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Abstract 

Automated multi-attribute negotiation provides an important mechanism for distributed decision makers to 

reach agreements on multiple issues. Agents in a negotiation may have to negotiate multiple issues 

simultaneously. Moreover, to negotiate multiple issues also provides the opportunity to reach “win-win” 

solutions. In this paper, we first provide a survey that synthesizes the research on multi-attribute negotiation. 

We discuss the limitations of the existing research and conclude three key issues: incomplete information, 

Pareto-optimality and tractability which need to be further studied. We then present a generic framework 

for automated multi-attribute negotiation with two new mechanisms that incorporate the above issues. 

Finally, we discuss the challenges and the future work. 

Keywords: Automated multi-attribute negotiation, Incomplete information, Pareto-optimality, Mediating, 

Win-win. 

1. Introduction 

Automated negotiation provides an important mechanism for distributed decision makers, 

either human participants or autonomous agents, to reach agreements. With the support of 

an automated negotiation system, human participants of the negotiations can just input 

their preferences, requirements, etc. into the system and the representative agents can 

help negotiate the contents automatically. Such a procedure can not only ease but also 

accelerate the negotiation processes. Imagine a human coordinator in a large organization 

who may need to negotiate with many members in the group on different issues at the 

same day. A face-to-face and one-to-one negotiation approach may make the whole 

process work slowly and thus impact the operational efficiency of the organization. In the 

world of autonomous agents, automated negotiation can provide a mechanism for agents 

to reach agreements on task allocation, resource sharing and surplus division.  
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To implement automated negotiation requires not only software support systems but also 

applicable negotiation theories. The existing research on negotiation problems usually 

can be segmented into two classes on: single-attribute negotiation and multi-attribute 

negotiation. While the single-attribute negotiation problem has been extensively studied, 

the research on multi-attribute negotiation is still young. In this paper, we focus on multi-

attribute negotiation.  

Multi-attribute negotiation is important. First, there exist situations where agents have to 

negotiate multiple issues at the same time. For example, in the human environment, a 

supplier and a buyer may need to negotiate the quantity, price and delivery time of a 

supply contract at the same time; an employer and an applicant may need to negotiate the 

position, wage and training opportunities simultaneously; in the agent world, it is 

common that two (or more) agents in an organization need to decide how to allocate 

multiple tasks or share a set of resources. In those situations, without the agreement on 

whichever issue may make the whole process halt. Second, besides the necessity, the 

agents may also benefit from multi-attribute negotiation when they have different 

preferences over the issues. Being able to trade off one issue for another, the agents may 

reach an agreement that makes the agents mutually better off. For instance, when selling 

automobiles, the dealers can sell the automobiles with a single price, but more often they 

may also introduce the financing package, insurance package, warranty package, spare 

parts package into the contract. With some discount on those packages, which may be 

cheaper for the dealers than to directly lower the price, buyers are more willing to accept 

the automobile price, as they may find that the price of buying those packages 
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individually is much higher. Thus, to negotiate multiple issues together may lead them to 

a “win-win” outcome which otherwise cannot be achieved by negotiating a single issue.   

As the agents now need to deal with multiple issues simultaneously, multi-attribute 

negotiation can be much more difficult than single-attribute negotiation, however. The 

difficulty comes from the following factors. First, in a multi-attribute negotiation, an 

agent’s utility depends on all the issues. As a result, to make an appropriate offer 

becomes more complex, since in each step, an agent may find a number of offers that can 

contribute the same utility level for herself. Which offer to propose is usually nontrivial. 

This decision impacts the opponent’s utility and then her response decision. If an agent 

can find an offer that makes the opponent obtain more utility compared to other offers, 

the opponent may be more willing to accept the offer, and therefore, the agent can 

concede less and consequently achieve more utility. Second, negotiations in practice 

often take place in the environments where information is incomplete. The agents may 

never meet with each other before. While it may be possible for the agents to reason and 

learn the opponent’s utility function and strategy in a single-attribute negotiation, it 

becomes much more difficult when there are multiple issues. Moreover, the negotiation 

context in practice may also vary along with the time. The agents may even not have a 

complete characterization of their own preferences before a negotiation. The traditional 

approach to overcome this problem is to apply preference elicitation before a negotiation. 

However, preference elicitation is a well known difficult and time-consuming procedure 

(Chen and Pu 2004), especially when the preferences of the agents are complex. Third, in 

a multi-attribute negotiation, to achieve a Pareto optimal
1
 solution is important. Rational 

                                                 
1
 Pareto optimality is defined as the property that an outcome cannot be further improved (i.e. no agent can 

get more utility) without sacrificing the other’s utility. 
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agents shall not leave “extra money” on the table. But to seek a Pareto optimal settlement 

between self-interested agents in an incomplete information environment is difficult. 

Therefore, the research on multi-attribute negotiation faces more challenges than that for 

single-attribute negotiation. A multi-attribute negotiation system need be able to support 

the agents to negotiate the issues efficiently and robustly, in the domain where the agents 

may neither know the opponents’ preferences nor have a complete characterization of 

their own preferences.  

In this paper, we first review the existing research on multi-attribute negotiation and 

discuss the gap between the existing work and an applicable automated multi-attribute 

negotiation system. We point out three key issues which need to be further studied: 

incomplete information, Pareto-optimality and tractability to support a robust automated 

multi-attribute negotiation system. We then present a generic framework with two new 

mechanisms that consider the above issues. Finally, we discuss the future work.  

