
International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

A Defense-Centric Taxonomy Based on Attack Manifestations

Kevin S. Killourhy, Roy A. Maxion and Kymie M. C. Tan
ksk@cs.cmu.edu, maxion@cs.cmu.edu and kmct@cs.cmu.edu

Dependable Systems Laboratory

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 / USA

Abstract

Many classifications of attacks have been tendered, often
in taxonomic form. A common basis of these taxonomies is
that they have been framed from the perspective of an at-
tacker – they organize attacks with respect to the attacker’s
goals, such as privilege elevation from user to root (from
the well known Lincoln taxonomy). Taxonomies based on
attacker goals are attack-centric; those based on defender
goals are defense-centric. Defenders need a way of deter-
mining whether or not their detectors will detect a given at-
tack. It is suggested that a defense-centric taxonomy would
suit this role more effectively than an attack-centric taxon-
omy. This paper presents a new, defense-centric attack tax-
onomy, based on the way that attacks manifest as anomalies
in monitored sensor data.

Unique manifestations, drawn from 25 attacks, were
used to organize the taxonomy, which was validated through
exposure to an intrusion-detection system, confirming at-
tack detectability. The taxonomy’s predictive utility was
compared against that of a well-known extant attack-centric
taxonomy. The defense-centric taxonomy is shown to be a
more effective predictor of a detector’s ability to detect spe-
cific attacks, hence informing a defender that a given detec-
tor is competent against an entire class of attacks.

1. Introduction
There are many taxonomies of computer attacks (see, for

example, [1, 3, 8, 9, 10, 11, 12, 14, 16, 30], and others; sev-
eral are nicely surveyed in [17]). Although it was undoubt-
edly not their creators’ intention, these taxonomies tend to
serve the interests of attackers, as well as their original goals
of providing organizational structure for classifying attacks.
These and other similar taxonomies are attack-centric – they
represent and classify attacks from an attacker’s perspec-
tive. For example, the well-known MIT Lincoln Laboratory

taxonomy [16] groups a number of attacks into a category
called user-to-root. An attacker can choose attacks from this
group to achieve the goal of elevating himself from user to
root on the victim system. If the selected attack fails, an-
other can be chosen from the same user-to-root taxonomic
class, and then yet another, until the attacker’s objective is
achieved. In this sense, attack-centric taxonomies may con-
stitute as much or more of a boon for the attacker as for the
defender.

An important and sensible goal for an attack taxonomy,
however, should be to help the defender. Much more use-
ful to a defender than an attack-centric taxonomy would
be a taxonomy of attacks arranged to aid the defender –
a defense-centric taxonomy. Such a taxonomy would clas-
sify attacks in a way that groups together those attacks that
could be defended against similarly. For example, it would
be enormously useful to know that any attack in a given
class could be detected by the same detector; if one attack
in a class can be detected, they can all be detected. In such
a case, when a new attack emerges, and it falls into a given
class, it will be clear either that it can be detected with ex-
tant detectors, or that a new detector will need to be written.

This paper shows how a defense-centric attack taxonomy
was constructed, in accordance with taxonomic rules, using
attack manifestations – how attacks appear in sensor-stream
data – as classification features. Categories from the well-
known MIT Lincoln Laboratory attack-centric taxonomy
[16] were used as a point of comparison to show that, for a
defender, the new defense-centric taxonomy offers greater
utility for defenders.

2 Objective and approach
The objective of the present work is to produce a new at-

tack taxonomy, termed a defense-centric taxonomy, that or-
ganizes attacks by virtue of the way they manifest as anoma-
lies in sensor data. An attack that can be detected in system-

0-7695-2052-9/04 $20.00 2004 IEEE 102 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

call sensor data (monitored from the operating system) is
said to manifest in system-call data; the way it manifests
is central to the taxonomy.1 Anomaly-based detectors play
an important role in detecting not only extant attacks, but
also novel attacks; hence the present emphasis on anomaly-
based detection systems. Given an anomaly-based detec-
tion system, any attack that manifests as a particular kind
of anomaly would be classified according to that anomaly
type. Consequently, all attacks similarly classified would
manifest as the same kind of anomaly, and hence be de-
tectable by any detector that is capable of detecting that type
of anomaly (ergo steps 9 and 10 below).

