,Y V,,X 
U, X V Y  vl  V h V 2 , X A Y M I  z ~ U, VI ,Y  M i z  V~,Y 

U, V~, V~ U, VJ, V~ Mix 

Each  of t he  two new nfixes has  smal ler  degree.  

(iii) C = VvS,  "C = Bv-S. 

u, s[,/~] v,-g[,4tl 
U VvS VI - -  3I  replace 

V, 3vSl Mi:t. =~" a by t 
u, v u; Sly~F] v, ~[,,/t] Mi~  

U, V 

Note  t h a t  t is free for v in X,  hence in X ,  and  therefore replacing a by  t is a legal 
opera t ion ,  t r ans fo rming  one Y-proof into ;mother  if we also r ename  some var iables  b 
wh ich  are free in t. 

Now we consider  the  case where the  r ank  js grea ter  t han  2. We t rea t  the  case where  the  
left r ank  is g rea te r  t h a n  1. T he  case where  the  r ight  rank  is greater  t h a n  1 can  be  t r ea ted  
analogously .  

T h i s  case aga in  breaks  up  into two subcases .  T he  new formula  on the  left h a n d  side of 
the  p remise  m a y  or m a y  no t  be  the  san~e as the  mi x  formula.  Fi rs t  we show how to reduce  
a m i x  in case the  new formula  is no t  the  s ame  as the  mix  formula.  Here we general ly  reduce  
t he  mix  to a m i x  wi th  the  s ame  degree b u t  lower rank .  

U , A , B , X  U , A , B , X  VI - -  :,. U,V,A,B : , X  Mix  
(i) U, A v B, V, X Mi:r 

U,V, A v B  ~ 7 
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(ii) 

(iii) 

(iv) 

U I , A , X  U u , B , X  At  U I , A , X  V, X MI z U2, B , X  
- O - , T ~ L - a ~ # : R ; - X -  " v, ~ - - ~ - t Y ~ T V , - a  ........... u~, v ,  B v ,  x m~= 

. . . . . . . . .  2]j;"I/~.'V;-A A B  ............ Mix  ~ ' ~ . ~ ,  V, V, A A B ~ AI 
- o  i :O~ ;v;-a T-B--  t,. 

If X appears in only one prenfise of the AI, this case simplifies in the obvious way. 

U, Al,,/t l, X U, A[,,/tl, X V, ~ Mi= 
- y , . j ~ & X -  3 I  v ,  x ~ . . . . . .  E,V.-AIEIt-q] . . . . .  

U, V, 3vA Miz  "-O~V'~, :~-v'A-- 31 

U, A Iv~el, X V, "-X Miz  

U,V, VvA VI  U, V, Vv A 

If a happens to be free in V, replace a by a new variable b everywhere above V,X r. 

U, A, A, X U, A, A, X V, X 
(v) ~,A~X -c V , X  =~ U , V , A , A  _ Mi:~ 

- -  'U,V,A M i x  U - ~ , ~  (3 

The last case remaining occurs when the mix formula is also the fornmla introduced by 
the last inference rule on the left-hand side. The cases are analogous to the previous one% 
except that  one mix is now reduced to one mix of lower rank and another mix of left rank 1. 

U, A ,B ,  A V  B V, A A B  Mix  
U ,A ,B ,  A V  B v U , V , A , B  

(i) u T X ~  ~ '1 v, A A B ~ U, V, A V B Vl V, A A B M i x  
. . . . . . . . . . . . . .  U,V M i z  U ,V ,V  

U,V C 

UI,A, AAB U2,B, AAB Ai 
(ii) ~ A  B, A A B,  A A  B V ,A  V B M i z  

Ua , U2, V 

(i~) 

(iv) 

(v) 

UI,A,  A A B  V, A V B  MI  z U2,B A A  B V, A V B  M i  = 
U~, V, A U2, V, B AI  

=~ U~, U=, V, V, A A B V, A V B Mi= 
UI, Us,V, V,, V _" ~ z x C  

This case simplifies if the mix formula does not appear in both premises of the AI. 

V, ~vS, S[v/t] V, w ~  
v, a.s, Sly/t] 3z v, v, sl.P] Mi= 

V, VVS MI  = ::~ 'U,V, 3vS 3I  V, VV-~ Mi= 
U, V U, V, V 

U,V 0 

v, ws,  s[21.] v , w ~  M~= 
V, ws, S[~/~] VZ V, V, S[~/~] 
'O, WS, Wg- V,W. M, .  =~ V,V, WS 'Z V, W , M , .  

