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ABSTRACT

The taking of turns to speak is an intrinsic property of conversation.
It is expected that models of taking turns, providing a prior distribu-
tion over conversational form, can reduce the perplexity of what is
attended to and processed by spoken dialogue systems. We propose
a single-port model of multi-party turn-taking which allows conver-
sants to behave independently but to condition their behavior on the
past of the entire group. The model performs at least as well as an
existing multi-port model on perplexity over subsequent speech ac-
tivity. We quantify the effect of longer histories and more distant
future horizons, and argue that the framework has the potential to
inform the design and behavior of spoken dialogue systems.

Index Terms— turn-taking, speech processing, ngram model-
ing, time series prediction, dialogue systems.

1. INTRODUCTION

The on-off pattern of speech activity in human-human conversation
[1] — its precise distribution in time and across participants — is
said to be grossly accountable for by a simple systematics of turn-
taking [2]. The computational modeling of this phenomenon has re-
cently seen a resurgence of interest, for two apparent reasons. First,
services are increasingly being offered by synthetic agents with spo-
ken dialogue interfaces. Attempts to make interaction with such
agents more human-like has put prediction with regard to turn-taking
in the spotlight [3]. Second, the need to automatically extract in-
formation from human-human conversation, particularly multi-party
meetings, calls for a detection framework which explicitly licenses
the production of speech in overlap [4].

If the state of a conversation is defined as the concatenation of
the speech/non-speech states of its participants, then both the pre-
diction and the detection tasks can be addressed by a single model,
one yielding a conditional probability measure over alternative con-
versational futures. (A product of such measures over consecutive
instants provides a likelihood density estimate of the conversation
in the circumscribed interval.) Additionally assuming the process
which generates conversations to be Markovian renders parameter
estimation tractable. The resulting n-gram form, popularized by lan-
guage modeling in speech recognition, has been applied extensively
to two-party conversation [5, 1, 6, 7].

In more-than-two-party conversation, Markov modeling of the
multi-participant speech activity state was explored in [8], but only
under the assumption of conditional dependence among participants.
While this assumption poses no difficulties for detection, the same is
not true for prediction. Dialogue systems may wish to evaluate the
potential consequences of their planned actions, without knowledge
of what others are planning. Doing so with a conditionally depen-
dent form requires that others’ speech activity states be marginalized
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out; when the number of others is large, the process can be opera-
tionally cumbersome and needlessly time-consuming.

The aim of this paper is three-fold. First, a model is devel-
oped which yields the probability of specific combinations of par-
ticipants speaking at instant ¢ (as in [8]), but under the assumption
that they behave independently given their joint, multi-participant
speech/non-speech state (/L) at instant ¢ — 1. This is known as the
““independent decision” hypothesis” in [5], the “single-port” (ver-
sus “multi-port”) model in [1], and the “separate source” (versus
— somewhat confusingly — “single source”) model in [6]. Sec-
ond, the model is evaluated for its ability to limit the perplexity of
speech activity observed in naturally occurring multi-party conversa-
tions, using the framework in [8]. Third, the paper explores n-gram
truncations for n > 1. Collectively, the findings provide a conve-
nient means of collaborative, model-based, fine-grained synthesis of
speech/non-speech patterns for conversations of arbitrary duration
and of arbitrary participant number.

2. DATA

Analysis and experiments are performed using the ICSI Meeting
Corpus [9, 10]. The corpus consists of 75 meetings, held by var-
ious research groups at ICSI, which would have occurred even if
they had not been recorded. This is important for studying naturally
occurring interaction, since any form of intervention (including oc-
currence staging solely for the purpose of obtaining a record) may
have an unknown but consistent impact on the emergence of turn-
taking behaviors. Each meeting was attended by 3 to 9 participants,
yielding a wide variety of interaction types. The total meeting time
in the corpus is 67 hours.

All experiments are conducted in leave-one-out round-robin
fashion, in which, for each meeting, predictive models are con-
structed using the remaining meetings.

