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 We are given a data set, and are told that it was 

generated from a mixture of Gaussian distributions.

 Unfortunately, no one has any idea how many Gaussians 

produced the data.
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What to do?
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 We can guess the number of clusters, run Expectation 

Maximization (EM) for Gaussian Mixture Models, look at 

the results, and then try again…

 We can run hierarchical agglomerative clustering, and cut 

the tree at a visually appealing level…

 We want to cluster the data in a statistically principled 

manner, without resorting to hacks.



Other motivating examples
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 Brain Imaging: Model an unknown number of spatial 

activation patterns in fMRI images [Kim and Smyth, NIPS 

2006]

 Topic Modeling: Model an unknown number of topics 

across several corpora of documents [Teh et al. 2006]

 …



Overview
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 Dirichlet distribution, and Dirichlet Process introduction

 Dirichlet Processes from different perspectives

 Samples from a Dirichlet Process

 Chinese Restaurant Process representation

 Stick Breaking

 Formal Definition

 Dirichlet Process Mixtures

 Inference



The Dirichlet Distribution
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 Let 

 We write:

 Samples from the distribution lie in the m-1 dimensional 
probability simplex
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The Dirichlet Distribution
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 Let 

 We write:

 Distribution over possible parameter vectors for a multinomial 
distribution, and is the conjugate prior for the multinomial.

 Beta distribution is the special case of a Dirichlet for 2 
dimensions.

 Thus, it is in fact a ―distribution over distributions.‖



Dirichlet Process
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 A Dirichlet Process is also a distribution over distributions.

 Let G be Dirichlet Process distributed:

G ~ DP(α, G0)

 G0 is a base distribution

 α is a positive scaling parameter

 G is a random probability measure that has the same support 

as G0



Dirichlet Process
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 Consider Gaussian G0

 G ~ DP(α, G0)



Dirichlet Process
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 G ~ DP(α, G0)

 G0 is continuous, so the probability that any two samples are 
equal is precisely zero.

 However, G is a discrete distribution, made up of a countably 
infinite number of point masses [Blackwell]
 Therefore, there is always a non-zero probability of two samples colliding
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Samples from a Dirichlet Process
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G ~ DP(α, G0)

Xn | G ~ G for n = {1, …, N}  (iid given G)

Marginalizing out G introduces dependencies

between the Xn variables
G

Xn

N



15

Assume we view these variables in a specific order, and are interested in the 

behavior of Xn given the previous n - 1 observations.

Let there be K unique values for the variables:

Samples from a Dirichlet Process



Samples from a Dirichlet Process

16

Notice that the above formulation of the joint distribution does 

not depend on the order we consider the variables.

Chain rule

P(partition) P(draws)



Samples from a Dirichlet Process
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Can rewrite as:

Let there be K unique values for the variables:



Blackwell-MacQueen Urn Scheme
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G ~ DP(α, G0)

Xn | G ~ G

 Assume that G0 is a distribution over colors, and that each Xn

represents the color of a single ball placed in the urn.

 Start with an empty urn.

 On step n:

 With probability proportional to α, draw Xn ~ G0, and add a ball of 
that color to the urn.

 With probability proportional to n – 1 (i.e., the number of balls 
currently in the urn), pick a ball at random from the urn.  Record its 
color as Xn, and return the ball into the urn, along with a new one of 
the same color.

[Blackwell and Macqueen, 1973]



Chinese Restaurant Process
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Consider a restaurant with infinitely many tables, where the Xn‘s

represent the patrons of the restaurant.  From the above 

conditional probability distribution, we can see that a customer is 

more likely to sit at a table if there are already many people 

sitting there.  However, with probability proportional to α, the 

customer will sit at a new table.

