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Finding an equilibrium of an extensive form game of imperfect information is a fundamental

problem in computational game theory, but current techniques do not scale to large games. To

address this, we introduce the ordered game isomorphism and the related ordered game isomor-
phic abstraction transformation. For a multi-player sequential game of imperfect information

with observable actions and an ordered signal space, we prove that any Nash equilibrium in an

abstracted smaller game, obtained by one or more applications of the transformation, can be easily
converted into a Nash equilibrium in the original game. We present an algorithm, GameShrink,

for abstracting the game using our isomorphism exhaustively. Its complexity is Õ(n2), where n

is the number of nodes in a structure we call the signal tree. It is no larger than the game tree,
and on nontrivial games it is drastically smaller, so GameShrink has time and space complexity

sublinear in the size of the game tree. Using GameShrink, we find an equilibrium to a poker
game with 3.1 billion nodes—over four orders of magnitude more than in the largest poker game

solved previously. To address even larger games, we introduce approximation methods that do

not preserve equilibrium, but nevertheless yield (ex post) provably close-to-optimal strategies.

Categories and Subject Descriptors: I.2 [Artificial Intelligence]: General; J.4 [Social and Be-

havioral Sciences]: Economics; F.2 [Analysis of Algorithms and Problem Complexity]:
General

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Automated abstraction, computer poker, equilibrium finding,
game theory, sequential games of imperfect information

1. INTRODUCTION

In environments with more than one agent, an agent’s outcome is generally af-
fected by the actions of the other agent(s). Consequently, the optimal strategy of
one agent can depend on the others. Game theory provides a normative framework
for analyzing such strategic situations. In particular, it provides solution concepts
that define what rational behavior is in such settings. The most famous and im-
portant solution concept is that of Nash equilibrium [Nash 1950]. It is a strategy
profile (one strategy for each agent) in which no agent has incentive to deviate to a
different strategy. However, for the concept to be operational, we need algorithmic
techniques for finding an equilibrium.

Games can be classified as either games of perfect information or imperfect infor-
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mation. Chess and Go are examples of the former, and, until recently, most game
playing research has been on games of this type. To compute an optimal strategy
in a perfect information game, an agent traverses the game tree and evaluates in-
dividual nodes. If the agent is able to traverse the entire game tree, she simply
computes an optimal strategy from the bottom-up, using the principle of backward
induction.1 In computer science terms, this is done using minimax search (often
in conjunction with α-β-pruning to reduce the search tree size and thus enhance
speed). Minimax search runs in linear time in the size of the game tree.2

The differentiating feature of games of imperfect information, such as poker, is
that they are not fully observable: when it is an agent’s turn to move, she does not
have access to all of the information about the world. In such games, the decision
of what to do at a point in time cannot generally be optimally made without
considering decisions at all other points in time (including ones on other paths
of play) because those other decisions affect the probabilities of being at different
states at the current point in time. Thus the algorithms for perfect information
games do not solve games of imperfect information.

For sequential games with imperfect information, one could try to find an equi-
librium using the normal (matrix) form, where every contingency plan of the agent
is a pure strategy for the agent.3 Unfortunately (even if equivalent strategies are
replaced by a single strategy [Kuhn 1950a]) this representation is generally expo-
nential in the size of the game tree [von Stengel 1996].

By observing that one needs to consider only sequences of moves rather than pure
strategies [Romanovskii 1962; Selten 1988; Koller and Megiddo 1992; von Stengel
1996], one arrives at a more compact representation, the sequence form, which is
linear in the size of the game tree.4 For 2-player games, there is a polynomial-sized
(in the size of the game tree) linear programming formulation (linear complemen-

1This actually yields a solution that satisfies not only the Nash equilibrium solution concept,
but a stronger solution concept called subgame perfect Nash equilibrium [Selten 1965].

2This type of algorithm still does not scale to huge trees (such as in chess or Go), but effective

game-playing agents can be developed even then by evaluating intermediate nodes using a heuristic
evaluation and then treating those nodes as leaves.

3There has been significant recent work on Nash equilibrium finding for normal (matrix) form

games. An ε-equilibrium in a normal form game with any constant number of agents can be
constructed in quasi-polynomial time [Lipton et al. 2003], but finding an exact equilibrium is

PPAD-complete even in a 2-player game [Chen and Deng 2006]. The most prevalent algorithm
for finding an equilibrium in a 2-agent game is Lemke-Howson [Lemke and Howson 1964], but it
takes exponentially many steps in the worst case [Savani and von Stengel 2004]. For a survey of

equilibrium computation in 2-player games, see [von Stengel 2002]. Equilibrium-finding algorithms

that enumerate supports (i.e., sets of pure strategies that are played with positive probability) have
been shown efficient on many games [Porter et al. 2004], and efficient mixed integer programming

algorithms that search in the space of supports have been developed [Sandholm et al. 2005]. For
more than two players, many algorithms have been proposed, but they currently only scale to
very small games [Govindan and Wilson 2003; McKelvey and McLennan 1996; Porter et al. 2004].

Progress has also been made on algorithms for finding equilibria in restricted and/or structured
games (e.g., [Papadimitriou and Roughgarden 2005; Bhat and Leyton-Brown 2004; Leyton-Brown

and Tennenholtz 2003; Blum et al. 2003; Singh et al. 2004]).
4There were also early techniques that capitalized in different ways on the fact that in many

games the vast majority of pure strategies are not played in equilibrium [Wilson 1972; Koller and

Megiddo 1996].
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tarity in the non-zero-sum case) based on the sequence form such that strategies
for players 1 and 2 correspond to primal and dual variables. Thus, the equilibria of
reasonable-sized 2-player games can be computed using this method [von Stengel
1996; Koller et al. 1996; Koller and Pfeffer 1997].5 However, this approach still
yields enormous (unsolvable) optimization problems for many real-world games,
such as poker.

1.1 Our approach

In this paper, we take a different approach to tackling the difficult problem of
equilibrium computation. Instead of developing an equilibrium-finding method per
se, we instead develop a methodology for automatically abstracting games in such
a way that any equilibrium in the smaller (abstracted) game corresponds directly
to an equilibrium in the original game. Thus, by computing an equilibrium in the
smaller game (using any available equilibrium-finding algorithm), we are able to
construct an equilibrium in the original game. The motivation is that an equilibrium
for the smaller game can be computed drastically faster than for the original game.

To this end, we introduce games with ordered signals (Section 2), a broad class
of games that has enough structure which we can exploit for abstraction purposes.
Instead of operating directly on the game tree (something we found to be technically
challenging), we instead introduce the use of information filters (Section 2.2), which
coarsen the information each player receives. They are used in our analysis and
abstraction algorithm. By operating only in the space of filters, we are able to keep
the strategic structure of the game intact, while abstracting out details of the game
in a way that is lossless from the perspective of equilibrium finding. We introduce
the ordered game isomorphism to describe strategically symmetric situations and
the ordered game isomorphic abstraction transformation to take advantange of such
symmetries (Section 3). As our main equilibrium result we have the following:

Theorem 3.4 Let Γ be a game with ordered signals, and let F be an
information filter for Γ. Let F ′ be an information filter constructed from
F by one application of the ordered game isomorphic abstraction trans-
formation, and let σ′ be a Nash equilibrium strategy profile of the induced
game ΓF ′ (i.e., the game Γ using the filter F ′). If σ is constructed by
using the corresponding strategies of σ′, then σ is a Nash equilibrium of
ΓF .

The proof of the theorem uses an equivalent characterization of Nash equilibria:
σ is a Nash equilibrium if and only if there exist beliefs µ (players’ beliefs about
unknown information) at all points of the game reachable by σ such that σ is
sequentially rational (i.e., a best response) given µ, where µ is updated using Bayes’
rule. We can then use the fact that σ′ is a Nash equilibrium to show that σ is a
Nash equilibrium considering only local properties of the game.

We also give an algorithm, GameShrink, for abstracting the game using our
isomorphism exhaustively (Section 4). Its complexity is Õ(n2), where n is the
number of nodes in a structure we call the signal tree. It is no larger than the game

5Recently this approach was extended to handle computing sequential equilibria [Kreps and

Wilson 1982] as well [Miltersen and Sørensen 2006].
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tree, and on nontrivial games it is drastically smaller, so GameShrink has time
and space complexity sublinear in the size of the game tree. We present several
algorithmic and data structure related speed improvements (Section 4.1), and we
demonstrate how a simple modification to our algorithm yields an approximation
algorithm (Section 5).

1.2 Applications

Sequential games of imperfect information are ubiquitous, for example in negotia-
tion and in auctions. Often aspects of a player’s knowledge are not pertinent for
deciding what action the player should take at a given point in the game. On the
trivial end, some aspects of a player’s knowledge are never pertinent (e.g., whether
it is raining or not has no bearing on the bidding strategy in an art auction), and
such aspects can be completely left out of the model specification. However, more
generally, some aspects can be pertinent in certain states of the game while they
are not pertinent in other states, and thus cannot be left out of the model com-
pletely. Furthermore, it may be highly non-obvious which aspects are pertinent in
which states of the game. Our algorithm automatically discovers which aspects are
irrelevant in different states, and eliminates those aspects of the game, resulting in
a more compact, equivalent game representation.