3. BASELINE MODELS

This paper compares directly to the work in [8], where the thrust was
to estimate the perplexity

(P(Q|©)) """ (1)

of the vocal interaction chronogram Q of a conversation, unseen and
unanticipated during the training of the model ®. The chronogram
[11] is the frame-synchronous speech/non-speech segmentation of
all the participants to a conversation,

Q = Jar] € {O0=0,m=1}"""_ (2

where K > 2 is the known but arbitrary number of participants
and T is the known but arbitrary number of 100-ms frames. The

PPL =

[q1,q2, ...
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likelihood in Equation 1 is given by factoring Q,

T
P(Q) = P][P(atlaoar, . qi-1) 3)
t=1
T
= P [[P(aclaer) - )
t=1

Equation 4 makes the standard 1st-order Markov assumption; P is
the unigram probability of an artificially pre-pended “all silent” state
which does not affect our bigram model comparisons. Each factor
in the remaining product, in [8], was given by the Extended Degree-
of-Overlap (EDO) model,

P(ai|lai-1) = aP(llaclllae - a1l [llae=1ll) , ()

where [|q|| = YK, q[k] yields the number of participants in the
M state in q, and q - g’ is the element-wise logical AND. It yields a
K-length vector whose kth entry is B if and only if the kth entries
of both q and q’ are M. « is a normalization constant which first
distributes probability mass among transitions with identical EDO
transition types, and then normalizes the sum of transition probabil-
ities out of each state to unity.

The EDO model allows for the imposition of a maximum degree
Kimaz of modeled overlap, with higher, actually occurring degrees
mapped onto K4z (cf. Equations 18-20 in [8]). While this map-
ping was applied during model training in [8], it was not applied
during scoring. A consequence is that the unseen-conversation per-
plexities reported in [8] are lower than in actuality'. Both the original
and the corrected perplexities are shown in Figure 1.

MPEDO (orig)

MPEDO (fix)
 105] SPEDO |
1.1} ]
1,005} ]

Fig. 1. Perplexity (along y-axis) as a function of K,nqe € Z (along
x-axis). The originally reported and then corrected multi-port EDO
model perplexities (“MPEDO (orig)” and “MPEDO (fix)”, respec-
tively) are shown alongside the perplexities of the newly proposed
single-port EDO model. Lines connecting points are provided for
visualization purposes only.

IThe reported [8] reduction of perplexity from a mutually independent
(single-participant) model, achieving a PPL = 1.1051, to the best corrected
EDO model (PPL = 1.0990 at K4z = 6), where the minimum of PPL =
1.0921 is given by an “oracle” conditionally dependent model, is 47% rather
than 75%. Similarly, when only instants for which q:—1 # q; are con-
sidered, the reduction is (1.8170 — 1.7380) / (1.8170 — 1.6616) = 51%
rather than 78%.
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4. CONDITIONAL INDEPENDENCE

As discussed briefly in the introduction, the assumption of condi-
tional dependence is not quite appropriate in the context of interact-
ing conversants. It entails accepting that participants first negotiate
and jointly agree on how each of them will behave at the next in-
stant, and only then proceed by executing the agreed upon action(s).
A more plausible account is that participants make their own judg-
ments as to whether or not to vocalize (i.e. act independently, con-
ditioned on the joint past), observe the joint outcome at the next
instant, and resolve any conflicts that have occurred with respect to
the floor. This is in fact the mechanism proposed to explain overlap
dynamics in conversation analysis [12].
The mechanism can be easily formalized as

P(Q) = POHHP(qt[k]|qt—1[k]ackqt—l)a (6)
t=1k=1

where Cj, is a matrix obtained by eliminating the kth column from
the K x K identity matrix I. We have chosen to split the multi-
participant conditioning context q:—1 to clearly identify the effect
of one’s own past behavior and that of one’s participants.

Estimating the probabilities in Equation 6 directly leads to mod-
els which are specific to the number of participants (through the size
of the state vectors q) and to the index assignment of participants in
q. They are therefore suitable only when applied to (potentially un-
seen portions of) the same conversations on which they are trained
(cf. [8], where the direct compositional conditionally independent
model, with K - 2% free parameters, is identified as {@§7 ).

The main contribution of the current work is to propose an alter-
native conditionally independent form for Equation 6 which is not
specific to participant k, or to the number of participants K, or to
the index assignment of participants in Q. We refer to the proposal
as the single-port extended degree-of-overlap (SPEDO) model,

P(Q) = RJ[][P(acl*l a1k, [Cral) -

t=1

Rather than conditioning on previous vocal activity states of specific
interlocutors, given by the elements of the ordered vector Crqi—1,
only the degree of interlocutor overlap, ||Crqs—1]||, is used. (An
unconditionally independent model, popular in the acoustic detec-
tion of vocal activity, is obtained by eliminating ||Crq¢—1 || from the
conditioning context altogether.)