The rest of the paper is organized as follows. Section 2 reviews the related research. 

Section 3 presents the generic framework. Section 4 outlines the challenges and 

concludes with the discussion on the future work. 

2. Literature review 

Although negotiation has been viewed as an important research problem as well as a 

valuable practical tool for a long time, the research on multi-attribute negotiation 

problems is still young. We segment the existing work into two categories in the fields of 

game theory and artificial intelligence (AI). 

2.1 Game theoretic models 
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The goal of the research in game theory is to find optimal negotiation strategies and the 

corresponding equilibria under different negotiation settings. In game theory, the simplest 

context studied is the one with complete information and cooperative agents. In this 

context, since the agents know the utility functions of each other, it is not hard to 

compute the Pareto-frontier, the collection of Pareto optimal solutions. So, the rational 

agents can reach agreement on this frontier by Nash axioms, Kalai-Smorodinsky solution, 

etc. (Nash 1950; Kalai 1977). However, these approaches are not applicable in practice 

where the agents are usually non-cooperative and the information is incomplete.  

The non-cooperative models (e.g. Bac and Raff 1996; Busch and Horstmann 1997; Busch 

and Horstmann 1999a, 1999b;  Lang and Rosenthal 2001, etc.) usually assume that in the 

negotiation there are two issues and the agents’ utility functions are linear and additive on 

the values of the two issues. The research mainly studies two negotiation protocols: 

simultaneous negotiation and issue-by-issue negotiation. The research focuses on the 

questions of: which protocol the agents shall choose to negotiate the issues; which issues 

should be negotiated first if the agents take issue-by-issue negotiation; what kind of 

offers the agents shall make; whether the agreement on the two issues will be reached at 

once in the first period; how the agents divide the two issues in equilibrium; and how the 

setting of the information and the sizes of the two issues will impact the equilibrium 

outcomes. For instance, Bac and Raff (1996) based on the Rubinstein’s bargaining game, 

study the case that two self-interested agents need to share two identical pies. The agents 

can either choose simultaneous negotiation or issue-by-issue negotiation. Bac and Raff 

show that with complete information the first mover will take simultaneous negotiation 

by making an offer on both pies and the two agents reach an agreement on the division of 
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the two pies without delay. They also show that if the information is asymmetric then the 

first mover may choose issue-by-issue negotiation by making an offer on one pie and 

leave the right on the other pie to the opponent.  

A major problem of the game theoretical models is that the research results are difficult 

to be applied in practice. The agents in real world situations may have much more 

complex utility functions on the issues rather than linear additive utility functions; the 

information in the negotiation may be incomplete; there could be more than two issues; 

and the agents may have limited reasoning capability. In those non-cooperative game 

models, it is difficult to scale the size of the negotiation up to three issues or to consider 

nonlinear utility functions under incomplete information. Moreover, Pareto-optimality of 

the negotiation solutions usually is neglected.  

2.2 AI models 

In the AI field, the existing work mainly focuses on automated negotiation frameworks 

and tractable heuristics.  

Fatima et al. (2004a, 2004b) propose an agenda-based framework for multi-attribute 

negotiation. In their framework, the agents can propose either a combined offer on 

multiple issues or a single offer on one issue. Different from the game theoretical models, 

their work addresses more on tractability. They assume that the agents adopt time-

dependent strategy (first introduced by Faratin, Sierra and Jennings 1998) and the agents 

may make decisions on the issues independently faced with a combined offer. For 

example, if there are two issues in a combined offer, say x1 and x2, an agent may have 

two independent strategies S1 and S2 which are used to decide whether to accept x1 and x2. 

However, in their work, they make the same assumption as in the game theoretical 
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models that the agents’ utility functions are given before the negotiation and they are 

linear additive. Similarly, Pareto-optimality is not addressed.  

Sycara (1990a, 1990b, 1991) uses a case-based reasoning approach for multi-attribute 

negotiations where the agents make offers based on similarity of the negotiation context 

(including issues, opponents, and environment) to previous negotiations. Sycara also uses 

automatically generated persuasive argumentation as a mechanism for altering the 

utilities of the agents, thus making them more prone to accept a proposal that otherwise 

they might reject. However, in the research, neither complex utility function nor Pareto-

optimality is explicitly considered. 

There are also papers that adopt a non-biased mediator in the negotiation. Ehtamo et al. 

(1999) present a constraint proposal method to generate Pareto-frontier of a multi-

attribute negotiation. The mediator generates a constraint in each step and asks the agents 

to find their optimal solution under this constraint. If the feedbacks from the agents 

coincide, then a Pareto optimal solution of the negotiation is found; otherwise, the 

mediator updates the constraint based on the feedbacks and the procedure continues. 