One broad application area that has this property is sequential negotiation (po-
tentially over multiple issues). Another broad application area is sequential auc-
tions (potentially over multiple goods). For example, in those states of a 1-object
auction where bidder A can infer that his valuation is greater than that of bidder
B, bidder A can ignore all his other information about B’s signals, although that
information would be relevant for inferring B’s exact valuation. Furthermore, in
some states of the auction, a bidder might not care which exact other bidders have
which valuations, but cares about which valuations are held by the other bidders
in aggregate (ignoring their identities). Many open-cry sequential auction and ne-
gotiation mechanisms fall within the game model studied in this paper (specified in
detail later), as do certain other games in electronic commerce, such as sequences
of take-it-or-leave-it offers [Sandholm and Gilpin 2006].

Our techniques are in no way specific to an application. The main experiment
that we present in this paper is on a recreational game. We chose a particular poker
game as the benchmark problem because it yields an extremely complicated and
enormous game tree, it is a game of imperfect information, it is fully specified as
a game (and the data is available), and it has been posted as a challenge problem
by others [Shi and Littman 2002] (to our knowledge no such challenge problem
instances have been proposed for electronic commerce applications that require
solving sequential games).

1.3 Rhode Island Hold’em poker

Poker is an enormously popular card game played around the world. The 2005
World Series of Poker had over $103 million dollars in total prize money, includ-
ing $56 million for the main event. Increasingly, poker players compete in online
casinos, and television stations regularly broadcast poker tournaments. Poker has
been identified as an important research area in AI due to the uncertainty stem-
ming from opponents’ cards, opponents’ future actions, and chance moves, among
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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other reasons [Billings et al. 2002].

Almost since the field’s founding, game theory has been used to analyze differ-
ent aspects of poker [Kuhn 1950b; Nash and Shapley 1950; Bellman and Blackwell
1949; von Neumann and Morgenstern 1947, pp. 186–219]. However, this work was
limited to tiny games that could be solved by hand. More recently, AI researchers
have been applying the computational power of modern hardware to computing
game theory-based strategies for larger games. Koller and Pfeffer determined solu-
tions to poker games with up to 140,000 nodes using the sequence form and linear
programming [Koller and Pfeffer 1997]. Large-scale approximations have been de-
veloped [Billings et al. 2003], but those methods do not provide any guarantees
about the performance of the computed strategies. Furthermore, the approxima-
tions were designed manually by a human expert. Our approach yields an auto-
mated abstraction mechanism along with theoretical guarantees on the strategies’
performance.

Rhode Island Hold’em was invented as a testbed for computational game play-
ing [Shi and Littman 2002]. It was designed so that it was similar in style to Texas
Hold’em, yet not so large that devising reasonably intelligent strategies would be
impossible. (The rules of Rhode Island Hold’em are given in Section 2.1. That sec-
tion also shows how Rhode Island Hold’em can be modeled as a game with ordered
signals, that is, it fits in our model.) We applied the techniques developed in this
paper to find an exact (minimax) solution to Rhode Island Hold’em, which has a
game tree exceeding 3.1 billion nodes.

Applying the sequence form to Rhode Island Hold’em directly without abstrac-
tion yields a linear program with 91,224,226 rows, and the same number of columns.
This is much too large for (current) linear programming algorithms to handle. We
used our GameShrink algorithm to reduce this through lossless abstraction, and
it yielded a linear program with 1,237,238 rows and columns—with 50,428,638
non-zero coefficients. We then applied iterated elimination of dominated strate-
gies, which further reduced this to 1,190,443 rows and 1,181,084 columns. (Ap-
plying iterated elimination of dominated strategies without GameShrink yielded
89,471,986 rows and 89,121,538 columns, which still would have been prohibitively
large to solve.) GameShrink required less than one second to perform the shrink-
ing (i.e., to compute all of the ordered game isomorphic abstraction transforma-
tions). Using a 1.65GHz IBM eServer p5 570 with 64 gigabytes of RAM (the
linear program solver actually needed 25 gigabytes), we solved it in 7 days and
17 hours using the interior-point barrier method of CPLEX version 9.1.2. We
demonstrated our optimal Rhode Island Hold’em poker player at the AAAI-05
conference [Gilpin and Sandholm 2005], and it is available for play on-line at
http://www.cs.cmu.edu/~gilpin/gsi.html.

While others have worked on computer programs for playing Rhode Island Hold’em [Shi
and Littman 2002], no optimal strategy has been found before. This is the largest
poker game solved to date by over four orders of magnitude.

Journal of the ACM, Vol. 54, No. 5, 9 2007.
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2. GAMES WITH ORDERED SIGNALS

We work with a slightly restricted class of games, as compared to the full generality
of the extensive form.6 This class, which we call games with ordered signals, is
highly structured, but still general enough to capture a wide range of strategic
situations. A game with ordered signals consists of a finite number of rounds.
Within a round, the players play a game on a directed tree (the tree can be different
in different rounds). The only uncertainty players face stems from private signals
the other players have received and from the unknown future signals. In other
words, players observe each others’ actions, but potentially not nature’s actions. In
each round, there can be public signals (announced to all players) and private signals
(confidentially communicated to individual players). For simplicity, we assume—
as is the case in most recreational games—that within each round, the number of
private signals received is the same across players (this could quite likely be relaxed).
We also assume that the legal actions that a player has are independent of the
signals received. For example, in poker, the legal betting actions are independent
of the cards received. Finally, the strongest assumption is that there is a partial
ordering over sets of signals, and the payoffs are increasing (not necessarily strictly)
in these signals. For example, in poker, this partial ordering corresponds exactly
to the ranking of card hands.

Definition 2.1. A game with ordered signals is a tuple Γ = 〈I, G, L,Θ, κ, γ, p,�, ω, u〉
where:

(1) I = {1, . . . , n} is a finite set of players.
(2) G = 〈G1, . . . , Gr〉, Gj =

(
V j , Ej

)
, is a finite collection of finite directed trees

with nodes V j and edges Ej . Let Zj denote the leaf nodes of Gj and let N j(v)
denote the outgoing neighbors of v ∈ V j . Gj is the stage game for round j.

(3) L = 〈L1, . . . , Lr〉, Lj : V j \ Zj → I indicates which player acts (chooses an
outgoing edge) at each internal node in round j.

(4) Θ is a finite set of signals.
(5) κ = 〈κ1, . . . , κr〉 and γ = 〈γ1, . . . , γr〉 are vectors of nonnegative integers, where

κj and γj denote the number of public and private signals (per player), respec-
tively, revealed in round j. Each signal θ ∈ Θ may only be revealed once,
and in each round every player receives the same number of private signals,
so we require

∑r
j=1 κj + nγj ≤ |Θ|. The public information revealed in round

j is αj ∈ Θκj

and the public information revealed in all rounds up through
round j is α̃j =

(
α1, . . . , αj

)
. The private information revealed to player

i ∈ I in round j is βj
i ∈ Θγj

and the private information revaled to player

i ∈ I in all rounds up through round j is β̃j
i =

(
β1

i , . . . , βj
i

)
. We also write

β̃j =
(
β̃j

1, . . . , β̃
j
n

)
to represent all private information up through round j, and(

β̃′j
i , β̃

j
−i

)
=

(
β̃j

1, . . . , β̃
j
i−1, β̃

′j
i , β̃

j
i+1, . . . , β̃

j
n

)
is β̃j with β̃j

i replaced with β̃′j
i .

6For readers unfamiliar with extensive form games, we provide a complete definition in Ap-

pendix A.
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The total information revealed up through round j,
(
α̃j , β̃j

)
, is said to be legal

if no signals are repeated.
(6) p is a probability distribution over Θ, with p(θ) > 0 for all θ ∈ Θ. Signals are

drawn from Θ according to p without replacement, so if X is the set of signals
already revealed, then

p(x | X) =

{
p(x)P

y /∈X p(y) if x /∈ X

0 if x ∈ X.

(7) � is a partial ordering of subsets of Θ and is defined for at least those pairs
required by u.

(8) ω :
r⋃

j=1

Zj → {over, continue} is a mapping of terminal nodes within a stage

game to one of two values: over, in which case the game ends, or continue, in
which case the game continues to the next round. Clearly, we require ω(z) =
over for all z ∈ Zr. Note that ω is independent of the signals. Let ωj

over ={
z ∈ Zj |ω(z) = over

}
and ωj

cont =
{
z ∈ Zj |ω(z) = continue

}
.