The approach is straightforward, albeit laborious, con-
sisting of the following broad steps.

1. Develop an attacker-defender testbed.
2. Assemble a collection of system programs which are

known to be vulnerable to attack; develop attacks to
exploit the vulnerabilities of these system programs.

3. Run these system programs, launching the attacks
against them, to observe their behavior under attack;
gather attack records from sensor data.

4. Run these system programs again, this time native, to
observe their normal behavior; gather normal records
from sensor data.

5. Extract attack manifestations from the program’s be-
havior as monitored by sensor data on the testbed.

6. Build a taxonomy that is defense-centric.
7. Check that it obeys classic taxonomic rules.
8. Validate the taxonomy by acquiring convergent evi-

dence from an intrusion-detection system.
9. Choose an attack-centric taxonomy against which to

compare the new defense-centric taxonomy.
10. Determine whether the manifestations mirror the

classes of the two taxonomy types, or not.

3 Related work – attack taxonomies
This section provides an overview, inevitably and regret-

tably brief due to space limitations, of some of the (surpris-
ingly voluminous) existing work that addresses the issue of
attack taxonomies. The selected references below are be-
lieved to be the best known and most representative of the
taxonomies in the open literature, but they are by no means
the only ones available; there are many that could not be
mentioned here. The taxonomies reviewed here have been
grouped into rough categories: flaw classifications, signa-
ture classifications, and attack-effect classifications.

As a precursory note, Puketza and his colleagues were
implicit early promoters of the importance of taxonomy in
the field of intrusion detection. Although they did not de-
sign a taxonomy, per se, they plainly stated a useful taxo-
nomic criterion: the classes should ideally “be selected such

1Note that some attacks may not manifest in sensor data; either by acci-
dent or by design, an attack may not manifest in a way that makes it visible
in a particular sensor stream.

that, within each class, either the IDS2 detects each intru-
sion, or the IDS does not detect any intrusions” [19, p.723].
They note that software testers term this distinction equiv-
alence partitioning, which bears a similarity to the present
work on defense-centric taxonomies; it doesn’t constitute a
taxonomy, but it’s suggestive of a mechanism that could be
used by a defender. In a defense-centric taxonomy, all at-
tacks in one class should be detectable by the same intrusion
detection mechanism.

Flaw classification. Landwehr and his colleagues de-
vised a taxonomy of the types of program security flaws
(e.g., buffer overflows) that facilitate attacks [12]. Their
taxonomy was meant to identify problematic aspects in the
system design process, a period during which security flaws
are likely to be introduced into code. As such, this taxon-
omy was designed to help system designers and program-
mers create more secure systems. Matt Bishop took a sim-
ilar approach with his vulnerability taxonomy, designed to
elucidate those characteristics of a program that might al-
low it to be exploited in an attack [3]. By being aware of
such characteristics, design auditors can more easily detect
vulnerabilities before they are found and exploited by at-
tackers. In this regard, Bishop’s taxonomy of vulnerabil-
ities is similar to Landwehr’s taxonomy of security flaws.
Aslam [2] proposed a taxonomy of flaws that he referred to
as “security faults.” He broadly classified attacks into three
high-level taxonomic classes: coding faults introduced dur-
ing software development; operational faults which result
from improper software installation; and environment faults
when a program is used in an environment for which it was
not intended. Operational faults and coding faults are fur-
ther subdivided. The primary motivation of this taxonomy
was to make attack classes unambiguous. Lack of ambi-
guity was important for Aslam’s goal of organizing known
security flaws into a vulnerability database. Krsul [10] built
upon Aslam’s work and constructed his own taxonomy of
software vulnerabilities in which the class to which a vul-
nerability belongs depends primarily on programmers’ as-
sumptions. For example, one common assumption is that
the length of an environment variable passed to a program
is of at most a certain length. This assumption sometimes
causes programmers to copy the environment variable to
a memory location of insufficient length, thereby causing
a buffer overflow. Vulnerabilities are grouped based on
the similarity of the mistaken assumption that introduced
the vulnerability. By identifying and organizing the flaws,
vulnerabilities, or faults which have security implications,
these taxonomies all aim to help system designers and pro-
grammers. Hence, designers and programmers, rather than
system administrators and defenders, are the target audience
of flaw taxonomies.

