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ABSTRACT

Interaction timing in conversation exhibits myriad variabilities, yet

it is patently not random. However, identifying consistencies is a

manually labor-intensive effort, and findings have been limited. We

propose a conditonal mutual information measure of the influence

of prosodic features, which can be computed for any conversation

at any instant, with only a speech/non-speech segmentation as its

requirement. We evaluate the methodology on two segmental fea-

tures: energy and speaking rate. Results indicate that energy, the

less controversial of the two, is in fact better on average at predict-

ing conversational structure. We also explore the temporal evolu-

tion of model “surprise”, which permits identifying instants where

each feature’s influence is operative. The method corroborates ear-

lier findings, and appears capable of large-scale data-driven discov-

ery in future research.

Index Terms— interaction modeling, speaking rate, conditional

mutual information, neural networks, automated discovery.

1. INTRODUCTION

Interaction timing in conversation exhibits myriad variabilities, yet it

is patently not random. Participants seem to know just when to begin

speaking, appear secure in their ability to continue uncontested when

they pause, and seem to indicate when others may speak without ex-

plicit mention [1]. However, identifying the consistencies that hu-

mans must be exploiting has proven difficult. This appears to be due

to problems with representation, annotation effort, and complexity

of modeling; often the three problems are intertwined. As a result,

limited findings are available for a limited number of theory-driven

event types (e.g. “back-channels”, or “turn” terminations), in limited

domains, languages, and corpora.

To address this sparseness of findings, we propose a method

for the automated, data-driven discovery of how frame-level signal-

derived features may contribute to interactional timing at any instant

of any dialogue. The method is theory-agnostic and enables easy

comparison of features in arbitrarily large collections of data. We

ask two specific questions:

Q1: Can the method assess the degree of influence that a feature

has on conversational structure?

Q2: Can the method point to conversational contexts in which

the feature’s influence is operative?

To test the method, we deliberately explore the influence of two

features — one whose effect is well-accepted in the literature and a

second whose impact is more controversial. The well-accepted fea-

ture is energy, a popular correlate of speaking loudness or intensity.

Many studies have reported that there is a fall in intensity at the ends

of “turns” (e.g. [2, 3, 4]), suggesting that negative-slope energy con-

tours could be exploited by other participants when deciding when

to begin talking.

The more controversial feature we explore is speaking rate. It

has been proposed that “a draw on the final syllable or on the stressed

syllable of a terminal clause” has a turn-yielding effect [5], sugges-

tiong that ends of talkspurts exhibit reduced speech rates. However,

subsequent studies have found no clear evidence of such a relation-

ship. [6] has claimed that increased phrase-final lengthening has

turn-yielding functions in Tyneside English. [7] and [3], on the

other hand, present results that suggest that lengthening occurs in

all phrase-final positions, but that segmental lengthening prior to

speaker change is significantly shorter than before pauses in turn-

medial position. A more recent study suggests that utterance-final

lengthening has a turn-holding effect on Swedish listeners, but no

such effect was found for English listeners [8]. In summary, despite

some agreement on the influence of intensity or energy, no broadly

observable and uncontestable findings appear to be had for the in-

fluence of speaking rate. We note also that the above cited works

rely on annotations of syllables, stressed syllables, terminal clauses,

“turns”, phrases, and/or turn-medial positions, and that these may be

hard to obtain automatically, limiting the scope of investigation.

The present article comprises two contributions. First, we ap-

ply a previously proposed stochastic turn-taking (STT) model [9]

to a correlate of speaking rate known as Mel-spectral flux (MSF)

[10]; [9] had explored energy as a correlate of speaking loudness.

The STT experiments demonstrate that our method does in fact per-

mit comparison, answering Q1 in the affirmative. In particular, it

demonstrates that MSF is helpful in predicting incipient speech, but

not as helpful as energy. Second, we present a previously unexplored

use of STT models: the analysis of the trajectory of model “surprise”

as the conversation proceeds. Such analysis — answering Q2 in the

affirmative — shows that models are often “surprised” at speakers’

speech/non-speech boundaries and at listeners’ non-speech during

their interlocutors’ pauses. The proposed method thereby appears

capable of unmediated automatic discovery of which features are

most operative at which instants in mitigating the surprise of the in-

cipient conversational future.