U,V 

U, X,  X,  X 
~ C  V , X  ~ U , X , X , X  

~ "  UI V Mi:r U, V V, X M i z  



408 

7. Bu i ld ing  E x p a n s i o n  Tree P roo f s  f rom t * - p r o o f s  

Sii~ce we already showed how to construct expansion tree proofs from I-proofs we have 
only to show how to construct an expansion tree proof, givcn expansion tree proofs for the 
two premises of a mix. We emphasize the cbnstructiveness of our at)proach. Of course we 
could simply use any theorem proving procedure and arrive at a proof, since we already know 
we are dealing with a theorem. Our goal, however, is to col~struct an expansion tree proof 
which most closely reflects the structure of the two given original proofs, and moreover can 
be explicitly obtained from them. 

ttere is our procedure: If we do not already have mix-free !-proofs for hoth premises, 
constrm:t them with the algorithm described in section 4. Eliminate the mix from the result- 
lug proof in -7* to obtain a proof in 7 using the algorithm in section 6. Finally, construct ,an 
expansion tree proof from this I-proof using the procedure given in section 5. 

In practice we do not have to explicitly contruct these ~'-proofs. The procedure may be 
reformulated in terms of the expansion tree proofs themselves, but space does not penai t  to 
write out the rather laborious details here. 

By looking at one of the critical cases, case (i) where a mix of rank 1 is eliminated, one 
can see the following: If d is the nmnber of quantifiers and connectives in the mix formula 
(degree of the mix), t is the length of the proof (say, above the leftv premise), and f(d,l) is 
a worst case lower bound of the length of the resulting mix-free proof, the following relation ,.~t } 
mast hold- f (d , t )  _> f ( ~ , f ( ~ , t ) ) .  Thus we get f (d , l )  > 2 ~ ~. 

Since an -7-proof is at most exponentially bigger than a corresponding expansion tree 
proof, the lower bound remMns non-Kalmar-elementary when the resulting 3"-proof is trans- 
lated into an expansion tree proof. A result by Statman [141 mentioned in the introduction 
tells us that  this can not be significantly improved. There cannot be a Kalnmr-elementary 
translation from I*-proofs into )'-proofs. 

In practice, however, the translation is often feasible and it is not clear which class of 
theorems will actually blow up the size of the proof by as much as f(d, l). 

8. B ui ld ing  E x p a n s i o n  Tree  P r o o f s  f rom R e s o l u t i o n  R e f u t a t i o n s  

When describing the translation procedure from resolution refutations into expansion 
tree proofs care must be taken to avoid confusion between the different nnfonuulas and the 
clauses ill them. Resolution refutations are stated for the negation of a theorem; expansion 
tree proofs are defined for the theorem itself. In both cases clauses play a central role. Thus 
we will cMl clauses in an expansion tree p a t h s ,  while clauses in a resolution refutation will be 
called c lauses .  We say a path i n t e r s ec t s  a clause if they have a literal occurrence ill common. 
Notice that  our definition of a clause is slightly different from the customaxy definition as a 
set. Since rantings axe relations on literal occurrences, we cannot afford to regard different 
occurrences of the same literal as identical. During a resolution of two clauses we delete all 
occurrences of the literal resolved upon. Generally in this section we will assume nnformulas 
also to be aft-normal, i.e. no v~iable occurs both free and bound and each variable is bound 
at most once. 

Andrews [1] described an algorithm which translates resolution refutation into rantings, 
but the setting here is essentially different. We do not work with conjunctive normal forms 
or Skolem-terms hi expansion tree proofs and the condition that rantings in expansion tree 
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proofs must be clause-spanning is also quite different from Andrews' condition tha t  every 
cycle in a mating nmst have a merge. 

With the aid of this algorithm a resolution refutation can be translated into a non- 
analytic proof by first t ranslat ing it into an expansion tree proof aald then into a proof in 2"* 
using the algorithm in section 5. This can be carried even further by translating the )'*-proof 
into a proof in natural  deduction style. A procedure for this translation is given by Miller in 
[10]. This can help a matilematician understand a proof by a resolution theorem prover since 
he can study it iu a familiar format. It may also be a wduable research tool as indicated in 
the introduction. 

8.1. Def in i t i on .  Let X be an c~fl-normal nnformula. Then X*, the S k o l e m - f o r m  of X~ 
is the result of replacing every sul)formula of tim form 3vS by S[v/f.,,(zol,...,w,,)], where 
w i , . . . , w ,  are all the universally quantified variables in whose scope 3vS lies, and then 
deleting Mt the universal quantifiers, f~, (wl , . . . ,  wn) and instances thereof are cMled Skolem-  
t e r m s ,  f~ the S k o l e m - f u n c t i o n  for v. 