2IDS: Intrusion Detection System

0-7695-2052-9/04 $20.00 2004 IEEE 103 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

Signature classification. Kumar proposed a taxonomy
of attacks based on the complexity of the signature by which
an attack is detected [11]. Attacks manifest in sensor data
by virtue of a detectable signature. The simplest class of
attacks is what Kumar called the existence class; the attack
manifests (in sensor data) as a single event which can be
detected by recognizing that particular event. Other attacks
may manifest as sequences of events that are detectable
only with regular expressions, i.e., by finite automata. It
takes less computational power to test each simple event
in a sequence for equality than it takes to determine that
that sequence of events matches a regular expression. Ku-
mar’s taxonomy expresses this “detection complexity” in
an ordering from computationally facile to computationally
demanding. Although Kumar classified attacks based on
their manifestations in sensor data, as is done in the present
work, his manifestations were brought to bear on the diffi-
culty of signature detection, not on the presence of partic-
ular kinds of manifestations. In addition to being quite ab-
stract, Kumar’s taxonomy was specifically tailored as an aid
in signature-based detection, not anomaly-based detection,
which is of present concern. Since his taxonomy mainly
rank orders signatures according to their complexity, it is
unclear how it can be useful to defenders or researchers try-
ing to anticipate new and novel attacks, for which signatures
do not already exist.

Attack-effect classification. Many investigators have
proposed taxonomies that classify attacks based on the in-
tended effect of the attack, from the attacker’s perspec-
tive. An example of an attack effect is the elevation of
an attacker’s privileges from user to root. Often these tax-
onomies incorporate the technique by which the attacker
achieves this effect, such as automated password-guessing.
Lindqvist and Jonsson [14] presented such a taxonomy us-
ing these two dimensions of an attack. Marcus Ranum
[20] grouped attacks into eight intuitive categories based on
techniques used by the attacker: social engineering, imper-
sonation, exploits, transitive trust, data driven, infrastruc-
ture, denial of service, and magic. Howard and Longstaff
[9] incorporated classes of attack techniques used, and at-
tack effects desired, into their incident taxonomy, which
also includes classes of attackers and objectives. Daniel
Weber [30] proposed an attack taxonomy based on three el-
ements: the level of privilege required by the attacker (e.g.,
a local user account on the target machine), the means by
which the attack proceeded (e.g., exploitation of a software
bug), and the intended effect of an attack (e.g., temporary
denial of service) or the privilege level obtained in the attack
(e.g., administrative or ‘root’ access for the attacker). Lipp-
mann and his colleagues [15, 16] at MIT’s Lincoln Labora-
tory adapted Weber’s taxonomy, reducing it to fewer, more
intuitive classes, based solely on the effect of the attack.

In taking an attack-effect perspective, these taxonomies

User to Root

Remote to Local

Denial of Service

Surveillance / Probe

Figure 1: The four-class, attack-centric taxonomy used by
Lincoln Laboratory in the 1998 DARPA IDS evaluations.

are attack-centric in that they classify attacks based on fea-
tures potentially unknowable by a defender; for example,
a defender is not likely to be aware of vulnerabilities in
software, at least not in a way that can facilitate effec-
tive detection-level defenses against exploitations. Conse-
quently, the utility to a defender of these attack-centric tax-
onomies is questionable.