2. FRAMEWORK

The structure of a conversation, in terms of the timing of partici-

pants’ decisions to deploy non-speech or speech, is most easily rep-

resented as a chronogram Q ∈ {�,�}K×T
[11]. “�” and “�”

represent non-speech and speech, respectively; K is the number

of participants, and T is the number of frames which results from

a discretization of time. We perform this discretization with non-

overlapping frames of 100-ms, ensuring generally sub-syllable gran-

ularity. In the current work, K is identically 2. An example of a
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chronogram is

Q =

[

. . .
���������

���������
. . .

]

. (1)

Our framework considers the probability distribution of chrono-

grams. For any Q,

P (Q)
.
=

T
∏

t=t

P
(

qt|q
t−τ
t−1

)

. (2)

Namely, we factor the probability in time, in the same way that the

probability of a reference word sequence is decomposed in language

modeling (e.g., [12], from which subscript notation in Equation 2 is

borrowed); here τ is the number of frames retained in the condition-

ing context. Furthermore, we consider the K participants condition-

ally independent at any instant t, given their joint past qt−τ
t−1 :

P
(

qt|q
t−τ
t−1

) .
=

K
∏

k=1

P
(

qt [k] |q
t−τ
t−1

)

. (3)

We estimate the right-hand-side factors, i.e.

yt [k] = P
(

qt [k] |q
t−τ
t−1

)

, (4)

by training a feed-forward neural network M using a TRAINSET

of conversations. The network contains one hidden layer with J ∈
[1, 2, 4, 8, 16, 32, 64] units; the dot-product followed by a sigmoid

provides the activations for all units. The appropriate error for a neu-

ral network whose single output is limited to the unit interval is the

cross-entropy error [13], which we minimize using scaled conjuge

gradient search. The sum of that error over all the Q’s in TRAINSET

is the cross-entropy H ({Q} |M) [14].

The extension to some additional feature f — provided it can

be massaged into a matrix F of size K × T , just as q was — is

straightforward. Instead of Equation 4, the factors we estimate are

yt [k] = P
(

qt [k] |q
t−τ
t−1 , f

t−τ
t−1

)

. (5)

This leads to a distribution P (Q|F), which is still a “prior” distri-

bution over Q provided that we do not peek at future instants in F

when estimating earlier speech activity states in Q.

For any Q and its associated F, the difference between the out-

puts of the F-conditioned and the not-F-conditioned networks is the

conditional mutual information [14]

I (Q,F|M) = H (Q|M)−H (Q|F,M) , (6)

which directly measures the impact of F on future phenomena in Q,

given model M. In what follows, we will refer to H (·) as the cross

entropy rate or “surprise”, expressed in bits per 100-ms.

3. EXPERIMENTS

3.1. Data

Experiments are conducted using the Switchboard-1 Corpus, as re-

released in 1997 [15]. It consists of 2435 telephone conversations,

each approximately 10 minutes in duration. The corpus was divided

into three speaker-disjoint sets in [16], such that TRAINSET, DE-

VSET, and TESTSET consist of 762, 227, and 199 conversations, re-

spectively. During that process, it was not possible to allocate 1247

conversations because their two speakers had already been placed in

different sets. The available forced alignments [17] for both conver-

sation sides were used to construct Q; in particular, a Q frame at

instant t for participant k was declared as � if k was speaking for at

least 50 ms of the tth 100-ms interval, and � otherwise.