They show that their approach can generate the whole Pareto-frontier efficiently. But in 

their work, the negotiation agents do not have any right to make or accept offers based on 

their own negotiation strategies, which limits its application in the negotiations with self-

interested agents. Moreover, their approach relies on the assumption that the agents can 

solve multi-criteria-decision-making (MCDM) problems efficiently. But it is difficult to 

require any agent in practice to have such a capability. Klein et al. (2001) propose a 

mediating approach for negotiating complex contracts with more decision flexibility for 

the agents. Their approach focuses on the negotiations with binary valued issues. The 
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non-biased mediator generates an offer in each period and proposes to both agents. Then 

the agents vote whether to accept the offer based on their own strategies. If both agents 

vote to accept, the mediator mutates the offer (to change the values of some issues in the 

offer from 0 to 1, or reverse) and repeats the procedure. If at least one agent votes to 

reject the offer, the mediator mutates the last mutually acceptable offer and repeats the 

procedure. However, this approach is difficult to be applied in the domains with 

continuously-valued issues since it is not tractable to mutate the value of an issue if it has 

a continuous support. Besides, a key assumption they make is that the mediator always 

can change the contract even if both agents have already voted to accept the contract, 

which might not be tractable in practice.  

An important issue in multi-attribute negotiation is the tradeoff process between self-

interested agents on different issues. Faratin, Sierra and Jennings (2002) propose a novel 

idea to make the agents trade off on multiple issues. They suggest that the agents should 

apply similarity criteria to trade off the issues, i.e., make an offer on their indifference 

curve which is most similar to the offer made by the opponent in the last period. However, 

in this approach, to define and apply the similarity criteria, it is essential that the agents 

have some knowledge about the weights the opponent puts on the issues in the 

negotiation. A subsequent work (Coehoorn and Jennings 2004) proposes a method based 

on kernel density estimation to learn the weights. But the performance still might be 

compromised if the agents have no or very little prior information about the real weights 

the opponent assigns on the issues. Moreover, it will be difficult to define and apply the 

similarity criteria if the agents’ utility functions are nonlinear and the issues are 

interdependent.  
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Luo et al. (2003) develop a fuzzy constraint based framework for multi-attribute 

negotiations. In this framework, an agent, say the buyer, first defines a set of fuzzy 

constraints and submits one of them by priority from the highest to lowest to the 

opponent, say the seller, during each round. The seller either makes an offer based on the 

constraints or lets the buyer relax the constraints if a satisfactory offer is not available. 

The buyer then makes the decision to accept or reject an offer, or to relax some 

constraints by priority from the lowest to highest, or to declare the failure of the 

negotiation.  

Li and Tesauro (2003) introduce a searching method based on Bayesian rules. In their 

work, a proposing agent in each negotiation round applies a depth-limited combinatorial 

search to find a most favorable offer based on her current knowledge about the 

opponent’s type. If the proposal is rejected, this agent updates her knowledge by 

Bayesian rules about the opponent’s type. Then, the agents exchange their roles and the 

negotiation proceeds following the same pattern. However, their work assumes that the 

agents know partially about the opponent’s utility function as the type of the agent. 

Moreover, their work does not explicitly address Pareto-optimality of the solution.  

Hanson et al. (2003) introduce an automated negotiation system implemented in Java, 

which can be flexibly used to negotiate multiple issues. Their experiments based on 

asymmetric negotiation protocols show that near Pareto optimal negotiation solutions can 

be efficiently achieved for two-attribute Constant Elasticity of Substitution (CES) utility 

function (for an introduction of CES utility functions, see Mas-Colell, Whinston and 

Green 1995).  
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There also exists some research that addresses multi-attribute negotiations on binary 

issues. For instance, Robu, Somefun and La Poutre (2005) propose an approach based on 

graph theory and probabilistic influence networks for the negotiations with multiple 

binary issues; Chevaleyre et al. (2005) address a categorization problem of the agents’ 

utility functions under which the social optimal allocation of a set of indivisible resources 

(binary issues) is achievable. 

We conclude the existing research as follows. First, almost all the models in the existing 

research are based on the assumption that the agents in a negotiation have explicit utility 

functions. Some also assume that the agents completely or partially know their 

opponent’s utility function. Second, the existing models either assume a simple utility 

function (two issues with linear additive utility functions) or focus on binary issues or 

cooperative negotiations. Finally, Pareto-optimality and tractability have not been 

considered simultaneously in the models.  

3. A generic framework for automated multi-attribute 

negotiation 

In this section, we propose a generic framework that incorporates three key issues: 

incomplete information, Pareto-optimality and tractability to bridge the gap between the 

existing theories and the application requirements. In Subsection 3.1, we describe the 

assumptions of the framework. In Subsection 3.2, we describe the negotiation protocol. In 

Subsection 3.3, we describe the negotiation strategy.  

3.1 The negotiation setting 
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In this framework, we consider the case with two self-interested agents { , }i b s∈ who 

need to negotiate a set of issues {1,2,..., }j n∈  in T periods. The range of each issue j can 

be normalized to a continuous range [0,1]jΩ = , with the lower and upper bounds 

representing the reservation prices of the two agents on this issue. Without loss of 

generality, we assume that the value that is less than 0 (or more than 1) is not acceptable 

for agent s (or b). Thus, the negotiation domain can be denoted by [0,1]nΩ = .  

In contrast to the prior work that usually assumes that agents have relatively simple 

preferences on the issues (e.g. can be characterized by linear utility functions), we make a 

more general assumption that the preference of each agent is rational and strictly convex, 

which is widely applied in economics (Mas-Colell, Whinston and Green 1995). 