(9) u = (u1, . . . , ur), uj :
j−1�
k=1

ωk
cont × ωj

over ×
j�

k=1
Θκk ×

n�
i=1

j�
k=1

Θγk → Rn is a

utility function such that for every j, 1 ≤ j ≤ r, for every i ∈ I, and for every

z̃ ∈
j−1�
k=1

ωk
cont × ωj

over, at least one of the following two conditions holds:

(a) Utility is signal independent: uj
i (z̃, ϑ) = uj

i (z̃, ϑ′) for all legal ϑ, ϑ′ ∈
j�

k=1
Θκk ×

n�
i=1

j�
k=1

Θγk

.

(b) � is defined for all legal signals (α̃j , β̃j
i ) and (α̃j , β̃′j

i ) through round j and
a player’s utility is increasing in her private signals, everything else equal:(

α̃j , β̃j
i

)
�

(
α̃j , β̃′j

i

)
=⇒ ui

(
z̃, α̃j ,

(
β̃j

i , β̃
j
−i

))
≥ ui

(
z̃, α̃j ,

(
β̃′j

i , β̃
j
−i

))
.

We will use the term game with ordered signals and the term ordered game inter-
changeably.

2.1 Rhode Island Hold’em modeled as an ordered game

In this section we describe how Rhode Island Hold’em can be defined as an ordered
game in accordance with Definition 2.1. First, we describe the rules of Rhode Island
Hold’em.

(1) Each player pays an ante of 5 chips which is added to the pot. Both players
initially receive a single card, face down; these are known as the hole cards.

(2) After receiving the hole cards, the players participate in one betting round.
Each player may check (not placing any money in the pot and passing) or
bet (placing 10 chips into the pot) if no bets have been placed. If a bet has
been placed, then the player may fold (thus forfeiting the game along with any
money they have put into the pot), call (adding chips to the pot equal to the
last player’s bet), or raise (calling the current bet and making an additional

Journal of the ACM, Vol. 54, No. 5, 9 2007.
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Table I. Ranking of three-card poker hands, from highest to lowest.

Hand Prob. Description Example

Straight flush 0.00217 3 cards w/ consecutive rank & same suit K♠, Q♠, J♠
Three of a kind 0.00235 3 cards of the same rank Q♠, Q♥, Q♣
Straight 0.03258 3 cards w/ consecutive rank 3♣, 4♠, 5♥
Flush 0.04959 3 cards of the same suit 2♦, 5♦, 8♦
Pair 0.16941 2 cards of the same rank 2♦, 2♠, 3♥
High card 0.74389 None of the above J♣, 9♥, 2♠

bet). In Rhode Island Hold’em, the players are limited to three bets each per
betting round. (A raise equals two bets.) In the first betting round, the bets
are equal to 10 chips.

(3) After the first betting round, a community card is dealt face up. This is called
the flop card. Another betting round take places at this point, with bets equal
to 20 chips.

(4) Following the second betting round, another community card is dealt face up.
This is called the turn card. A final betting round takes place at this point,
with bets again equal to 20 chips.

(5) If neither player folds, then the showdown takes place. Both players turn over
their cards. The player who has the best 3-card poker hand takes the pot. In
the event of a draw, the pot is split evenly.

Hands in 3-card poker games are ranked slightly differently than 5-card poker
hands. The main differences are that the order of flushes and straights are reversed,
and a three of a kind is better than straights or flushes. Table I describes the
rankings. Within ranks, ties are broken by by ordering hands according to the rank
of cards that make up the hand. If players are still tied after applying this criterion,
kickers are used to determine the winner. A kicker is a card that is not used to
make up the hand. For example, if player 1 has a pair of eights and a five, and
player 2 has a pair of eights and a six, player 2 wins.

To make the definition of ordered games concrete, here we define each of the
components of the tuple Γ = 〈I, G, L,Θ, κ, γ, p,�, ω, u〉 for Rhode Island Hold’em.
There are two players so I = {1, 2}. There are three rounds, and the stage game
is the same in each round so we have G = 〈GRI , GRI , GRI〉 where GRI is given in
Figure 1, which also specifies the player label L.

Θ is the standard deck of 52 cards. The community cards are dealt in the second
and third rounds, so κ = 〈0, 1, 1〉. Each player receives a since face down card in
the first round only, so γ = 〈1, 0, 0〉. p is the uniform distribution over Θ. � is
defined for three card hands and is defined using the ranking given in Table I. The
game-ending nodes ω are denoted in Figure 1 by ω. u is defined as in the above
description; it is easy to verify that it satisfies the necessary conditions.

2.2 Information filters

In this subsection, we define an information filter for ordered games. Instead of
completely revealing a signal (either public or private) to a player, the signal first
passes through this filter, which outputs a coarsened signal to the player. By varying
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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k b

K B

f c r

f c

F C R

F C

f c r

F C R

1

1 1

1

2 2

2 2ω

ω

ω

ω

ω

ω

Fig. 1. Stage game GRI , player label L, and
game-ending nodes ω for Rhode Island Hold’em.
The action labels denote which action the player
is taking: k (check), b (bet), f (fold), c (call),
and r (raise). Lower case letters indicate player
1 actions and upper case letters indicate player
2 actions.

the filter applied to a game, we are able to obtain a wide variety of games while
keeping the underlying action space of the game intact. We will use this when
designing our abstraction techniques. Formally, an information filter is as follows.

Definition 2.2. Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game. Let

Sj ⊆
j�

k=1
Θκk ×

j�
k=1

Θγk

be the set of legal signals (i.e., no repeated signals) for one

player through round j. An information filter for Γ is a collection F = 〈F 1, . . . , F r〉
where each F j is a function F j : Sj → 2Sj

such that each of the following conditions
hold:

(1) (Truthfulness) (α̃j , β̃j
i ) ∈ F j(α̃j , β̃j

i ) for all legal (α̃j , β̃j
i ).

(2) (Independence) The range of F j is a partition of Sj .
(3) (Information preservation) If two values of a signal are distinguishable in round

k, then they are distinguishable fpr each round j > k. Let mj =
∑j

l=1 κl + γl.
We require that for all legal (θ1, . . . , θmk , . . . , θmj ) ⊆ Θ and (θ′1, . . . , θ

′
mk , . . . , θ′mj ) ⊆

Θ:

(θ′1, . . . , θ
′
mk) /∈ F k(θ1, . . . , θmk) =⇒ (θ′1, . . . , θ

′
mk , . . . , θ′mj ) /∈ F j(θ1, . . . , θmk , . . . , θmj ).

A game with ordered signals Γ and an information filter F for Γ defines a new
game ΓF . We refer to such games as filtered ordered games. We are left with the
original game if we use the identity filter F j

(
α̃j , β̃j

i

)
=

{(
α̃j , β̃j

i

)}
. We have the

following simple (but important) result:

Proposition 2.3. A filtered ordered game is an extensive form game satisfying
perfect recall. (For the unfamiliar reader, the definition of games with perfect recall
is given in Appendix A.)

Journal of the ACM, Vol. 54, No. 5, 9 2007.
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A simple proof proceeds by constructing an extensive form game directly from
the ordered game, and showing that it satisfies perfect recall. In determining the
payoffs in a game with filtered signals, we take the average over all real signals in
the filtered class, weighted by the probability of each real signal occurring.

2.3 Strategies and Nash equilibrium

We are now ready to define behavior strategies in the context of filtered ordered
games.

Definition 2.4. A behavior strategy for player i in round j of Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉
with information filter F is a probability distribution over possible actions, and is
defined for each player i, each round j, and each v ∈ V j \ Zj for Lj(v) = i:

σj
i,v :

j−1�
k=1

ωk
cont ×Range

(
F j

)
→ ∆

{
w ∈ V j | (v, w) ∈ Ej

}
.

(∆(X) is the set of probability distributions over a finite set X.) A behavior
strategy for player i in round j is σj

i = (σj
i,v1

, . . . , σj
i,vm

) for each vk ∈ V j \ Zj

where Lj(vk) = i. A behavior strategy for player i in Γ is σi =
(
σ1

i , . . . , σr
i

)
. A

strategy profile is σ = (σ1, . . . , σn). A strategy profile with σi replaced by σ′
i is

(σ′
i, σ−i) = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

By an abuse of notation, we will say player i receives an expected payoff of
ui(σ) when all players are playing the strategy profile σ. Strategy σi is said to
be player i’s best response to σ−i if for all other strategies σ′

i for player i we have
ui(σi, σ−i) ≥ ui(σ′

i, σ−i). σ is a Nash equilibrium if, for every player i, σi is a
best response for σ−i. A Nash equilibrium always exists in finite extensive form
games [Nash 1950], and one exists in behavior strategies for games with perfect
recall [Kuhn 1953]. Using these observations, we have the following corollary to
Proposition 2.3:

Corollary 2.5. For any filtered ordered game, a Nash equilibrium exists in
behavior strateges.

3. EQUILIBRIUM-PRESERVING ABSTRACTIONS

In this section, we present our main technique for reducing the size of games. We
begin by defining a filtered signal tree which represents all of the chance moves in
the game. The bold edges (i.e. the first two levels of the tree) in the game trees in
Figure 2 correspond to the filtered signal trees in each game.