5. EXPERIMENTS

5.1. Differentiating Among Degrees of Overlap

To more finely control the state space of the model, we introduce
the ceiling K gz, With Ky qe — 1 indicating the maximum differ-
entiable number of interlocutors vocalizing simultaneously. For ex-
ample, if K,nqe = 4, then the model can only differentiate between
conditioning contexts of zero, one, two, or three-or-more simultane-
ously vocalizing interlocutors; it cannot differentiate among degrees
of interlocutor overlap of three or four (or higher).

Perplexities achieved by a SPEDO bigram model, with K42 €
{1,2,3,4,5,6}, are shown in Figure 1. K4 = 0 corresponds to
ignoring interlocutor vocal activity; K,nqe = 1 corresponds to be-
ing sensitive to either zero, or any non-zero number of interlocutors
vocalizing; K. = 2 corresponds to being sensitive to either zero,



exactly one, or any number greater than one of interlocutors vocal-
izing; etc. Also shown are the perplexities from the multi-port EDO
baseline (MPEDO), in its original and corrected form, for which
Kmas refers to the total number of participants speaking, rather than
the total number of interlocutors speaking (seen from the point of
view of any single participant).

The diagram makes clear that the SPEDO model is generally
better than the corrected MPEDO model, with the latter doing par-
ticularly poorly for K4, < 4 as already shown in [8]. The MPEDO
model is only negligibly better for K,z = 6.

5.2. Conditioning on Longer Truncations of History

Whereas bigram models predict what happens at instant ¢ given only
what happened at instant ¢ — 1, it is methodologically straightforward
to assess whether longer conditioning histories improve predictions,
by employing longer n-grams,

T
POHP (alae—(n-1),---

t=1

P(Q) = ae-1) - (8)

We propose the following factor expansion as a SPEDO counterpart:

P(qt (k] |qt—(n—1)7--~7qt—1) )
= P(alk] [ae(n-1) k], ICrae—n-n,
Ai—(n—2) [k], [Crat—(n—2 I,
s ae-1 [K]L [[Crae—1ll, ) -

That is, for each instant of history, we model both the state of the par-
ticipant in question and that participant’s number of vocalizing inter-
locutors. The number of free parameters for general n is (2K)™ ",
Figure 2 presents our experimental results; the perplexities shown
are those achieved without back-off or smoothing.

1.105} 1
2-gram
3-gram

111 1
4-gram
5-gram

1,095} &-gram ]

Fig. 2. Perplexity (along y-axis) as a function of Kpexe € Z
(along x-axis), for lst- through Sth-order Markov truncated mod-
els. Lines connecting points are provided for visualization purposes
only. Points corresponding to each n-gram model’s K,q, value
which yields the lowest perplexity for that model’s Markov order are
shown in black.

It can be seen that the performance of the trigram, which condi-
tions predictions on behavior at £ — 1 and ¢t — 2, is better than for
the bigram for all K,,4.. Evidently, longer histories are beneficial.
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However, the lowest perplexities for the trigram are achieved when
Kmaz is equal to 3, where only degrees of interlocutor overlap of
zero, one, and two-or-more are differentiated. Subsequent increases
in K,,q, are accompanied by higher perplexity, suggesting that the
model begins overfitting (at K,,qa = 3, the number of free param-
eters is 36). The 4-gram begins overfitting earlier, at Ko = 2,
thus differentiating only among zero or one-or-more simultaneously
vocalizing interlocutors. Nevertheless, the additional context at t — 3
leads to lower perplexity than does the sensitivity to one additional
degree of interlocutor overlap. This trend continues for the 5-gram,
which achieves the lowest observed perplexity, also at Kipaz = 2.
The 6-gram, better than the 5-gram when interlocutors are ignored
(Kmaz = 1), never outperforms the 5-gram model for K, > 1.

5.3. Predicting Further into the Future

Equally interesting is whether the proposed modeling technique can
be used to make predictions further into the future than merely at
the immediately next instant. This is easily verified using the skip n-
gram formalism, which provides for what happens at ¢t +m, m > 0,
rather than at ¢,

P(ditm [K] Q-1 k], Crae—1,-..) (10)
= P(qetm K] |ae-1 [K], |Crae—1,---)

with any desired duration of the conditioning history; m is the num-
ber of immediately future instants which are “skipped”. It is impor-
tant to note that, regardless of how far back this model is allowed to
look (controlled by n), it predicts vocal activity at only one instant
into the future, m instants ahead.