3.2. Prosodic Features

The current article compares two types of features, energy and

speaking rate. The matrix F (from Equation 6) for energy will be

denoted E; its entries were computed by pre-emphasizing the audio,

squaring the amplitudes, applying a rectangular 100-ms window,

and taking the logarithm of the result.1

As a frame-level correlate of speaking rate, we computed Mel-

spectral flux (MSF) [10]. This was done by considering two win-

dows, as shown in Figure 1. The cosine distance is computed be-

tween the Mel-spectra of the two windows after signal pre-emphasis,

and the negative logit function is applied to the result. The pair of

windows, whose joint duration is 2text + tsep, is then shifted to the

right by 8 ms; an average of n such consecutive measurements is

taken to be the value of each cell of R, our second variant of F. n is

given as ⌊tave/ (2text + tsep)⌋, where tave is an integration interval

whose right edge coincides with the right edge of the 100-ms frame

in R. Interested readers are directed to [10] for the motivations of

this design.

tseptext text

tint

tint

Fig. 1. An MSF subframe consisting of a left and a right window, in

black and gray, respectively.

In adapting the MSF definition in [10] to the current work, we

optimized tint, tsep, text, and tave by minimizing the TRAINSET

cross entropy. Their values are 30 ms, 84 ms, 18 ms, and 350 ms,

respectively.

3.3. Prediction Performance using Individual Feature Types

Prediction of incipient speech activity was performed individually

using Q, E, and R. The cross entropies achieved are shown for all

three datasets TRAINSET, DEVSET, and TESTSET in Table 1. As

can be seen, the most predictive feature (at our frame rate of 10 Hz)

is Q. When used by themselves, E appears considerably better than

R for predicting future Q. We observe no bias towards lower cross

entropies on TRAINSET, suggesting an absence of overfitting.

To exclude the possibility that R is insufficiently correlated with

speaking rate, we assessed two suprasegmental speaking rate fea-

tures on the same task. The first is a syllable rate S(0.1), which

counts the number of syllable nuclei in the current frame’s 100-

ms support. The nuclei were detected automatically from the au-

dio, based on intensity peaks in dB during voiced segments, using a

method introduced by [18]. We also extended the integration interval

to {200, 300, 400} ms back from the right edge of the current frame,

leading to variants S(0.2), S(0.3), and S(0.4), respectively. The sec-

ond suprasegmental rate feature is word rate W(0.1), obtained by

1In this way it differs from the energy feature computed in [9]. There,
a 200-ms Hamming window was used, the right-side taper of which peeked
50 ms into the future 100-ms frame whose speech state was being predicted.
To our surprise, the current correction actually improves results, by negligibly
reducing the cross entropies in all cases.

5377



Table 1. Cross entropies for three feature types. J∗ is the number of

hidden units, selected by minimizing DEVSET cross entropy.

Feature J∗ TRAINSET DEVSET TESTSET

Q 32 0.2788 0.274321 0.275023

E 64 0.363512 0.353707 0.35872

R 64 0.547963 0.555483 0.564793

accumulating the proportions of words occurring during the current

frame’s 100-ms support. The word segmentation was taken from

[17]. As for syllable rate, we produced variants W(0.2), W(0.3), and

W(0.4). Their cross entropies for DEVSET for all supra-segmental

speaking rate features explored are shown in Table 2; the numbers

are similar for TRAINSET and TESTSET.

Table 2. DEVSET cross entropy rates for word rate (W), syllable

nucleus rate (S), and their causal corrections (Wc and Sc, respec-

tively), as a function of the per-frame integration interval tave. Com-

pare to R in column 4 of Table 1.

tave W(tave) S(tave) W
(tave)
c S

(tave)
c

0.1 0.19409 0.440787 0.555835 0.967739

0.2 0.199944 0.439226 0.542967 0.533959

0.3 0.21506 0.438476 0.540861 0.531721

0.4 0.234461 0.437888 0.541314 0.530621

As seen in column 2, speaking rate W obtained from word seg-

mentation performs remarkably well, beating even Q. The syllable-

nucleus rate S, in column 3, appears much better than R. Further

analysis, however, revealed that W is unfairly exploiting the future;