Definition 3.1. Associated with every ordered game Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉
and information filter F is a filtered signal tree, a directed tree in which each node
corresponds to some revealed (filtered) signals and edges correspond to revealing
specific (filtered) signals. The nodes in the filtered signal tree represent the set
of all possible revealed filtered signals (public and private) at some point in time.
The filtered public signals revealed in round j correspond to the nodes in the κj

levels beginning at level
∑j−1

k=1

(
κk + nγk

)
and the private signals revealed in round

j correspond to the nodes in the nγj levels beginning at level
∑j

k=1 κk +
∑j−1

k=1 nγk.
We denote children of a node x as N(x). In addition, we associate weights with the
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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Fig. 2. GameShrink applied to a tiny two-person four-card (two Jacks and two Kings) poker game.
Next to each game tree is the range of the information filter F . Dotted lines denote information

sets, which are labeled by the controlling player. Open circles are chance nodes with the indicated

transition probabilities. The root node is the chance node for player 1’s card, and the next level
is for player 2’s card. The payment from player 2 to player 1 is given below each leaf. In this

example, the algorithm reduces the game tree from 113 nodes to 39 nodes.

edges corresponding to the probability of the particular edge being chosen given
that its parent was reached.

In many games, there are certain situations in the game that can be thought of
as being strategically equivalent to other situations in the game. By melding these
situations together, it is possible to arrive at a strategically equivalent smaller game.
The next two definitions formalize this notion via the introduction of the ordered
game isomorphic relation and the ordered game isomorphic abstraction transforma-
tion.

Definition 3.2. Two subtrees beginning at internal nodes x and y of a filtered
signal tree are ordered game isomorphic if x and y have the same parent and there
is a bijection f : N(x) → N(y), such that for w ∈ N(x) and v ∈ N(y), v = f(w)
implies the weights on the edges (x,w) and (y, v) are the same and the subtrees
beginning at w and v are ordered game isomorphic. Two leaves (corresponding to
filtered signals ϑ and ϑ′ up through round r) are ordered game isomorphic if for all

z̃ ∈
r−1�
j=1

ωj
cont × ωr

over, ur (z̃, ϑ) = ur (z̃, ϑ′).
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Definition 3.3. Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game and let
F be an information filter for Γ. Let ϑ and ϑ′ be two information structures where
the subtrees in the induced filtered signal tree corresponding to the nodes ϑ and ϑ′

are ordered game isomorphic, and ϑ and ϑ′ are at either level
∑j−1

k=1

(
κk + nγk

)
or∑j

k=1 κk +
∑j−1

k=1 nγk for some round j. The ordered game isomorphic abstraction
transformation is given by creating a new information filter F ′:

F ′j
(
α̃j , β̃j

i

)
=

 F j
(
α̃j , β̃j

i

)
if

(
α̃j , β̃j

i

)
/∈ ϑ ∪ ϑ′

ϑ ∪ ϑ′ if
(
α̃j , β̃j

i

)
∈ ϑ ∪ ϑ′.

Figure 2 shows the ordered game isomorphic abstraction transformation applied
twice to a tiny poker game. Theorem 3.4, our main equilibrium result, shows how
the ordered game isomorphic abstraction transformation can be used to compute
equilibria faster.

Theorem 3.4. Let Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉 be an ordered game and F be
an information filter for Γ. Let F ′ be an information filter constructed from F by
one application of the ordered game isomorphic abstraction transformation. Let σ′

be a Nash equilibrium of the induced game ΓF ′ . If we take σj
i,v

(
z̃, F j

(
α̃j , β̃j

i

))
=

σ′j
i,v

(
z̃, F ′j

(
α̃j , β̃j

i

))
, σ is a Nash equilibrium of ΓF .

Proof. For an extensive form game, a belief system µ assigns a probability to
every decision node x such that

∑
x∈h µ(x) = 1 for every information set h. A

strategy profile σ is sequentially rational at h given belief system µ if

ui(σi, σ−i |h, µ) ≥ ui(τi, σ−i |h, µ)

for all other strategies τi, where i is the player who controls h. A basic result [Mas-
Colell et al. 1995, Proposition 9.C.1] characterizing Nash equilibria dictates that σ
is a Nash equilibrium if and only if there is a belief system µ such that for every
information set h with Pr(h |σ) > 0, the following two conditions hold: (C1) σ is
sequentially rational at h given µ; and (C2) µ(x) = Pr(x |σ)

Pr(h |σ) for all x ∈ h. Since σ′

is a Nash equilibrium of Γ′, there exists such a belief system µ′ for ΓF ′ . Using µ′,
we will construct a belief system µ for Γ and show that conditions C1 and C2 hold,
thus supporting σ as a Nash equilibrium.

Fix some player i ∈ I. Each of i’s information sets in some round j corresponds
to filtered signals F j

(
α̃∗j , β̃∗j

i

)
, history in the first j − 1 rounds (z1, . . . , zj−1) ∈

j−1�
k=1

ωk
cont, and history so far in round j, v ∈ V j \ Zj . Let z̃ = (z1, . . . , zj−1, v)

represent all of the player actions leading to this information set. Thus, we can
uniquely specify this information set using the information

(
F j

(
α̃∗j , β̃∗j

i

)
, z̃

)
.

Each node in an information set corresponds to the possible private signals the
other players have received. Denote by β̃ some legal

(F j(α̃j , β̃j
1), . . . , F

j(α̃j , β̃j
i−1), F

j(α̃j , β̃j
i+1), . . . , F

j(α̃j , β̃j
n)).

In other words, there exists (α̃j , β̃j
1, . . . , β̃

j
n) such that (α̃j , β̃j

i ) ∈ F j(α̃∗j , β̃∗j
i ),

(α̃j , β̃j
k) ∈ F j(α̃j , β̃j

k) for k 6= i, and no signals are repeated. Using such a set of sig-
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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nals (α̃j , β̃j
1, . . . , β̃

j
n), let β̂′ denote (F ′j(α̃j , β̃j

1), . . . , F
′j(α̃j , β̃j

i−1), F
′j(α̃j , β̃j

i+1), . . . , F
′j(α̃j , β̃j

n)).

(We will abuse notation and write F ′j
−i

(
β̂
)

= β̂′.) We can now compute µ directly
from µ′:

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=



µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
if F j

(
α̃j , β̃j

i

)
6= F ′j

(
α̃j , β̃j

i

)
or β̂ = β̂′

p∗µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
if F j

(
α̃j , β̃j

i

)
= F ′j

(
α̃j , β̃j

i

)
and β̂ 6= β̂′

where p∗ =
Pr(β̂ | F j(α̃j ,β̃j

i ))
Pr(β̂′ | F ′j(α̃j ,β̃j

i ))
. The following three claims show that µ as calculated

above supports σ as a Nash equilibrium.

Claim 3.5. µ is a valid belief system for ΓF .

Proof of Claim 3.5. Let h be player i’s information set after some history(
F j

(
α̃j , β̃j

i

)
, z̃

)
. Clearly µ

(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
≥ 0 for all β̂ ∈ h. We need to

show ∑
β̂∈h

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
= 1.

Case 1. F j
(
α̃j , β̃j

i

)
6= F ′j

(
α̃j , β̃j

i

)
. From the construction of F ′, F j

(
α̃j , β̃j

i

)
is ordered game isomorphic to some F j

(
α̃′j β̃′j

i

)
with F j

(
α̃′j β̃′j

i

)
6= F j

(
α̃j , β̃j

i

)
.

Let h′ be player i’s information set corresponding to the history
(
F j

(
α̃′j , β̃′j

i

)
, z̃

)
.

By the definition of the ordered game isomorphism, there exists a perfect matching
between the nodes in the information set h and h′, where each matched pair of nodes
corresponds to a pair of ordered game isomorphic information structures. Since we
have that F ′j

(
α̃j , β̃j

i

)
= F ′j

(
α̃′j , β̃′j

i

)
, each edge in the matching corresponds to a

node in the information set corresponding to the history
(
F ′j

(
α̃j , β̃j

i

)
, z̃

)
in ΓF ′ ;

denote this information set by h′′. (See Figure 3.)
Thus, there is a bijection between h and h′′ defined by the perfect matching.

Using this matching:∑
β̂∈h

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂∈h

µ′
(
F ′j
−i

(
β̂
)
| F ′j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂′∈h′′

µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
= 1.

Case 2. F j
(
α̃j , β̃j

i

)
= F ′j

(
α̃j , β̃j

i

)
. We need to treat members of h differ-

ently depending on if they map to the same set of signals in ΓF ′ or not. Let
h1 =

{
β̂ ∈ h | β̂ = F ′j

−i

(
β̂
)}

and let h2 =
{

β̂ ∈ h | β̂ ⊂ F ′j
−i

(
β̂
)}

. Clearly (h1, h2)
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Fig. 3. Illustration of Case 1 of Claim 3.5.
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Fig. 4. Illustration of Case 2 of Claim 3.5.

is a partition of h. Let h′ be player i’s information set corresponding to the his-
tory

(
F ′j

(
α̃j , β̃j

i

)
, z̃

)
in ΓF ′ . We can create a partition of h′ by letting h3 ={

F ′j
−i

(
β̂
)
| β̂ ∈ h1

}
and h4 =

{
F ′j
−i

(
β̂
)
| β̂ ∈ h2

}
. Cleary (h3, h4) partitions h′.