Also known as the ―clustering effect,‖ and can be seen in the 

setting of social clubs. [Aldous]



Chinese Restaurant Process
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Stick Breaking
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 So far, we‘ve just mentioned properties of a distribution 

G drawn from a Dirichlet Process

 In 1994, Sethuraman developed a constructive way of 

forming G, known as ―stick breaking‖



Stick Breaking
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1. Draw X1* from G0

2. Draw v1 from Beta(1, α)

4. Draw X2* from G0

3. π1 = v1

… 

5. Draw v2 from Beta(1, α)

6. π2 = v2(1 – v1)



Formal Definition (not constructive)

23

 Let α be a positive, real-valued scalar

 Let G0 be a non-atomic probability distribution over 

support set A

 If G ~ DP(α, G0), then for any finite set of partitions                                    

of A:

A1 A2 A3 A4 A5 A6 A7
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Finite Mixture Models
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 A finite mixture model assumes that the data come from a 

mixture of a finite number of distributions.

cn

yn

n=1…N

η*
k

k=1…K

G0π

α

π ~ Dirichlet(α/K,…, α/K)

cn ~ Multinomial(π)

ηk ~ G0

yn | cn, η1,… ηK ~ F( · | ηcn
)

Component 

labels



Infinite Mixture Models
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 An infinite mixture model assumes that the data come 

from a mixture of an infinite number of distributions

cn

yn

n=1…N

k=1…K

G0π

α

π ~ Dirichlet(α/K,…, α/K)

cn ~ Multinomial(π)

ηk ~ G0

yn | cn, η1,… ηK ~ F( · | ηcn
)

Take limit as K goes to ∞

Note: the N data points still come from at most N

different components [Rasmussen 2000]

η*
k



Dirichlet Process Mixture
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G

ηn

n=1…N

yn

G0

α

countably infinite number 

of point masses

draw N times from G to get 

parameters for different mixture 

components

If ηn were drawn from, e.g., a Gaussian, no two values 

would be the same, but since they are drawn from a 

Dirichlet Process-distributed distribution, we expect 

a clustering of the ηn

# unique values for ηn = # mixture components



CRP Mixture
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Inference for Dirichlet Process Mixtures
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 Expectation Maximization (EM) 

is generally used for inference in 

a mixture model, but G is 

nonparametric, making EM 

difficult

 Markov Chain Monte Carlo 

techniques [Neal 2000]

 Variational Inference [Blei and 

Jordan 2006]

G

ηn

n=1…N

yn

G0

α



Aside: Monte Carlo Methods
[Basic Integration]
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 We want to compute the integral,

where f(x) is a probability density function.

 In other words, we want Ef [h(x)].

 We can approximate this as:

where X1, X2, …, XN are sampled from f.

 By the law of large numbers, 

[Lafferty and Wasserman]



Aside: Monte Carlo Methods
[What if we don’t know how to sample from f?]
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 Importance Sampling

 Markov Chain Monte Carlo (MCMC)

 Goal is to generate a Markov chain X1, X2, …, whose stationary 

distribution is f.

 If so, then

(under certain conditions)

1

N

NX

i=1

h(Xi)
p¡! I



Goal: Generate a Markov chain with stationary distribution f(x)

Initialization:

 Let q(y | x) be an arbitrary distribution that we know how to sample 

from.  We call q the proposal distribution.

 Arbitrarily choose X0.

Assume we have generated X0, X1, …, Xi.  To generate 

Xi+1:

 Generate a proposal value Y ~ q(y|Xi)

 Evaluate r ≡ r(Xi, Y) where:

 Set:

Aside: Monte Carlo Methods
[MCMC I: Metropolis-Hastings Algorithm]

33 [Lafferty and Wasserman]

A common choice 

is N(x, b2) for b > 0

with probability r

with probability 1-r

If q is symmetric, 

simplifies to:



Aside: Monte Carlo Methods
[MCMC II: Gibbs Sampling]
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Goal: Generate a Markov chain with stationary distribution 

f(x, y) [Easily extendable to higher dimensions.]

Assumption:

 We know how to sample from the conditional distributions

fX|Y(x | y) and fY|X(y | x)

Initialization:

 Arbitrarily choose X0, Y0.

Assume we have generated (X0, Y0), …, (Xi, Yi).  To 

generate (Xi+1, Yi+1):

 Xi+1 ~ fX|Y(x | Yi) 

 Yi+1 ~ fY|X(y | Xi+1)

[Lafferty and Wasserman]

If not, then we run one iteration 

of Metropolis-Hastings each 

time we need to sample from a 

conditional.



MCMC for Dirichlet Process Mixtures
[Overview]

35

 We would like to sample from the 

posterior distribution: 

P(η1,…, ηN | y1,…yN)

 If we could, we would be able to 

determine:

 how many distinct components are likely 

contributing to our data.

 what the parameters are for each 

component.