8.2. De f in i t i on .  Let X be an aft-normal nnfornmla. A r e s o l u t i o n  r e f u t a t i o n  of X is a 
list of clauses c l , . . .  ,on such tha t  

(i) 3rn such tha t  {c i : 1 < j < rn} is a subset of the set of clauses of X*, 

(ii) for each 3" > m either 

(a) cj is a substi tut ion instance ¢ci for some i < j ,  

(b) cy is the resolvent of c,,~ and Cb¢, where aj ,  by _< 3", and cj is formed by appending 
the results of deleting M1 occurrences of a literal I i from c,, and -~lj from cb~. 

(c) c ,  = [] (the empty clause). 

In our translation we will have to select unique variables for Skolem-functions and their 
arguments,  in general, if f (wl, . . . ,w,~) is a Skolem-term for arbitrary terms Wl, . . .~wn,  
then f (w l , . . .  ,wn) is a unique corresponding variable. Note tha t  this is just  a notat ional  
convenience in our metalanguage. We must  Mso occasionally model the effect of a substi tution 
into a Skolem-term on the corresponding variables. 

8.3. Def in i t i on .  Let f (w l , . . . ,wn )  be a variable, ¢ a substi tution for variables which 
do not come from Skolem-terms. We extend ¢ to terms and formulas in the usual way, 
but  also extend it to act on variables which come from Skolem-ternm. Recursively define 
C f ( w l , . . . ,  w,~) :----- f ( C w l , . . . ,  Cwn). 

We are now ready to define what  it means to apply a substitution to an expansion tree. 
Note t h ~  (¢V)S : ¢(QS). 

8.4. De f in i t i on .  

(i) Q is a literal I. Then ¢Q = ¢I. 

(ii) Q =  / ~  T h e n C Q =  ~ 

QI q,, ¢Q1 cq.  

Let Q be an expansion tree. Then we define ¢Q inductively. 
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(iii) 

3vS 

Q= t l / ~ , ,  

QI Q,, 

We leave the original expansions intact, and add all terms which change under the 
substitution as new ext)ausion terms. Let tii ,. • •, ti.,, be all the expansions terms ti such 
thai, Cti ~£ tl. Then 

3vS 

CQ = ~ j / ~ .  Ct~,~ 

(iv) Q =  

VvS VvS 

[f(wl wn) Then CQ = [¢f(wl, . . . ,wn) . . . . .  

Qo CQ0 

During the translation from resolution refutations to expansion tree proofs we associate 
an expansion tree and a mating with each line in the resolution refutation. These expansion 
trees have to satisfy all of the conditions of expansion tree proofs except that the mating does 
not have to be clause-spanning. We therefore define: 

8.5. Def in i t ion .  A pa r t i a l  expans ion  t ree  p r o o f  (Q, ~t) for a nnformula X is an ordered 
pair consisting of an expansion tree Q and a mating ~ on QD such that 

(i) QS = X. 

(ii) No selected variable is free in QS. 

(iii) <Q is acyelic. 

A particular partial expansion tree will correspond to the part of the resolution proof 
which is constructed solely from the clauses in the negated and Skolemized theorem. 

8.6. Def in i t ion .  Let X be an a~-normal nnformula. The ini t ial  expans ion  t ree  Q(X) 
for X is inductively defined for parts Y of X by 

(i) Y -- l for a literal I. Then Q(Y) -- I. 

~X 

(ii) Y = YI~"-XxYn. Then ~ ( V ) =  / - - N ~  

Q(Y1) Q(Y.) 

(iii) 

3vS 
! 

Y = 3vS. Then Q ( Y ) =  I v 
! 

Q(s) 
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VvS 

Y =WS.  Then Q(Y)=  I f ~ ( ~ '  . . . .  'w")  (iv) 
I 

~ (sI./ f~C~,, . . . ,  ~.) ] )  

where f~Cwl,. . . ,zv, ,)  is the Skolem-ternl for v in X. 

Now we construct an expansion tree proof from a resolution refutation. Let a resolution 
refutat ion e l , . . . ,  e,, ,  cm+l,. . . ,  e,~ : :  [_] be given. For each clause cj, ] > rn we will recursively 
construct  a partial expansion tree proof (Qj,  Aij) with tile following property: 

(*)i Let el, i < j be a clause ill the resolution refutation. Then every path through Q ~  
which does not intersect ei contMns a pair of ]4j-mated literals. 

If we can show tha t  (*)i holds for all m <_ j _< n, the correctness of our translat ion is 
proven, since cn = [] and therefore no path  through Q~ intersects c,, by (*),,. }Ience every 

o a t  pa th  through QD must be spanned by ~ , ,  and (Q . . . .  ) is an expansion tree proof for X .  

Now we come to the construction of (Qj,  .Mi). 