Definition 1: The ordinal preference Éi of agent i in the negotiation domain is rational 

and strictly convex if it satisfies the following conditions: 

• Strict preference is asymmetric: There is no pair of x and x’ in Ω  such that x i≺  x’ and 

x’ i≺  x; 

• Transitivity: For all x,  x’ and x’’ in Ω , if xÉi x’ and x’Éi x’’, then xÉi x’’; 

• Completeness: For all x and x’ in Ω , either xÉi x’ or x’Éi x; 

• Strict convexity: For any solution x, the set of solutions that an agent prefers to x is 

strictly convex; 

where xÉi x’ (or x i≺  x’) indicates that the offer x’ is at least as good as (or better than) x 

for agent i.  

The first two conditions ensure that the agents’ preferences are consistent in the 

negotiation domain; the third condition ensures that any pair of points in the negotiation 
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domain can be compared; the last condition ensures that agents’ preferences on each 

issue are monotone if the values of the other issues are fixed, i.e., if the value of an issue 

increases, when the values of the other issues are fixed, the utility of an agent is 

monotonically increasing or decreasing. This last condition implies that each Pareto 

optimal solution of a multi-attribute negotiation is on a joint tangent hyperplane of a pair 

of indifference curves (or surfaces)
2
 of the two agents and the Pareto frontier is a 

continuous curve. This condition makes it tractable to find near Pareto optimal solutions 

when the issues are continuously-valued and the information is incomplete. Although the 

last condition is much stricter compared to the other three conditions, it is still quite 

general and holds in many real negotiation environments. The linear, CES and quadratic 

utility functions all satisfy these four conditions. 

Based on the above conditions, we normalize the utility range of each agent to [0,1] with 

the bounds representing the worst/best offers in the negotiation space. We assume that 

0
n
/1

n
 is the best/worst offer for agent b, i.e., Ub(0

n
) = 1 and Ub(1

n
) = 0, and from 0

n
 to 1

n
 

agent b’s utility is monotonically decreasing, and it is the converse for agent s. We 

assume that the agents may or may not have her utility function elicited, but given a 

limited number of offers, an agent can judge the utility level of the offers and find the 

best. This assumption is indeed the basic requirement of any preference elicitation 

procedures.  

3.2 The alternating-offer protocol 

We adopt Rubinstein’s alternating-offer game (Rubinstein 1982) but allow agents to 

make multiple offers each time. In detail, in each period, an agent who acts as a proposer 

                                                 
2
 An indifference curve (surface) of an agent consists of the points that are indifferent to the agent. 
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makes one (or multiple with a limited number) offer to the opponent who acts as a 

responder. If the responder accepts one of the offers, the negotiation ends; otherwise, 

agents exchange their roles and the negotiation proceeds to the next period. Such 

iterations continue until an agreement or the negotiation deadline is reached.  

3.3 The negotiation strategy 

We divide the negotiation strategy of an agent into three components: conceding, 

responding, and proposing. The conceding strategy is to decide how to concede in the 

negotiation. In other words, it decides the reservation utility—the least utility an agent 

desires in each negotiation period; the responding strategy determines whether an agent 

should accept or reject an offer proposed by the opponent; the proposing strategy is one 

which determines the offers that should be proposed to the opponent. We describe these 

three components one-by-one in the following.  

3.3.1 The conceding strategy 

We have assumed that each agent’s preference can be characterized by a utility function, 

and the range of the utility function is [0,1], i.e., it is one-dimensional. We therefore can 

apply the existing conceding strategies developed for single-attribute negotiations to 

determine how much utility to concede in each period. Particularly, we propose that the 

agents can adopt the time-dependent strategy (Faratin, Sierra and Jennings 1998) due to 

its tractability for applications. The time-dependent strategy can be characterized by: 

1

( ) 1 (1 )
i

i i

t
s t ru

T

β = − −  
 

                                                  (1) 
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where ( )is t  is the reservation utility of agent i in period t (i.e., the opponent’s offer in this 

period needs to provide at least this utility level for agent i to accept it); iru  is the 

ultimate reservation utility of agent i for this negotiation (i.e., the least utility level that 

agent i is willing to accept); and iβ >0 represents the strategy parameter of agent i. 

Following this strategy, an agent desires high reservation utility levels at the beginning 

since there is still plenty of time left; an agent concedes gradually depending on the time 

past if there is no agreement reached yet; and at the end of the negotiation an agent 

concedes to the ultimate reservation utility for this negotiation. iβ  controls the 

concession characteristic. If iβ <1, agent i concedes slowly at the beginning but fast when 

the time approaches the deadline; if iβ >1, the agent concedes fast at the beginning but 

slowly when the time approaches the deadline; and if iβ =1, the agent concedes evenly 

during the whole negotiation. iru  may be fixed during the whole negotiation or may be 

adjusted by the agent time-by-time if the agent receives outside options during the 

negotiation (see Li, Giampapa and Sycara 2006). 

3.3.2 The responding strategy 

The responding strategy directly depends on the conceding strategy. We propose that an 

agent can compare the utility of the current best offer made by the opponent with the 

utility that the agent will concede to in the next period. If the utility of the current best 

offer is higher, the agent accepts the offer; otherwise, the agent rejects it. Thus, suppose 

agent b is the responder and x is the best offer made by agent s in period t, then agent b’s 

responding strategy follows  



 16 

, if ( 1) ( );
( )

, otherwise.

b b

b

accept s t U x
a x

reject

+ ≤
= 


                                     (2) 

where ai(x) represents the reaction function of agent i to the offer x. 