 [Neal 2000] is an excellent resource 

describing several MCMC algorithms 

for solving this problem.

 We will briefly take a look at two of them.

G

ηn

n=1…N

yn

G0

α



MCMC for Dirichlet Process Mixtures
[Infinite Mixture Model representation]

36

 MCMC algorithms that are based 
on the infinite mixture model 
representation of Dirichlet Process 
Mixtures are found to be simpler to 
implement and converge faster than 
those based on the direct 
representation.

 Thus, rather than sampling for η1,…,
ηN directly, we will instead sample 
for the component indicators c1, …, 
cN, as well as the component 

parameters η*
c, for all c in {c1, …, 

cN}

cn

yn

n=1…N

k=1…∞

G0π

α

η*
k

[Neal 2000]



Assume current state of Markov chain consists of c1, …, cN, 

as well as the component parameters η*
c, for all c in {c1, …, 

cN}.

To generate the next sample:

1. For i = 1,…,N:

 If ci is currently a singleton, remove η*
ci
from the state.

 Draw a new value for ci from the conditional distribution:

 If the new ci is not associated with any other observation, 

draw a value for η*
ci

from:

for existing c

for new c

MCMC for Dirichlet Process Mixtures
[Gibbs Sampling with Conjugate Priors]

37
[Neal 2000, Algorithm 2]



MCMC for Dirichlet Process Mixtures
[Gibbs Sampling with Conjugate Priors]
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2. For all c in {c1, …, cN}:

 Draw a new value for η*
c from the posterior distribution 

based on the prior G0 and all the data points currently 

associated with component c:

This algorithm breaks down when G0 is not a conjugate 

prior.

[Neal 2000, Algorithm 2]



MCMC for Dirichlet Process Mixtures
[Gibbs Sampling with Auxiliary Parameters]
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 Recall from the Gibbs sampling overview: if we do not know 
how to sample from the conditional distributions, we can 
interleave one or more Metropolis-Hastings steps.

 We can apply this technique when G0 is not a conjugate prior, but it 
can lead to convergence issues [Neal 2000, Algorithms 5-7]

 Instead, we will use auxiliary parameters.

 Previously, the state of our Markov chain consisted of c1,…, cN, 

as well as component parameters η*
c, for all c in {c1, …, cN}.

 When updating ci, we either:

 choose an existing component c from c-i (i.e., all cj such that j ≠ i).

 choose a brand new component.

 In the previous algorithm, this involved integrating with respect to G0, 
which is difficult in the non-conjugate case.

[Neal 2000, Algorithm 8]



MCMC for Dirichlet Process Mixtures
[Gibbs Sampling with Auxiliary Parameters]
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 When updating ci, we either:

 choose an existing component c from c-i (i.e., all cj such that j ≠ i).

 choose a brand new component.

 Let K-i be the number of distinct components c in c-i.

 WLOG, let these components c-i have values in {1, …, K-i}.

 Instead of integrating over G0, we will add m auxiliary 

parameters, each corresponding to a new component 

independently drawn from G0 :

[η*
K-i +1 , …, η*

K-i +m ]

 Recall that the probability of selecting a new component is proportional to α.

 Here, we divide α equally among the m auxiliary components.

[Neal 2000, Algorithm 8]



MCMC for Dirichlet Process Mixtures
[Gibbs Sampling with Auxiliary Parameters]
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 This takes care of sampling for ci in the non-conjugate case.

 A Metropolis-Hastings step can be used to sample η*
c.

 See Neal‘s paper for more details.
[Neal 2000, Algorithm 8]

y1 y2 y3 y4 y5 y6 y7Data:

η*
1 η*

2 η*
3 η*

4 η*
5 η*

6 η*
7

Components:

cj: 1           2            1          3            4           3           ?

Probability:
(proportional to)

2           1            2          1                    α/3        α/3       α/3

Each is a fresh draw from G0



Conclusion
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 We now have a statistically principled mechanism for 

solving our original problem.

 This was intended as a general and fairly high level 

overview of Dirichlet Processes.

 Topics left out include Hierarchical Dirichlet Processes, 

variational inference for Dirichlet Processes, and many more.

 Teh‘s MLSS ‗07 tutorial provides a much deeper and more 

detailed take on DPs—highly recommended!
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