Possibly the best known of these taxonomies, due to its
extensive exposure during the DARPA 1998-99 intrusion
detection evaluation program, is the Lincoln Laboratory at-
tack taxonomy [16]. The Lincoln taxonomy was attack-
centric, and contained four classes: user-to-root, remote-to-
local, denial-of-service and surveillance/probe. These will
be discussed in greater depth in a subsequent section. The
MIT Lincoln Laboratory taxonomy is probably one of the
best known attack-centric attack taxonomies, and for that
reason it is used here as a basis of comparison to highlight
the differences and advantages of a defense-centric taxon-
omy. The Lincoln taxonomy is depicted in Figure 1.

What’s wrong with the aforementioned taxonomies? Es-
sentially, nothing is wrong with them; they simply serve
purposes different from the defense-centric taxonomy ad-
dressed in this paper (except Kumar’s taxonomy, whose
limitations were discussed above). We would like to see
if these taxonomies are as useful to a defender as one that is
explicitly designed for a defender’s use.

4 Criteria for an effective taxonomy
Before building a new taxonomy, it seems appropriate to

consider what might constitute sensible criteria for judging
its merits when finished. Although the heart of taxonomy
lies in the biological sciences (e.g., [22, 23]) in which there
is mild controversy regarding the correct way to construct a
taxonomic classification scheme, many authors in computer
security have nevertheless proposed such criteria. Recom-
mendations tend to vary widely, with some unachievable,
some redundant, and some not clearly applicable. Lough
has done a rather thorough job of reviewing the various tax-
onomies offered by the computer security community, as
well as the criteria for evaluating them [17].

0-7695-2052-9/04 $20.00 2004 IEEE 104 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

A decision was made in the present work to select min-
imal criteria which seemed sensible and, at the same time,
most consistent with guidelines in biology and systematics
(the classification and study of entities with regard to their
natural relationships). The criteria used here for judging the
effectiveness of a taxonomy are:

• Mutual exclusivity: categories do not overlap, prevent-
ing ambiguities from arising;

• Exhaustivity: all objects or events are contained in the
taxonomy;

• Replicability: repeated attempts at classification of the
same objects or events, whether by the original or other
experimenters, replicates faithfully the assignment of
objects or events to taxonomic classes.

5 Methodology
This section presents the procedures by which the study

was conducted, including a sketch of the hardware/software
suite used for launching and monitoring attacks.

5.1 Construct attacker-defender testbed
An attacker-defender testbed is a carefully controlled en-

vironment on which to launch attacks on or against a target
system, and to observe the effects of those attacks. It com-
prises, at minimum, an attacker machine and a victim (tar-
get) machine, plus a network joining the two. The testbed
is isolated from non-testbed machines and from the Inter-
net. The architecture for the attacker-defender testbed used
in this work could have been selected from a range of sys-
tems: Windows, Mac, Linux, etc. Linux on an Intel-based
computer was chosen because of the wide variety and ease
of availability of attacks against it, and because much of the
work in intrusion detection is rooted in Unix.

The victim hardware was a commercial, off-the-shelf
machine equipped with a 450 MHz AMD K6 processor,
256 MB of memory, a single 8GB hard disk, and a 10 / 100
Mbps Ethernet network card. The victim operating system,
installed on the hardware, was standard RedHat Linux 6.2.

The sensor stream of interest was system calls, based on
the idea that sequences of operating-system calls contain
anomalous manifestations of attacks; when an attack oc-
curs, its presence is expected to be indicated by deviations
from normal system-call behavior [6]. Special software (a
kernel patch) is required for monitoring system calls. This
work used the IMMSEC kernel patch by Somayaji and col-
leagues at the University of New Mexico [24]. The installa-
tion procedure is (a) obtain the source code for the version
2.2.13 Linux kernel, (b) apply the IMMSEC patch to this
source code, (c) build the modified Linux kernel, and (d)
install the new kernel on the victim system.