for example, if no words were observed at frame t − 2, and only

a partial word was observed at t − 1, it is obvious that the rest of

the word must be at t. Similarly, the S speaking rate feature implic-

itly relies on a look-ahead in order to posit peaks. We attempted to

correct for these “cheating” defects, by eliminating not-completed

words from W and nuclei posited during t − 1 for S, leading to

the cross entropies in columns 4 and 5. These appear to be broadly

similar to R in performance, suggesting that R is in fact measuring

speaking rate, at the segmental level, as argued in [10]. We conduct

subsequent speaking rate experiments with R only.2

For completion, it should be noted that in spite of similar per-

formance on the prediction task, the correlation among R and the

variants of W and of S is smaller than could be expected. Over

all of TRAINSET, DEVSET, and TESTSET it is only 0.64 between

S
(0.4)
c and W

(0.4)
c , 0.49 between R and S

(0.4)
c , and 0.45 between

R and S
(0.4)
c . These correlations are highly statistically significant

(p < 0.0001), however, as they are based on millions of frames.

3.4. Concatenation of Features

Finally, we compute the cross entropy rates for conditioning con-

catenations of energy E or speech rate R with speech/non-speech

2We have an additional reason for not preferring S over R: it uses en-
ergy peaks to infer syllable peaks. Energy is explicitly modeled in E, and
therefore exploiting S confounds our comparison. Some of the combinato-
rial experiments required to shed light on the complimentarity of all these
features are currently underway.

activity Q, and compare them to those obtained using Q alone. The

results are shown in Figure 2.

0.2744

0.2691

0.2465

0.2473

0.3537

0.3385

0.5555
{E,R}

R

{Q,R}

Q

{QE}

E

{Q,E,R}

Fig. 2. DEVSET cross entropy rates (in bits per 100-ms frame) for

all conditioning-context combinations of Q, E, and R. Results for

TESTSET are similar.

We observe that while E and R are much weaker than Q at

10 Hz, both contribute to prediction in combination with Q. The

effect of E is strong: it reduces cross entropy by 0.2744−0.2473 =
0.0271 bits per 100-ms frame, or 0.271 bits/second. The effect of R

is weaker: its reduction over Q alone is 0.2744− 0.2681 = 0.0054
bits per 100-ms frame, or 0.054 bits/second. Finally, although E and

R are somewhat complimentary (R reduces cross entropy over E

alone by 0.3537−0.3385 = 0.0152 bits per 100-ms frame, or 0.152

bits/second), R is not very helpful if both Q and E are available.

4. DISCUSSION

4.1. Analysis of Global Model Surprise

To understand how energy and MSF impact the prediction task, we

conducted a cursory analysis of the histogram of model “surprise”

on DEVSET for models based on Q, {Q,E}, or {Q,R}. For Q

without either E or R, the surprise of 50% of frames falls into three

very narrow regions. The first of these acounts for 22.5% of frame

mass, and corresponds to instants in which the target speaker has

been silent and their interlocutor has been speaking, and the target

speaker remains silent. Additionally conditioning on E or R re-

distributes the mass in a symmetric fashion around the Q-only peak

(within ±0.001 bits per 100 ms), and thereby seems to have little net

effect. In the second region, accounting for 21.3% of frames, the tar-

get speaker has been speaking and their interlocutor has been silent,

and the target speaker continues to speak. In these cases, condition-

ing additionally on E reduces entropy rates by 3-4 times as much as

conditioning additionally on R (0.0037 vs 0.0010 bits per 100 ms).

Finally, in the third region, the interlocutor has been silent but the

target speaker changes state; these frames account for 5.4% of the

frame mass in DEVSET. Here, the impact of conditioning addition-

ally on a prosodic feature is large in absolute terms: for E it is almost

twice as large as for R (0.2497 vs 0.1370 bits per 100 ms). In the

remaining 50% of frames, the role of E nor R appears to depend on

the specific distribution of speech activity in the conditioning history

for the two parties.