(See Figure 4.) The rest of the proof for this case proceeds in three steps.
Step 1. In this step we show the following relationship between h1 and h3:∑

β̂∈h1

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂∈h1

µ′
(
F ′j
−i

(
β̂
)
| F ′j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂′∈h3

µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
(1)

Step 2. In this step we want to show a similar relationship between h2 and h4. In
doing so, we use the following fact: β̂ ⊂ β̂′ → F ′j

−i

(
β̂
)

= β̂′. With this in mind,
we can write:
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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∑
β̂∈h2

µ
(
β̂|F j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂∈h2

Pr
(
β̂|F j(α̃j , β̃j

i )
)

Pr
(
F ′j
−i(β̂)|F ′j(α̃j , β̃j

i )
)µ′

(
F ′j
−i(β̂)|F ′j(α̃j , β̃j

i ), z̃
)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j(α̃j , β̃j

i )
)

Pr
(
F ′j
−i(β̂)|F ′j(α̃j , β̃j

i )
) · µ′

(
F ′j
−i(β̂)|F ′j(α̃j , β̃j

i ), z̃
)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃j , β̃j

i

))
Pr

(
β̂′|F j

(
α̃j , β̃j

i

))µ′
(
β̂′|F ′j

(
α̃j , β̃j

i

)
, z̃

)

=
∑

β̂′∈h4

µ′
(
β̂′|F ′j

(
α̃j , β̃j

i

)
, z̃

) ∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂|F j

(
α̃j , β̃j

i

))
Pr

(
β̂′|F j

(
α̃j , β̃j

i

))
=

∑
β̂′∈h4

µ′
(
β̂′|F ′j

(
α̃j , β̃j

i

)
, z̃

)
(2)

Step 3. Using (1) and (2):

∑
β̂∈h

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂∈h1

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
+

∑
β̂∈h2

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂′∈h3

µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
+

∑
β̂′∈h4

µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
=

∑
β̂′∈h′

µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
= 1

In both cases we have shown
∑̂
β∈h

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
= 1.

Claim 3.6. For all information sets h with Pr(h | σ) > 0, µ(x) = Pr(x | σ)
Pr(h | σ) for

all x ∈ h.

Proof of Claim 3.6. Let h be player i’s information set after some history(
F j

(
α̃j , β̃j

i

)
, z̃

)
, and fix some β̂ ∈ h. Let β̂′ = F ′j

−i

(
β̂
)
. We need to show that

µ(β̂|F j(α̃j , β̃j
i ), z̃) =

Pr(β̂ | σ)
Pr(h | σ) . Let h′ be player i’s information set after history

(F ′j(α̃j , β̃j
i ), z̃).
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Case 1. F j(α̃j , β̃j
i ) 6= F ′j(α̃j , β̃j

i ).

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
= µ′

(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
=

Pr
(
β̂′ | σ′

)
Pr (h′ | σ′)

=

Pr(β̂,F j(α̃j ,β̃j
i ))

Pr(β̂′,F ′j(α̃j ,β̃j
i ))

Pr
(
β̂′ | σ′

)
Pr(β̂,F j(α̃j ,β̃j

i ))
Pr(β̂′,F ′j(α̃j ,β̃j

i ))
Pr (h′ | σ′)

=
Pr

(
β̂ | σ

)
Pr (h | σ)

Case 2. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ) and β̂ 6= β̂′.

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
=

Pr
(
β̃ | F j

(
α̃j , β̃j

i

))
Pr

(
β̃′ | F ′j

(
α̃j , β̃j

i

))µ′
(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)

=
Pr

(
β̃ | F j

(
α̃j , β̃j

i

))
Pr

(
β̃′ | F ′j

(
α̃j , β̃j

i

)) Pr
(
β̂′ | σ′

)
Pr (h′ | σ′)

=
Pr

(
β̃ | F j

(
α̃j , β̃j

i

))
Pr

(
β̃′ | F ′j

(
α̃j , β̃j

i

)) Pr(β̃′ | F ′j(α̃j ,β̃j
i ))

Pr(β̃ | F j(α̃j ,β̃j
i ))

Pr
(
β̂ | σ

)
Pr (h | σ)

=
Pr

(
β̂ | σ

)
Pr (h | σ)

Case 3. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ) and β̂ = β̂′.

µ
(
β̂ | F j

(
α̃j , β̃j

i

)
, z̃

)
= µ′

(
β̂′ | F ′j

(
α̃j , β̃j

i

)
, z̃

)
=

Pr
(
β̂′ | σ′

)
Pr (h′ | σ′)

=
Pr

(
β̂ | σ

)
Pr (h | σ)

Thus we have µ(x) = Pr(x | σ)
Pr(h | σ) for all information sets h with Pr(h | σ) > 0.

Claim 3.7. For all information sets h with Pr(h | σ) > 0, σ is sequentially
rational at h given µ.

Proof of Claim 3.7. Suppose, by way of contradiction, that σ is not sequen-
tially rational given µ. Then, there exists a strategy τi such that, for some (F j(α̃j , β̃j

i ), z̃),

uj
i (τi, σ−i|F jα̃j , β̃j

i ), z̃, µ) > uj
i (σi, σ−i|F j(α̃j , β̃j

i ), z̃, µ). (3)
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We will construct a strategy τ ′i for player i in ΓF ′ such that

uj
i (τ

′
i , σ

′
−i|F ′j(α̃j , β̃j

i ), z̃, µ′) > uj
i (σ

′
i, σ

′
−i|F ′j(α̃j , β̃j

i ), z̃, µ′),

thus contradicting the fact that σ′ is a Nash equilibrium. The proof proceeds in
four steps.

Step 1. We first construct τ ′i from τi. For a given F ′j
(
α̃j , β̃j

i

)
, let

Υ =
{

F j
(
α̃j , β̃j

i

)
| F j

(
α̃j , β̃j

i

)
⊆ F ′j

(
α̃j , β̃j

i

)}
(4)

and let

τ ′ji,v(F ′j(α̃j , β̃j
i ), z̃) =

∑
ϑ∈Υ

Pr
(
ϑ | F ′j(α̃j , β̃j

i )
)

τ j
i,v (ϑ, z̃) .

In other words, the strategy τ ′i is the same as τi except in situations where only the
filtered signal history is different, in which case τ ′i is a weighted average over the
strategies at the corresponding information sets in ΓF .

Step 2. We need to show that uj
i (τ

′
i , σ

′
−i | F ′j(α̃j , β̃j

i ), z̃, µ′) = uj
i (τi, σ−i | F j(α̃j , β̃j

i ), z̃, µ)
for all histories (F j(α̃j , β̃j

i ), z̃). Fix (F j(α̃j , β̃j
i ), z̃), and assume, without loss of gen-

erality, the equality holds for all information sets coming after this one in Γ.

Case 1. F j(α̃j , β̃j
i ) 6= F ′j(α̃j , β̃j

i ). Let zj denote the current node of Gj and let Υ
as in (4).
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uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
=

∑
β̂′∈h′

µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)
=

∑
β̂∈h

µ′
(
F ′j
−i

(
β̂
))

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, F ′j

−i

(
β̂
))

=
∑
β̂∈h

µ
(
β̂
)

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, F ′j

−i

(
β̂
))

=
∑
β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

τ ′ji,v

(
z̃, F ′j

(
α̃j , β̃j

i

))
· uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, (z̃, v), F ′j

−i

(
β̂
))

=
∑
β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

∑
ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j , β̃j

i

))
τ j
i,v (z̃, ϑ) ·

[
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, (z̃, v), F ′j

−i

(
β̂
))]

=
∑
β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

∑
ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j , β̃j

i

))
τ j
i,v (z̃, ϑ) ·

[
uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, (z̃, v), β̂

)]
=

∑
β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, (z̃, v), β̂

)
·

[∑
ϑ∈Υ

Pr
(
ϑ | F ′j

(
α̃j , β̃j

i

))
τ j
i,v (z̃, ϑ)

]
=

∑
β̂∈h

µ
(
β̂
) ∑

v∈Nj(zj)

τ j
i,v

(
z̃, F j

(
α̃j , β̃j

i

))
· uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, (z̃, v), β̂

)
=

∑
β̂∈h

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
= uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)

Case 2. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ). Let h1, h2, h3, and h4 as in the proof of Case 2
of Claim 3.5. We can show

∑
β̂′∈h3

µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)
=

∑
β̂∈h1

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
(5)

using a procedure similar to that in Case 1. We can show the following relationship
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between h2 and h4:∑
β̂′∈h4

µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

Pr
(
β̂ | F j

(
α̃j , β̃j

i

))
Pr

(
β̂′ | F ′j

(
α̃j , β̃j

i

)) · µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

µ
(
β̂
)

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

µ
(
β̂
) ∑

v∈Nj(zj)

τ ′ji,v

(
z̃, F ′j

(
α̃j , β̃j

i

))
· uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, (z̃, v), β̂′

)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

µ
(
β̂
) ∑

v∈Nj(zj)

τ j
i,v

(
z̃, F j

(
α̃j , β̃j

i

))
· uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, (z̃, v), β̂

)

=
∑

β̂′∈h4

∑
β̂∈h2
β̂⊂β̂′

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)

=
∑
β̂∈h2

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
(6)

Using (5) and (6):

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
=

∑
β̃′∈h′

µ′
(
β̃′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̃′

)
=

∑
β̂′∈h3

µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)
+

∑
β̂′∈h4

µ′
(
β̂′

)
uj

i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, β̂′

)
=

∑
β̂∈h1

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
+

∑
β̂∈h2

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
=

∑
β̂∈h

µ
(
β̂
)

uj
i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, β̂

)
= uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)
In both cases we have shown:

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
= uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)
. (7)

Step 3. We can show that

uj
i

(
σi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)
= uj

i

(
σ′

i, σ
′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
. (8)

using a procedure similar to the previous step.
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Fig. 5. Example illustrating difficulty in developing a theory of equilibrium-preserving abstractions
for general extensive form games.

Step 4. Combining (3), (7), and (8), we have:

uj
i

(
τ ′i , σ

′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
= uj

i

(
τi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)
> uj

i

(
σi, σ−i | F j

(
α̃j , β̃j

i

)
, z̃, µ

)
= uj

i

(
σ′

i, σ
′
−i | F ′j

(
α̃j , β̃j

i

)
, z̃, µ′

)
.

Thus, σ′ is not a Nash equilibrium. Therefore, by contradiction, σ is sequentially
rational at all information sets h with Pr (h | σ) > 0.

We can now complete the proof of Theorem 3.4. By Claims 3.5 and 3.6, we know
that condition C2 holds. By Claim 3.7, we know that condition C1 holds. Thus, σ
is a Nash equilibrium.

3.1 Nontriviality of generalizing beyond this model

Our model does not capture general sequential games of imperfect information
because it is restricted in two ways (as discussed above): 1) there is a special
structure connecting the player actions and the chance actions (for one, the players
are assumed to observe each others’ actions, but nature’s actions might not be
publicly observable), and 2) there is a common ordering of signals. In this subsection
we show that removing either of these conditions can make our technique invalid.

First, we demonstrate a failure when removing the first assumption. Consider the
game in Figure 5.7 Nodes a and b are in the same information set, have the same
parent (chance) node, have isomorphic subtrees with the same payoffs, and nodes
c and d also have similar structural properties. By merging the subtrees beginning
at a and b, we get the game on the right in Figure 5. In this game, player 1’s only
Nash equilibrium strategy is to play left. But in the original game, player 1 knows
that node c will never be reached, and so should play right in that information set.

Removing the second assumption (that the utility functions are based on a com-
mon ordering of signals) can also cause failure. Consider a simple three-card game
with a deck containing two Jacks (J1 and J2) and a King (K), where player 1’s
utility function is based on the ordering K � J1 ∼ J2 but player 2’s utility function

7We thank Albert Xin Jiang for providing this example.
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is based on the ordering J2 � K � J1. It is easy to check that in the abstracted
game (where Player 1 treats J1 and J2 as being “equivalent”) the Nash equilibrium
does not correspond to a Nash equilibrium in the original game.8

4. GAMESHRINK: AN EFFICIENT ALGORITHM FOR COMPUTING ORDERED
GAME ISOMORPHIC ABSTRACTION TRANSFORMATIONS

In this section we present an algorithm, GameShrink, for conducting the abstrac-
tions. The algorithm only needs to analyze the signal tree discussed above, rather
than the entire game tree.

We first present a subroutine that GameShrink uses. It is a dynamic program
for computing the ordered game isomorphic relation.9 Again, it operates on the
signal tree.

Algorithm 1. OrderedGameIsomorphic? (Γ, ϑ, ϑ′)

(1 ) If ϑ and ϑ′ are both leaves of the signal tree:

(a) If ur(ϑ | z̃) = ur(ϑ′ | z̃) for all z̃ ∈
r−1�
j=1

ωj
cont × ωr

over, then return true.

(b) Otherwise, return false.
(2 ) Create a bipartite graph Gϑ,ϑ′ = (V1, V2, E) with V1 = N(ϑ) and V2 = N(ϑ′).
(3 ) For each v1 ∈ V1 and v2 ∈ V2:

If OrderedGameIsomorphic? (Γ, v1, v2)
Create edge (v1, v2)

(4 ) Return true if Gϑ,ϑ′ has a perfect matching; otherwise, return false.

By evaluating this dynamic program from bottom to top, Algorithm 1 determines,
in time polynomial in the size of the signal tree, whether or not any pair of equal
depth nodes x and y are ordered game isomorphic. The test in step 1(a) can
be computed in O(1) time by consulting the � relation from the specification of
the game. Each call to OrderedGameIsomorphic? performs at most one perfect
matching computation on a bipartite graph with O(|Θ|) nodes and O(|Θ|2) edges
(recall that Θ is the set of signals). Using the Ford-Fulkerson algorithm [Ford, Jr.
and Fulkerson 1962] for finding a maximal matching, this takes O(|Θ|3) time. Let
S be the maximum number of signals possibly revealed in the game (e.g., in Rhode
Island Hold’em, S = 4 because each of the two players has one card in the hand
plus there are two cards on the table). The number of nodes, n, in the signal tree
is O(|Θ|S). The dynamic program visits each node in the signal tree, with each
visit requiring O(|Θ|2) calls to the OrderedGameIsomorphic? routine. So, it takes
O(|Θ|S |Θ|3|Θ|2) = O(|Θ|S+5) time to compute the entire ordered game isomorphic
relation.

While this is exponential in the number of revealed signals, we now show that it
is polynomial in the size of the signal tree—and thus polynomial in the size of the

8We thank an anonymous person for providing this example.
9Actually, this is computing a slightly relaxed notion since it allows nodes with different

parents to be considered ordered game isomorphic. However, the GameShrink algorithm only

calls it with sibling nodes as the arguments.
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game tree because the signal tree is smaller than the game tree. The number of
nodes in the signal tree is

n = 1 +
S∑

i=1

i∏
j=1

(|Θ| − j + 1)

(Each term in the summation corresponds to the number of nodes at a specific
depth of the tree.) The number of leaves is

S∏
j=1

(|Θ| − j + 1) =
(
|Θ|
S

)
S!

which is a lower bound on the number of nodes.10 For large |Θ| we can use the
relation

(
n
k

)
∼ nk

k! to get (
|Θ|
S

)
S! ∼

(
|Θ|S

S!

)
S! = |Θ|S

and thus the number of leaves in the signal tree is Ω(|Θ|S). Therefore, O(|Θ|S+5) =
O(n|Θ|5), which proves that we can indeed compute the ordered game isomorphic
relation in time polynomial in the number of nodes, n, of the signal tree.

The algorithm often runs in sublinear time (and space) in the size of the game
tree because the signal tree is significantly smaller than the game tree in most
nontrivial games. (Note that the input to the algorithm is not an explicit game
tree, but a specification of the rules, so the algorithm does not need to read in the
game tree.) In general, if an ordered game has r rounds, and each round’s stage
game has at least b nonterminal leaves, then the size of the signal tree is at most
1
br of the size of the game tree. For example, in Rhode Island Hold’em, the game
tree has 3.1 billion nodes while the signal tree only has 6,632,705.

Given the OrderedGameIsomorphic? routine for determining ordered game iso-
morphisms in an ordered game, we are ready to present the main algorithm, Game-
Shrink.

10Using the inequality
`n

k

´
≥

`
n
k

´k
, we get the lower bound

`|Θ|
S

´
S! ≥

“
|Θ|
S

”S
S! = |Θ|S S!

SS .
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Algorithm 2. GameShrink (Γ)

(1 ) Initialize F to be the identity filter for Γ.
(2 ) For j from 1 to r:

For each pair of sibling nodes ϑ, ϑ′ at either level
∑j−1

k=1

(
κk + nγk

)
or

∑j
k=1 κk+∑j−1

k=1 nγk in the filtered (according to F ) signal tree:
If OrderedGameIsomorphic?(Γ, ϑ, ϑ′), then F j (ϑ)← F j (ϑ′)← F j(ϑ) ∪
F j (ϑ′).

(3 ) Output F .