3.3.3 The proposing strategy 

Among these three component strategies, the proposing strategy is the most complicated 

one, since in a multi-attribute negotiation, for any given utility level that an agent 

concedes to, there may exist a number of different points in the negotiation space which 

can contribute this utility level (i.e., all the points on the indifference curve/surface with 

this utility level). It then becomes essential for an agent to have an effective approach to 

find and select desirable points from this set as proposals offered to the opponent.  

In particular, we design two new mechanisms that can be used as the proposing 

component in different situations. The first negation mechanism (in Subsection 3.3.3.1) is 

called shortest-distance proposing mechanism, which can be applied where the agents do 

not know their opponent’s utility function but do have a utility function of their own. The 

second negotiation mechanism (in Subsection 3.3.3.2) is called Pareto-optimal mediating 

mechanism, which can be applied where the agents neither know the opponent’s utility 

function nor have their own utility functions elicited. The second mechanism requires a 

mediating third party which can be implemented by a software agent. 

3.3.3.1 The shortest-distance proposing mechanism 

For this strategy, we assume that each agent does have an elicited utility function before 

the negotiation, but the utility function is private information. 

As an agent has an explicit utility function, the agent can find the corresponding 

indifference curve/surface in the negotiation space with the utility level equal to the 
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reservation utility calculated in Equation (1) for period t. The simplest approach is to 

propose the whole indifference curve/surface to the opponent and the opponent looks for 

the best point on the curve/surface and makes the responding decision. We call this 

approach the exhaustive proposing approach. However, the exhaustive proposing 

approach might not be appropriate in some situations, for instance, an agent does not 

want to let the opponent know her utility function explicitly or to propose a full 

curve/surface is practically not feasible. In such situations, the agents need to find an 

alternative approach.  

Therefore, we propose a mechanism called shortest-distance proposing mechanism. In 

this mechanism, an agent first chooses, from her current indifference curve/surface, the 

offer which has the shortest distance to the best offer made by the opponent in the 

previous period. “The best offer made by the opponent in the previous period” means the 

offer that provides the agent with the highest utility among all the offers made by the 

opponent in the previous period. To choose the point on the current indifference 

curve/surface of the agent which has the shortest distance to that best offer may more 

likely provide the opponent with the highest utility because such a point might be closer 

than the other points to the opponent’s current indifferent curve/surface.  

Figure 1 presents an example of the shortest-distance proposing mechanism. In this 

example, the dashed curves are the indifference curves of agent s and the solid are the 

indifference curves of agent b. In period t-4, agent s makes an offer x
t-4
, but agent b 

rejects it. Then in period t-3, agent b finds an offer x
t-3
 on her indifference curve in period 

t-3 which has the shortest distance to the offer x
t-4
. Agent s rejects this offer as well, and 

she concedes to the second left dashed curve in period t-2. Now she finds offer x
t-2
 on this 
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curve which is closest to x
t-3
. Similar iterations continue until an agreement or the 

deadline is reached.  

          

However, the point chosen by the shortest distance protocol might not necessarily be 

Pareto optimal, especially if the information is incomplete and the utility functions are 

complex. Therefore, we propose that the agent can take this point as the seed offer, and 

based on it, choose a limited number of other offers from the current indifference 

curve/surface. The agent proposes these offers together to the opponent. By doing so, the 

agent can improve the desirability of the proposals. Although to propose the whole 

curve/surface may not be tractable, to make a limited number offers (e.g., two or three) in 

each period usually can be feasible and reasonable. For instance, a seller may propose 

several contracting options with different unit price, delivery time and quality to a buyer 

at each time; an employer may propose several job offers with different position, salary 

level, job location and training opportunity to an applicant.  

Attr 1 

x
t-4 

C2 

Figure 1: The shortest distance proposing protocol 

x
t-3 

x
t-1 

Attr 2 

x
t 
x
t-2 

C1 
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Therefore, the shortest-distance proposing mechanism can be formalized as follows. 

Assume agent b is the proposer in period t and she concedes to the reservation utility 

level sb(t) with the corresponding indifference curve/surface C. The total number of 

offers that agent b plans to make is kb. Assume xs
t-1
 is the best offer for agent b among all 

the offers proposed by agent s in period t-1, then agent b first chooses the offer which has 

the shortest distance to xs
t-1
 by 

,1 1argmint t

b x C sx x x −
∈= −                                             (3) 

where ||x-y|| represents the distance from point x to y. (Note that if there are several offers 

among the offers made by the opponent in the previous period that can contribute the 

same highest utility level, agent b can try all of them and find all the corresponding points 

following Formula (3). The agent then chooses the one which has the shortest distances.)  

If kb >1, agent b will want to make multiple offers. We propose that agent b can take xb
t,1 

as the seed and randomly choose other kb-1 offers from the neighborhood of xb
t,1
 by:  

, ,1{ |  and ( )}t m t

b bx rand x x C x x tδ= ∈ − ≤                                (4) 

where ,1 1( ) t t

b st x xδ −= − , and 2≤m≤ kb indexes an offer.  

This approach can be very easily applied in an automated negotiation system. Certainly, 

other more complicated methods based on the negotiation history also can be designed. In 

the following, we provide a numerical example. 