Let (Qm, ~ m )  = (Q(X),  {}). Since every path in Q(X) D intersects every clause in X*,  
(Q, , ,  JMm) is a partial  expansion tree proof for X amd satisfies (*)m' 

Now assume (Qm,~4~n),.. ",(Qi-1, ~ i -1 )  are partial expansion tree proofs for X and 
(*)i is satisfied for m < i < j  - 1. We have to distinguish cases, since cj could either be a 
subst i tu t ion instance or a resolvent of earlier clauses. 

(i) Assume e i is a substi tut ion instance eel for some 1 < i < j - 1, ¢ a subst i tut ion for 
the  free variables in ci. If a variable is free in ci it nmst  be existentially quantified in 
X .  Now we pass to a subst i tut ion 0 such tha t  0 agrees with ¢ if the subst i tuent  is not  a 
Skolem-term, and ev = f ( w l , . . . ~  w~,) if ev  = f (wl  . . . . .  wn). 

Let Qj = OQj-I. (Qi, ~4j) is a part ial  expansion tree proof for X ( ~ j  to be  contructed 
later): 

Ca) Q~ Q~-I  ~ x by inductive assumption. 

(b) From the way selections for universal variables in X are chosen and from the fact 
t ha t  X was c~fLnormal, it is clear tha t  every variable is selected at most  once and 
t ha t  no selected variable is free in Qs .  

(c) <Q¢ is acyclie. Assume, to the contrary, tha t  there is a cycle 

The first relation means tha t  there is a variable selected below t l  which is free in 
t2. Since the variable is selected below t l  in the expansion tree, it has the form of 
a variable corresponding to a Skolem-term which contains t i .  Thus t2 contains a 
t e rm of the form f l ( . - - , t 1 , . . . ) .  Hence in the Skolem-form ¢ of the substitution~ t l  
is free in t2 The next  relation would say tha t  there is a variable selected below t~ 
which is free in t 3. Thus a term of the form f2( . . .  , t2 , . . . )  is free in t 3. Combined 
with the previous conclusion this gives us tha t  t t  is free in t3. I terat ing this process 
we finally arrive at  the conclusion tha t  t l  is free in tn =: t l .  But  this would mean  
tha t  the original substi tut ion ¢ was not  legal, which is a contradiction. Therefore 
<O~ must  be acyclic. 
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(ii) 

Now we show how to construct Aij. First note that because of definition 8.4 any literal 
occurrence in Qfl-1 is still present in Q?.  Each new literal occurrence in Q ?  is of the 
form Ol for some l in Qf- l "  Then we simply let Aij = Aij - I  U {(OI,Ok): ( l ,k)  e Ai j -1} .  

(a) Consider Ch, h < j ,  P a path through QD not intersecting c~,. Since paths in Q~  
can onIy be longer than paths in D projection P '  Q j - I ,  there is a of P q n  Q D  1. ps 
may be obtained by deleting MI the new literMs from P. Then pt  is spanned by 
M j - I  by inductive hypothesis mid hence P by Ms D Mj-1.  

(b) Consider cj, P a path through QD not intersecting cj. Construct a path P~ through 
QD_I as follows: Every literal occurrence I in D Q i - i  such that there is a new literal 
occurrence Ol C P is included. Furthermore Ml liter~d occurrences such thltt there ]s 
no new literal occurrence Ol in Q f ,  but l E P are also included. Then P~ does not 
intersect ci and is therefore spanned by a pair (l ,k) E Ai j - l .  But then O130k E P 
(neither necessarily new) and (Ol,Ok) C Aij. Hence P is spanned by Aij. 

Assume c 3. is the resolvent of ca~ and cb~ upon the literal lj E e,~, -~lj E eb,, where 
aj,  b 3. < 3". Define Q~- = Q./-I and let Ai d = Aid-I U {(l~k) : l art occurrence of l d in Ca~, 
k an occurrence of "-lj in Cb$ ). 

Since Qj. = Qj -1 ,  Qj is a partial expansion tree proof for X. What remains to be shown 
is that  AiJ spans every path through QD which does not intersect ci, for all i < 3.. For 
i < 3" this is obvious by the inductive hypothesis and the fact that Mj D Mj-1 .  

Now consider a path P through Qj not intersecting c j .  There are three eases: 

(a) P does not  intersect c~ i . By inductive hypothesis Ai j - I  C..Mj spans P .  

C b) P does not  intersect ebb. By inductive hypothesis Ai j - I  C Jvlj spans P .  

(e) P intersects both eaj and obj. Since p does not intersect cj,  P must intersect 
ca~ in one of the literal occurrences lj  resolved upon, and cb~ in one of the literal 
occurrences -~lj. But then Aij spans P since (lj,-~lj) E Aii" 
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