Given as input an ordered game Γ = 〈I,G, L,Θ, κ, γ, p,�, ω, u〉, GameShrink
applies the shrinking ideas presented above as aggressively as possible. Once it
finishes, there are no contractible nodes (since it compares every pair of nodes at
each level of the signal tree), and it outputs the corresponding information filter F .
The correctness of GameShrink follows by a repeated application of Theorem 3.4.
Thus, we have the following result:

Theorem 4.1. GameShrink finds all ordered game isomorphisms and applies
the associated ordered game isomorphic abstraction transformations. Furthermore,
for any Nash equilibrium, σ′, of the abstracted game, the strategy profile constructed
for the original game from σ′ is a Nash equilibrium.

The dominating factor in the run time of GameShrink is in the rth iteration of the
main for-loop. There are at most

(|Θ|
S

)
S! nodes at this level, where we again take S

to be the maximum number of signals possibly revealed in the game. Thus, the inner

for-loop executes O

(((|Θ|
S

)
S!

)2
)

times. As discussed in the next subsection, we

use a union-find data structure to represent the information filter F . Each iteration
of the inner for-loop possibly performs a union operation on the data structure; per-
forming M operations on a union-find data structure containing N elements takes
O(α(M,N)) amortized time per operation, where α(M,N) is the inverse Acker-
mann’s function [Ackermann 1928; Tarjan 1975] (which grows extremely slowly).

Thus, the total time for GameShrink is O

(((|Θ|
S

)
S!

)2

α

(((|Θ|
S

)
S!

)2

, |Θ|S
))

. By

the inequality
(
n
k

)
≤ nk

k! , this is O
(
(|Θ|S)2 α

(
(|Θ|S)2, |Θ|S

))
. Again, although this

is exponential in S, it is Õ(n2), where n is the number of nodes in the signal tree.
Furthermore, GameShrink tends to actually run in sublinear time and space in the
size of the game tree because the signal tree is significantly smaller than the game
tree in most nontrivial games, as discussed above.

4.1 Efficiency enhancements

We designed several speed enhancement techniques for GameShrink, and all of them
are incorporated into our implementation. One technique is the use of the union-find
data structure [Cormen et al. 2001, Chapter 21] for storing the information filter
F . This data structure uses time almost linear in the number of operations [Tarjan
1975]. Initially each node in the signalling tree is its own set (this corresponds to the
identity information filter); when two nodes are contracted they are joined into a
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new set. Upon termination, the filtered signals for the abstracted game correspond
exactly to the disjoint sets in the data structure. This is an efficient method of
recording contractions within the game tree, and the memory requirements are
only linear in the size of the signal tree.

Determining whether two nodes are ordered game isomorphic requires us to de-
termine if a bipartite graph has a perfect matching. We can eliminate some of
these computations by using easy-to-check necessary conditions for the ordered
game isomorphic relation to hold. One such condition is to check that the nodes
have the same number of chances as being ranked (according to �) higher than,
lower than, and the same as the opponents. We can precompute these frequencies
for every game tree node. This substantially speeds up GameShrink, and we can
leverage this database across multiple runs of the algorithm (for example, when
trying different abstraction levels; see next section). The indices for this database
depend on the private and public signals, but not the order in which they were re-
vealed, and thus two nodes may have the same corresponding database entry. This
makes the database significantly more compact. (For example in Texas Hold’em,
the database is reduced by a factor

(
50
3

)(
47
1

)(
46
1

)
/
(
50
5

)
= 20.) We store the his-

tograms in a 2-dimensional database. The first dimension is indexed by the private
signals, the second by the public signals. The problem of computing the index
in (either) one of the dimensions is exactly the problem of computing a bijection
between all subsets of size r from a set of size n and integers in

[
0, . . . ,

(
n
r

)
− 1

]
.

We efficiently compute this using the subsets’ colexicographical ordering [Bollobás
1986]. Let {c1, . . . , cr}, ci ∈ {0, . . . , n − 1}, denote the r signals and assume that
ci < ci+1. We compute a unique index for this set of signals as follows:

index(c1, . . . , cr) =
r∑

i=1

(
ci

i

)
.

5. APPROXIMATION METHODS

Some games are too large to compute an exact equilibrium, even after using the
presented abstraction technique. In this section we discuss general techniques for
computing approximately optimal strategy profiles. For a two-player game, we
can always evaluate the worst-case performance of a strategy, thus providing some
objective evaluation of the strength of the strategy. To illustrate this, suppose we
know player 2’s planned strategy for some game. We can then fix the probabilities
of player 2’s actions in the game tree as if they were chance moves. Then player
1 is faced with a single-agent decision problem, which can be solved bottom-up,
maximizing expected payoff at every node. Thus, we can objectively determine the
expected worst-case performance of player 2’s strategy. This will be most useful
when we want to evaluate how well a given strategy performs when we know that it
is not an equilibrium strategy. (A variation of this technique may also be applied in
n-person games where only one player’s strategies are held fixed.) This technique
provides ex post guarantees about the worst-case performance of a strategy, and
can be used independently of the method that is used to compute the strategies in
the first place.
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5.1 State-space approximations

By slightly modifying the GameShrink algorithm we can obtain an algorithm that
yields even smaller game trees, at the expense of losing the equilibrium guarantees
of Theorem 3.4. Instead of requiring the payoffs at terminal nodes to match exactly,
we can instead compute a penalty that increases as the difference in utility between
two nodes increases.

There are many ways in which the penalty function could be defined and im-
plemented. One possibility is to create edge weights in the bipartite graphs used
in Algorithm 1, and then instead of requiring perfect matchings in the unweighted
graph we would instead require perfect matchings with low cost (i.e., only consider
two nodes to be ordered game isomorphic if the corresponding bipartite graph has
a perfect matching with cost below some threshold). Thus, with this threshold as
a parameter, we have a knob to turn that in one extreme (threshold = 0) yields
an optimal abstraction and in the other extreme (threshold = ∞) yields a highly
abstracted game (this would in effect restrict players to ignoring all signals, but still
observing actions). This knob also begets an anytime algorithm. One can solve
increasingly less abstracted versions of the game, and evaluate the quality of the
solution at every iteration using the ex post method discussed above.

5.2 Algorithmic approximations

In the case of two-player zero-sum games, the equilibrium computation can be
modeled as a linear program (LP), which can in turn be solved using the simplex
method. This approach has inherent features which we can leverage into desirable
properties in the context of solving games.

In the LP, primal solutions correspond to strategies of player 2, and dual solutions
correspond to strategies of player 1. There are two versions of the simplex method:
the primal simplex and the dual simplex. The primal simplex maintains primal
feasibility and proceeds by finding better and better primal solutions until the dual
solution vector is feasible, at which point optimality has been reached. Analogously,
the dual simplex maintains dual feasibility and proceeds by finding increasingly
better dual solutions until the primal solution vector is feasible. (The dual simplex
method can be thought of as running the primal simplex method on the dual
problem.) Thus, the primal and dual simplex methods serve as anytime algorithms
(for a given abstraction) for players 2 and 1, respectively. At any point in time,
they can output the best strategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the quality of
the strategies by examining the primal and dual solutions. (When using the primal
simplex method, dual solutions may be read off of the LP tableau.) Every feasible
solution of the dual yields an upper bound on the optimal value of the primal, and
vice versa [Chvátal 1983, p. 57]. Thus, without requiring further computation,
we get lower bounds on the expected utility of each agent’s strategy against that
agent’s worst-case opponent.

One problem with the simplex method is that it is not a primal-dual algorithm,
that is, it does not maintain both primal and dual feasibility throughout its ex-
ecution. (In fact, it only obtains primal and dual feasibility at the very end of
execution.) In contrast, there are interior-point methods for linear programming
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that maintain primal and dual feasibility throughout the execution. For example,
many interior-point path-following algorithms have this property [Wright 1997, Ch.
5]. We observe that running such a linear programming method yields a method
for finding ε-equilibria (i.e., strategy profiles in which no agent can increase her ex-
pected utility by more than ε by deviating). A threshold on ε can also be used as a
termination criterion for using the method as an anytime algorithm. Furthermore,
interior-point methods in this class have polynomial-time worst-case run time, as
opposed to the simplex algorithm, which takes exponentially many steps in the
worst case.

6. RELATED RESEARCH

The main technique applied in this paper is that of transforming large extensive
form games into smaller extensive form games for which an equilibrium can be
computed. Then, the equilibrium strategies of the smaller game are mapped back
into the original larger game. One of the first pieces of research addressing functions
which transform extensive form games into other extensive form games, although
not for the purpose of making the game smaller, was in an early paper [Thompson
1952], which was later extended [Elmes and Reny 1994]. In these papers, several
distinct transformations, now known as Thompson-Elmes-Reny transformations,
are defined. The main result is that one game can be derived from another game
by a sequence of those transformations if and only if the games have the same pure
reduced normal form. The pure reduced normal form is the extensive form game
represented as a game in normal form where duplicates of pure strategies (i.e.,
ones with identical payoffs) are removed and players essentially select equivalence
classes of strategies [Kuhn 1950a]. An extension to this work shows a similar
result, but for slightly different transformations and mixed reduced normal form
games [Kohlberg and Mertens 1986]. Modern treatments of this previous work on
game transformations have also been written [Perea 2001, Ch. 6], [de Bruin 1999].