Numerical Example 1: There are two agents who negotiate two issues within maximal 

20 periods in this example. The agents have the CES utility function as 

1
3 3 3
1 2

1
3 3 3

1 2

( ) 1 0.2 0.8 ;

( ) 1 0.7(1 ) 0.3(1 ) ;

b

s

U x x x

U x x x

 = − + 

 = − − + − 
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where x=(x1, x2) denotes an offer with the value of the first (second) issue equal to x1 (x2). 

The agents both follow a conceding strategy of 

1

0.8

( ) 1 (1 0.2)
20

i

t
s t

 = − −  
 

 and the 

proposing strategy proposed above. The agents in this example only make one offer in 

each period. Figure 2 shows the negotiation procedure and the offers made by the two 

agents. The dashed curve is the Pareto-frontier. The square is the final agreement, the 

circles below the square are the offers made by agent b, and the circles above the square 

are made by agent s. The negotiation lasts 14 periods and the final agreement is reached 

at (0.6274, 0.3976) which has a distance 0.0410 to the Pareto frontier. From the figure, 

we can see that all the offers are very close to the Pareto-frontier.  
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0
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A
ttr
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Pareto frontier
Final agreement
Period offer

 

Figure 2: The negotiation procedure of example 1 

3.3.3.2 The Pareto-optimal mediating mechanism 

In the above subsection, we assume that the agents know their own utility functions. 

However, there are situations where the agents may not have an elicited utility function. 

A traditional approach to solve this problem is to first apply a preference elicitation 

procedure to characterize the agents’ preferences and then they negotiate based on the 
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utility functions. However, preference elicitation is a well-known difficult and time-

consuming process, especially when the agents have complex preferences. In this 

subsection, we propose a Pareto-optimal mediating mechanism. Under this mechanism, 

the agents can negotiate multiple issues even if they do not have an explicit utility 

function on the issues before the negotiation. The only assumption we need is that the 

agents can judge the utility of a limited set of points. In the following, we first provide 

the structure of the mechanism, and then describe the mediating procedure in detail. 

I. The structure of the mechanism. We adopt a non-biased mediator who can be 

implemented by an autonomous agent. This protocol first decomposes the n-dimensional 

negotiation space into a sequence of negotiation base lines. In each period, the mediator 

provides a (linear) negotiation base line and the proposing agent is required to propose a 

base offer on this line. Although the agents may not have explicit utility functions, the 

agents still can apply Equation (1) to determine their reservation utility in each period. 

Based on this reservation utility, an agent then can find a point on the negotiation base 

line which the agent think can contribute the utility equal to the reservation utility. This 

process is not difficult for an agent since the negotiation base line is a linear line and the 

utilities of the points on this line are monotonically increasing or decreasing based on the 

assumptions we have made. It is indeed similar as a step of a preference elicitation 

procedure. 

Based on the base offer, the mediator works with the two agents to find a (near) Pareto 

optimal point that is mutually better than the base offer. This point if found is returned as 

the offer in this period to the responding agent. If the offer is rejected, the base line is 
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updated and the negotiation proceeds to the next period. Such a procedure iterates until 

an agreement or the deadline is reached. The mechanism can be formally described as: 

Step 0: We connect the two best offers (i.e, 0n and 1n) for the agents by a line which acts 

as the first negotiation base line. Then, one agent is chosen (randomly or by some rule) to 

be the first mover in this negotiation.  

Step 1: The proposer in the current period makes a proposal on the present negotiation 

base line. This proposal becomes the base offer for the mediator to find a Pareto optimal 

point in Step 2. 

Step 2: The mediator works with the two agents to find a Pareto optimal point based on 

the base offer from Step 1 (see “II. The mediating procedure” for detail). The 

procedure goes to Step 3 when such a point is reached. 

Step 3: The responder makes her decision in this period. If she accepts the offer found in 

Step 2, the procedure ends with this solution; else if she rejects it but the deadline is 

reached, the procedure ends with the negotiation breakdown; otherwise the mediator 

connects the point found in Step2 with the offer in the previous period by a line which 

becomes the new negotiation base line for the next period, the two agents exchange their 

roles and the process goes back to Step 1.  

Figure 3 presents a depiction of the mechanism. In the figure, agent b makes a base offer 

x on the first negotiation base line L1 which connects (0,0) and (1,1). Then, based on x, 

the mediator works with the two agents and finds an offer y which is located on the 

Pareto-frontier (the black bold curve in the figure). But agent s rejects this offer, and then 

the negotiation base line is updated to the line L2 that connects y and (1,1). Agent s 
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makes a based offer p on L2 and the mediator suggests q. The procedure repeats until an 

agreement is reached or the negotiation breaks down when the time deadline is reached. 

 

II. The mediating procedure. The mediator’s role is to find a Pareto optimal 

enhancement for a base offer in each negotiation period. For clarity of presentation, we 

describe the mediating procedure with a two-issue case. For a point x in the two-

dimensional space, we use x[1] to represent the value of issue 1 and x[2] to represent the 

value of issue 2. Since to search for an exact Pareto optimal point is computationally 

intractable given that the information is incomplete, we apply an asymptotic approach 

with the following concepts: 

Definition 2 Given a point x=(x[1],x[2]) in the two-dimensional space, we call the range 

from the second issue value x[2]-ε to x[2]+ε (see range A in Figure 4) as the ε-range of 

point x. 