The experiments in this section, summarized in Figure 3, use at
each Knqq that n-gram model from Figure 2 which achieves the
lowest perplexity for that value of K4 specifically (these points
are those labeled “skip-0” in Figure 3). We then retrain that fixed-n
model for m € {1,2,3,4}. Four 100-ms frames correspond to two
to three average-duration syllables, or approximately one word.

skip—4 w
skip-3 w
1.2} :
skip-2 W
1.15 Sklp_1 W i
1.1}
skip-0 X e %X

Fig. 3. Perplexity (along y-axis) as a function of K,,q, € Z (along
x-axis), for skip-m n-gram models; n is chosen by selecting that
which was best-performing for each K4, in Figure 2. Lines con-
necting points are provided for visualization purposes only.

Since the frame-level perplexity measure was only recently in-
troduced, the y-scale is difficult to interpret. It is therefore prob-
lematic to assess the impact of the results in Figure 3, except that



a perplexity of 2 would characterize a model always guessing fifty-
fifty if the prior over (CJ, ®) was also fifty-fifty. Two points can be
made, however. First, as expected, same-complexity models yield
poorer and poorer predictions of an increasingly distant horizon of
m. Second, even for m = 1, perplexities are much higher than for
any of the models of Figure 2, where m was uniformly zero.

It is important to note that predicting what might happen at m >
0 is not only useful for modeling the auxillary capabilities of more
“forward-looking” conversational partners, but is also quite likely
a suitable paradigm for modeling the primary capacity of “slower-
to-respond” (or simply “stubborn”) partners. The latter may merely
not observe (or may choose not to react to) what their interlocutors
were doing as recently as at ¢ — 1 until yet another instant has passed
by, effectively inserting a temporal response gap between what is
observed and what can be predicted at the next instant.

6. DISCUSSION

The proposed framework provides an efficient setting for subjec-
tive modeling of a salient aspect — the on-off speech patterns — of
each participant’s conversational behavior. Whereas the discussion
has treated a single, participant-independent model, the extension
to training several dissimilar models using real data is straightfor-
ward. Such models could be used as a basis for simulating emergent
group behaviors as a function of participant tendencies, or “person-
alities”, in an organic bottom-up fashion. For example, simulation
using models trained on the most talkative individuals in real con-
versations is expected to yield drastically different results from that
based on only the least talkative people.

For spoken dialogue systems that have something to say, the
models can predict at what future instant it is appropriate to start
speaking. Arguably, even a system that does not have something to
say, for example one that is awaiting information from a database
search, can start producing floor holders at the point in time that
the model suggests — particularly if the system’s models of its in-
terlocutors indicate that those interlocutors might otherwise begin
speaking, thereby taking from it the initiative. Investigative meth-
ods employing such reasoning may lead to systems which are per-
ceived as more polite, efficient and generally better at turn-taking
[13]. There is scope for changing system personality, which is highly
interesting for constructing artificial conversational partners.

Finally, the models are sufficiently parsimonious to be manually
approachable, “by hand”. A bigram model with K4, = 3 consists
of only 6 Bernoulli probabilities, each of which can be individually
tweaked in order to analyze its impact on unfolding conversational
patterns. The probabilities can be interpolated with those obtained
by additionally modeling other features, such as prosody, internal
state, or perceived external characteristics of the conversation itself.

7. CONCLUSIONS

We have proposed a simple framework, based on the well-understood
n-gram formalism, for modeling the sequences of conversational,
participant-attributed vocal activity states. The proposed single-port
non-parametric model, like previous work in dialogue but unlike that
in multi-party conversation, treats participant states as conditionally
independent of one another, given the joint past. We have argued that
this allows for the synthesis of turn-taking patterns in a bottom-up
fashion, as a function of the assumed impact of the degree of inter-
locutor overlap on one’s own productions. The model was shown to
lead to perplexity reductions which are at least as large as those of
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its multi-port counterpart. In addition, its performance was explored
under extensions of the conditioning history and manipulation of its
future-instant horizon. The techniques, we have argued, are likely to
inform the design and behavior of spoken dialogue systems.
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