The notion of weak isomorphism in extensive form games [Casajus 2003] is re-
lated to our notion of restricted game isomorphism. The motivation of that work
was to justify solution concepts by arguing that they are invariant with respect to
isomorphic transformations. Indeed, the author shows, among other things, that
many solution concepts, including Nash, perfect, subgame perfect, and sequential
equilibrium, are invariant with respect to weak isomorphisms. However, that defi-
nition requires that the games to be tested for weak isomorphism are of the same
size. Our focus is totally different: we find strategically equivalent smaller games.
Another difference is that their paper does not provide any algorithms.

Abstraction techniques have been used in artificial intelligence research before. In
contrast to our work, most (but not all) research involving abstraction has been for
single-agent problems (e.g. [Knoblock 1994; Liu and Wellman 1996]). Furthermore,
the use of abstraction typically leads to sub-optimal solutions, unlike the techniques
presented in this paper, which yield optimal solutions. A notable exception is the
use of abstraction to compute optimal strategies for the game of Sprouts [Applegate
et al. 1991]. However, a significant difference to our work is that Sprouts is a game
of perfect information.

One of the first pieces of research to use abstraction in multi-agent settings was
Journal of the ACM, Vol. 54, No. 5, 9 2007.
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the development of partition search, which is the algorithm behind GIB, the world’s
first expert-level computer bridge player [Ginsberg 1996; 1999]. In contrast to
other game tree search algorithms which store a particular game position at each
node of the search tree, partition search stores groups of positions that are simi-
lar. (Typically, the similarity of two game positions is computed by ignoring the
less important components of each game position and then checking whether the
abstracted positions are similar—in some domain-specific expert-defined sense—to
each other.) Partition search can lead to substantial speed improvements over α-
β-search. However, it is not game theory-based (it does not consider information
sets in the game tree), and thus does not solve for the equilibrium of a game of
imperfect information, such as poker.11 Another difference is that the abstraction
is defined by an expert human while our abstractions are determined automatically.

There has been some research on the use of abstraction for imperfect information
games. Most notably, Billings et al [Billings et al. 2003] describe a manually con-
structed abstraction for the game of Texas Hold’em poker, and include promising
results against expert players. However, this approach has significant drawbacks.
First, it is highly specialized for Texas Hold’em. Second, a large amount of ex-
pert knowledge and effort was used in constructing the abstraction. Third, the
abstraction does not preserve equilibrium: even if applied to a smaller game, it
might not yield a game-theoretic equilibrium. Promising ideas for abstraction in
the context of general extensive form games have been described in an extended
abstract [Pfeffer et al. 2000], but to our knowledge, have not been fully developed.

7. CONCLUSIONS AND DISCUSSION

We introduced the ordered game isomorphic abstraction transformation and gave
an algorithm, GameShrink, for abstracting the game using the isomorphism ex-
haustively. We proved that in games with ordered signals, any Nash equilibrium
in the smaller abstracted game maps directly to a Nash equilibrium in the original
game.

The complexity of GameShrink is Õ(n2), where n is the number of nodes in
the signal tree. It is no larger than the game tree, and on nontrivial games it
is drastically smaller, so GameShrink has time and space complexity sublinear in
the size of the game tree. Using GameShrink, we found a minimax equilibrium to
Rhode Island Hold’em, a poker game with 3.1 billion nodes in the game tree—over
four orders of magnitude more than in the largest poker game solved previously.

To further improve scalability, we introduced an approximation variant of Game-
Shrink, which can be used as an anytime algorithm by varying a parameter that
controls the coarseness of abstraction. We also discussed how (in a two-player
zero-sum game), linear programming can be used in an anytime manner to gener-
ate approximately optimal strategies of increasing quality. The method also yields

11Bridge is also a game of imperfect information, and partition search does not find the equilib-
rium for that game either. Instead, partition search is used in conjunction with statistical sampling
to simulate the uncertainty in bridge. There are also other bridge programs that use search tech-

niques for perfect information games in conjunction with statistical sampling and expert-defined
abstraction [Smith et al. 1998]. Such (non-game-theoretic) techniques are unlikely to be compet-

itive in poker because of the greater importance of information hiding and bluffing.
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bounds on the suboptimality of the resulting strategies. We are currently work-
ing on using these techniques for full-scale 2-player limit Texas Hold’em poker, a
highly popular card game whose game tree has about 1018 nodes. That game tree
size has required us to use the approximation version of GameShrink discussed in
Section 5 [Gilpin and Sandholm 2006]. More recently we have also applied other
lossy abstraction techniques [Gilpin and Sandholm 2007; Gilpin et al. 2007] and
custom equilibrium-finding algorithms [Gilpin et al. 2007] to that problem. These
techniques have yielded highly competitive software programs for that game.

While our main motivation was games of private information, our abstraction
method can also be used in games where there is no private information. The
method can be helpful even if all signals that are revealed during the game are
public (such as public cards drawn from a deck, or throws of dice). However, in
such games, expectiminimax search [Michie 1966] (possibly supplemented with α-
β-pruning) can be used to solve the game in linear time in n. In contrast, solving
games with private information takes significantly longer: the time to solve an
O(n)×O(n) linear program in the two-person zero-sum setting, and longer in more
general games. Therefore, our abstraction method will pay off as a preprocessor in
games with no private information only if the signal tree of the game is significantly
smaller than the game tree.

Furthermore, while our method applies our isomorphism-based abstraction—
which abstracts away the unnecessary aspects of the signals—exhaustively, there
exist “abstractions” that our method does not capture, such as transpositions (that
is, different sequences of the same moves leading to equivalent positions, as in tic-
tac-toe, checkers, chess, and Go) and symmetries (e.g., rotating the pieces by 90
degrees on a Go board or in a chess endgame with no pawns). To address this, one
could use our method first, and then use classic techniques—such as transposition
tables and mapping symmetries to a canonical orientation—for dealing with such,
more traditional, “abstraction” opportunities. While we do not know of any popu-
lar games that have both types of abstraction opportunities, we can construct such
games to prove existence. For example, consider playing a game of tic-tac-toe to
determine who goes first in a poker game that follows (a tie in the tic-tac-toe game
could be broken, for example, in favor of player 1).

APPENDIX

A. EXTENSIVE FORM GAMES AND PERFECT RECALL

Our model of an extensive form game is defined as usual.

Definition A.1. An n-person game in extensive form is a tuple Γ = (I, V, E, P,H,A, u, p)
satisfying the following conditions:

(1) I = {0, 1, . . . , n} is a finite set of players. By convention, player 0 is the chance
player.

(2) The pair (V,E) is a finite directed tree with nodes V and edges E. Z denotes
the leaves of the tree, called terminal nodes. V \ Z are decision nodes. N(x)
denotes x’s children and N∗(x) denotes x’s descendants.

(3) P : V \Z → I determines which player moves at each decision node. P induces
a partition of V \ Z and we define Pi = {x ∈ V \ Z |P (x) = i}.
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(4) H = {H0, . . . ,Hn} where each Hi is a partition of Pi. For each of player i’s
information sets h ∈ Hi and for x, y ∈ h, we have |N(x)| = |N(y)|. We denote
the information set of a node x as h(x) and the player who controls h is i(h).

(5) A = {A0, . . . , An}, Ai : Hi → 2E where for each h ∈ Hi, Ai(h) is a partition of
the set of edges {(x, y) ∈ E |x ∈ h} leaving the information set h such that the
cardinalities of the sets in Ai(h) are the same and the edges are disjoint. Each
a ∈ Ai(h) is called an action at h.

(6) u : Z → IRN is the payoff function. For x ∈ Z, ui(x) is the payoff to player i in
the event that the game ends at node x.

(7) p : H0 × {a ∈ A0(h) |h ∈ H0} → [0, 1] where∑
a∈A0(h)

p(h, a) = 1

for all h ∈ H0 is the transition probability for chance nodes.

In this paper we restrict our attention to games with perfect recall (formally defined
in [Kuhn 1953]), which means that players never forget information.

Definition A.2. An n-person game in extensive form satisfies perfect recall if the
following two constraints hold:

(1) Every path in (V,E) intersects h at most once.
(2) If v and w are nodes in the same information set and there is a node u that

preceeds v and P (u) = P (v), then there must be some node x that is in the
same information set as u and preceeds v and the paths taken from u to v is
the same as from x to w.

A straightforward representation for strategies in extensive form games is the
behavior strategy representation. This is without loss of generality since Kuhn’s
theorem [Kuhn 1953] states that for any mixed strategy there is a payoff-equivalent
behavioral strategy in games with perfect recall. For each information set h ∈ Hi,
a behavior strategy is σi(h) ∈ ∆(Ai(h)) where ∆(Ai(h)) is the set of all probability
distributions over actions available at information set h. A group of strategies
σ = (σ1, . . . , σn) consisting of strategies for each player is a strategy profile. We
sometimes write

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn)

and

(σ′
i, σ−i) = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).
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