Definition 3 A point x is an ε-satisfying Pareto optimal solution if one of the following 

two properties is satisfied: (1) there does not exist any point that is mutually better than x 
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Figure 3: A depiction of the mediating negotiation protocol 
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for both agents; (2) all the points mutually better than x, if existing, are located in the ε-

range of x. 

 

From Definition 3, it is direct to see that when ε→0, an ε-satisfying solution x is Pareto 

optimal. This is because: when ε→0, A→Ø (see range A in Figure 4); we know that if 

A=Ø (there is no point mutually better than x), then x is Pareto optimal.  

Definition 4 For a point x, the range in the negotiation space that still needs to be 

searched for an ε-satisfying Pareto optimal solution, is called the necessary range (NR) of 

x. 

In the following, we use the value of the second issue to characterize the necessary range. 

At the beginning of the mediating procedure in each negotiation period, the lower bound 

of the necessary range (NRL) is 0 and the upper bound (NRU) is 1.  

With the above definitions, the mediating procedure can be described as: 

Step 0: The mediator sets the value of ε.  

Pareto-

frontier 

A 

x[2]-ε 

ε 

x[2]+ε 

x[2] 

Attr 2 

Attr 1 

x=(x[1], x[2]) 

 

Figure 4: The definition of ε-satisfaction 
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Step 1: Given the latest point xn=(xn[1],xn[2]) in the searching history
3
, the mediator first 

checks whether it is ε-satisfying. To do this, the mediator can first apply a query to let 

each agent report a point where the value of its second issue is equal to xn[2]+ε and the 

agent is indifferent between this point and xn. Assume the mediator receives xε
1
 from 

agent b and xε
2
 from agent s. Then there can be two scenarios: 

 

Scenario 1: xε
1
[1]>xε

2
[1] (See the left subplot of Figure 5). 

This scenario indicates that there do exist solutions mutually better than xn with the value 

of the second issue equal to xn[2]+ε. Then, the procedure returns ‘up’ as the search 

direction from xn and goes to Step 2. 

Scenario 2: xε
1[1]≤xε

2[1] (See the right subplot of Figure 5). 

This scenario indicates that there does not exist a point such that the value of its second 

issue is no smaller than xn[2]+ε and it is mutually better than xn. Then, the mediator needs 

to do a similar query to check the other direction, i.e. to let each agent report the point 

                                                 
3 The searching history stores the series of points (x0,x1,...,xn) that the mediator has found in the current 

negotiation period, where x0 is the base offer and x0≺ x1≺ x2... ≺ xn for both agents. The sign ‘≺ ’ is 

defined as follows: x0≺ x1, means that x0 is less preferable than x1 for both agents. 
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Figure 5. The scenarios of the results for a query 
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where the value of its second issue is equal to xn[2]-ε and the agent is indifferent between 

this point and xn. Then, the mediator checks whether there is a point mutually better than 

xn and the value of its second issue is equal to xn[2]-ε. If there is, the procedure returns 

‘down’ as the search direction and goes to Step 2. If there is not such a point either, xn is 

ε-satisfying by Definition 3. Thus, the mediator returns xn as the offer for this negotiation 

period. 

Step 2: Given the point xn and the direction from Step 1, the mediator can apply 

Algorithm 1 (see Figure 6) to get the next point xn+1 that is mutually better than xn for 

both agents. In this algorithm, the mediator first needs to get the necessary range, which 

is characterized by the lower bound, NRL, and upper bound, NRU, of the necessary range. 

NRL and NRU are global variables and are updated after each query the mediator 

processes in this negotiation period. The function ‘rankquery(xn,yDim)’ in this algorithm 

is to let agents report the indifferent point of xn and the value of its second issue equal to 

yDim. After the mediator gets xn+1, the procedure goes back to Step 1 and repeats until an 

ε-satisfying point is reached. This ε-satisfying point is returned as the offer of this period, 

and the responder makes her decision whether to accept it or not.   

Such a mediating procedure indeed mimics a preference elicitation process. However, 

this procedure is processed along with the negotiation and only the points in some local 

areas in the negotiation space are queried. The procedure saves a lot of computational 

effort compared to a traditional preference elicitation process, since it avoids 

characterizing the agents’ preferences on the whole negotiation space.  

For the cases where there are more than two issues in the negotiation, the mediator can 

process the above procedure in a sequence of two-dimensional spaces. For instance, if 
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there are three issues: attr 1, attr 2 and attr 3, given a reference point x0, the mediator can 

first process the above procedure in the (attr 1×attr 2)-space with the value of attr 3 fixed 

at x0[3]. After a point, say x1, is found which is ε-satisfying in the (attr 1×attr 2)-space, 

the mediator begins to do the same procedure in the (attr 2×attr 3)-with the value of attr 

1 fixed at x1[1], and later in the (attr 3×attr 1) -space. The mediator can repeat this 

process until the point reached is ε-satisfying in each two-dimensional space. In the 

following, we provide a numerical example. 