4.2. Analysis of Local Model Surprise

A temporally local analysis, that of the evolution of cross-entropy, is

depicted for a snippet of a randomly drawn DEVSET conversation in

Figure 3. The snippet is just over 10 seconds long. One conversant,
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Fig. 3. Evolution in time (in seconds, along x-axis) of cross entropy (“surprise”) for three models, for 10 seconds of dialogue 3161 from the

DEVSET. Snippet of the two-row speech/non-speech chronogram shown at top. Surprise trajectories for the top-row (speaking) conversant

shown as stem plots, with talkspurt-boundary cross entropies connected with cubic Hermite interpolations for visualization. Surprise trajec-

tories for the bottom-row (not speaking) conversant shown at bottom; note differences in cross entropy scale (along the y axis) for the two

conversants’ trajectories.

shown at the top, produces 4 pause-separated talkspurts, while the

other, at bottow, is silent during the whole interval shown.

The figure shows that the Q-only model surprise for the speak-

ing party departs considerably from zero only during changes be-

tween speech and non-speech. This is expected in the absence of in-

terlocutor talk, since state-change frames are more rare than frames

in which state does not change. For the silent party, the Q-only

model is surprised during the speaking party’s pauses. Here, in the

most recent portion of the conditioning history neither party is ob-

served to be speaking, which is more rare than one party speaking.

When energy is additionally available in the conditioning con-

text, cross entropies are lower for both the speaking and the silent

parties. For example, the {Q,E} model appears only half as sur-

prised as the Q-only model when the speaking party falls silent at

123 seconds. This suggests that the energy trajectory of the speaking

party, prior to that moment, contains information that is predictive of

the pause. Similarly, the {Q,E} model is not at all suprised by the

silent party’s failure to start speaking during the speaking party’s

pause at 128 seconds. It suggests that the speaking party’s preceding

talk exhibited an energy trajectory which signalled that s/he would

shortly continue speaking. When MSF is available, talkspurt ter-

mination is more surprising than when energy is available instead;

MSF also has a weaker impact on the prediction that the listening

party will stay silent during a speaker’s pauses.

4.3. Relation to Prior Work

The STT framework presented here is the same as that in recent

work on “stochastic turn-taking” (STT) models [9], where it was

applied to study the impact of E inclusion in the conditioning his-

tory. The framework has not previously been applied to the MSF

feature, which was introduced in [10] and evaluated at talkspurt ends

in face-to-face conversations conducted in Swedish. Prior work on

STT models has not analyzed the evolution of cross-entropy as a

function of talkspurt context.

4.4. Potential Impact

We believe that the proposed framework may have considerable im-

pact for practitioners trying to determine how prosody shapes con-

versations, in a data-driven fashion. Provided that a prosodic feature

can be encoded as a frame-level phenomenon and attributed to indi-

vidual parties, the framework requires only that a speech/non-speech

segmentation be available. Under these conditions, evaluating and

comparing the impact of a feature on the evolution of “surprise” is

only a matter of training a neural network. It requires no ortho-

graphic transcription, no part-of-speech tagging, no manual dialog

act annotation, and is generally quite theory-agnostic. We expect

that it can be used “out-of-the-box” to compare prosodic practice

across corpora representing different domains and languages. With

some effort, the framework can also be extended to permit inclusion

of categorical variables such as words and tags.

5. CONCLUSIONS

We have presented an information-theoretic framework for the anal-

ysis of the role of frame-level features in shaping the incipient de-

ployment of speech by participants to dialogue. The framework en-

ables a numerical comparison between arbitrary prosodic features.

To illustrate this, we deliberately chose one feature (energy) whose

effect is relatively well-documented as well as one on which the lit-

erature is not often in agreement (speaking rate). Our results demon-

strate that the second feature is on average less predictive of incipient

speech for both parties to dialogue conducted over the telephone in

English. Furthermore, the presented method was shown to be capa-

ble of identifying the specific instants during which specific features

are operative in mitigating surprise. Because the only annotation

necessary in order to apply the method is a speech/non-speech seg-

mentation, it is expected that similar discovery experiments can be

cheaply and automatically conducted for a large number of situated

speech corpora, and thus shed new light on the variability and con-

sistency of prosodic practice in conversation.
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