 

 

Inputs: xn, dir, NRL, NRU 

Outputs: xn+1, NRL, NRU 

Begin: 

1. if (dir= =’up’) 

2.     yDim=NRU; 

3.     NRL=xn[2]; 

4. elseif (dir= =’down’) 

5.     yDim=NRL; 

6.     NRU=xn[2]; 

7. end 
8. yDim=(yDim+xn[2])/2; 

9. x
1
indf=rankquery1(xn,yDim); 

10. x
2
indf =rankquery2(xn,yDim); 

11. while (x
1
indf[1]≤ x

2
indf [1]) 

12.    if (dir= =’up’) 

13.        NRU=yDim; 

14.    elseif (dir= =’down’) 

15.        NRL=yDim; 

16.    end 
17.    yDim=(yDim+xn[2])/2; 

18.    x
1
indf=rankquery1(xn,yDim); 

19.    x2indf =rankquery2(xn,yDim); 

20. end 
21. xn+1=((x

1
indf [1]+x

2
indf [1])/2, yDim); 

22. return xn+1, NRL, NRU; 

End 

 

Figure 6. Algorithm 1 
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Numerical Example 2: There are two agents who negotiate three issues within maximal 

20 periods in this example. The agents’ preferences can be represented by the following 

quadratic utility functions4:  

2 2 2

1 2 3

2 2 2

1 2 3

( ) 1 0.2 0.6 0.2 ;

( ) 1 0.6(1 ) 0.2(1 ) 0.2(1 ) .

b

s

U x x x x

U x x x x

 = − + + 

 = − − + − + − 
 

Agent b follows a conceding strategy: 

1

0.4

( ) 1 (1 0.2)
20

b

t
s t

 = − −  
 

 and agent s follows a 

conceding strategy: 

1

2

( ) 1 (1 0.3)
20

s

t
s t

 = − −  
 

. The accuracy parameter ε is set to 0.01. 

The results are shown in Table 1 and Figure 8. From Table 1, we see the maximal 

number of queries processed in a negotiation period is 70, but it decreases quickly, as the 

base line is turning closer to the Pareto-frontier (due to the update mechanism processed 

in every period). During the last negotiation period, only 11 queries are processed. The 

offers made in each period are very close to the Pareto-frontier which are ε-satisfying 

Pareto optimal.  

For more numerical experiments related to the above two proposing mechanisms, we 

refer the readers to Lai et al. (2006a, 2006b). 

                                                 
4
 By saying agents’ preferences can be characterized by some utility functions, we do not mean that agents 

know their utility functions explicitly on the whole negotiation space but mean that given a limited number 

of points, agents can compare them and say which one they prefer. 
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Figure 8. The negotiation procedure of Experiment 2 

4. Conclusions and future work 

Automated negotiation is an important and useful mechanism for both the negotiations 

between human participants and those in the world of autonomous agents. To implement 

automated negotiation, applicable negotiation theories are essential. The existing research 

has well studied single-attribute negotiation, but not much addresses multi-attribute 

negotiation.  

Periods Proposals Period offers Queries 

1 (0,0,0) (0,0,0) 0 

2 (0.604,0.604,0.604) (0.848,0.383,0.651) 70 

3 (0.059,0.027,0.045) (0.077,0.009,0.027) 27 

4 (0.591,0.259,0.443) (0.674,0.187,0.408) 50 

5 (0.214,0.050,0.115) (0.233,0.033,0.092) 35 

6 (0.562,0.148,0.328) (0.580,0.133,0.315) 24 

7 (0.377,0.074,0.184) (0.386,0.065,0.173) 26 

8 (0.506,0.107,0.261) (0.510,0.104,0.257) 11 

 

Table 1. The negotiation data of Experiment 2 
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This paper reviews the existing research on multi-attribute negotiation and points out 

three key issues: incomplete information, Pareto-optimality and tractability, which need 

to be considered to bridge the gap between the existing work and applicable automated 

multi-attribute negotiation systems. This paper then presents a modeling framework to 

incorporate these issues. This framework divides a negotiation strategy into three parts: 

conceding, responding and proposing. Based on this structure, the agents can apply the 

existing conceding and responding strategies developed for single-attribute negotiation 

problems. This framework applies two generic proposing mechanisms for different 

situations. When the agents have their own utility functions but not their opponent’s, the 

agents can use the shortest-distance proposing mechanism to select offers in each period. 

When the agents do not have their own utility functions elicited, the agents can apply the 

Pareto-optimal mediating mechanism to negotiate without the need to do preference 

elicitation exhaustively. The mediating mechanism also simplifies the agents’ decisions 

by decomposing the original n-dimensional space into a series of linear negotiation base 

lines.  

However, there are still some broader issues that need to be studied further. First, the 

existing research including ours usually focuses on the negotiations with either 

continuously-valued or binary-valued issues. But in practice, negotiations can include 

both types of issues. The existing theories need to be extended further to consider such 

situations. Second, the existing research has seldom looked at the situations where the 

agents even do not have their own utility functions elicited before the negotiation. 

Although we address this problem, we do need a non-biased mediator available. In 

practice, there may exist situations where it is not easy to include a mediator. Therefore, 
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some further work is needed to develop completely decentralized mechanisms that can be 

applied in such situations. Finally, most of the conceding strategies developed in the 

existing research assume that the agents have fixed ultimate reservation utilities for the 

negotiation. However, in practice, there may exist situations where the agents receive 

outside options during a negotiation. To adopt outside options in the multi-attribute 

negotiation framework is valuable to be studied. 
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