The victim system was configured to allow only ssh
connections from the network. It was connected to a pri-
vate research network largely isolated from the Internet by

a firewall. Other machines on the same network were used
for launching attacks and for assisting in the simulation of
normal behavior.

5.2 Acquire vulnerable programs & attacks

A collection of vulnerable programs and corresponding
attacks upon these programs was assembled so that attacks
could be mounted against the testbed, and their manifesta-
tions observed in a controlled environment.

Programs. What makes a program vulnerable to attack
is that (a) the program runs with privileges higher than those
possessed by the would-be attacker and (b) some flaw in
the program is susceptible to malicious exploitation. An
example of such a flaw is writing to an unchecked buffer;
arbitrary data is written to a fixed-length area of memory
without first checking that the length of the data does not
exceed the length of the buffer. A buffer overrun or buffer
overflow occurs when more data is written into the buffer
than the buffer can hold. When a buffer is overrun, the extra
data overwrites other data structures (e.g., a return pointer
which tells a program running a particular function the ad-
dress of the machine instruction to execute after the func-
tion terminates). A buffer overrun can be exploited by an
attacker so as to overwrite a return pointer, making it point
to machine instructions that the attacker wishes to execute,
e.g., to give the attacker an interactive command-line in-
terface with superuser privileges (a so-called “rootshell”).
With such a rootshell, the attacker has effectively gained all
the privileges of the vulnerable program.

One kind of program that is often attacked is a sys-
tem program, two examples of which are passwd and
tmpwatch. A system program runs with elevated priv-
ileges (e.g., root privileges, which allow the program to
read, write, modify, delete or execute any file) beyond those
normally afforded a regular user of a system, making these
programs favorite targets of attackers. For this study, eigh-
teen vulnerable system programs were culled from the well-
known public repository of vulnerability information, Se-
curityFocus [21], and installed on the victim system of
the attacker-defender testbed. The eighteen programs are
shown in Table 1.

dip diskcheck dump
imwheel kon2 ntop
restore slocate sudo
su passwd tmpwatch
traceroute vim xfs
xlock xman xterm

Table 1: Vulnerable system programs used in the study.
Vulnerabilities reside in the programs, except for passwd,
whose vulnerability is due to a Linux kernel race condition.

0-7695-2052-9/04 $20.00 2004 IEEE 105 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

Attacks. Once the vulnerabilities were established, at-
tacks were needed to exploit the vulnerabilities. Attacks are
often available as source code to a program that will auto-
matically exploit the vulnerability. In some cases, this so
called “exploit code” was available on public repositories
and was downloaded. In other cases, exploit code was writ-
ten from scratch using available information about the vul-
nerability. A selection of these exploit codes were copied
and modified, making variations of an attack, each of which
exploited the same vulnerability but which might manifest
in different ways. The modifications were guided by previ-
ous work in which we identified methods to cloak an attack,
making it harder to detect with an anomaly-based intrusion
detection system [26, 29]. Once exploit code was down-
loaded or written, the attack consisted of compiling the ex-
ploit code and launching the resulting program against the
target machine. It was confirmed that each attack worked
as intended. Twenty-five attacks were collected for this
project, and they are listed in Table 2.

crontabrace kernelexecptrace[3] sulocalefmt
dipbuff killxfs tmpwatchexec
diskcheckrace kon2buff traceroutefree
diskcheckrace[2] ntopspy traceroutefree[2]
dumpbx restorecool traceroutefree[3]
imwheelbuff restorecool[2] xlockfmtstring
imwheelbuff[2] slocateheap xmanprivs
kernelexecptrace sudomem xtermdos
kernelexecptrace[2]

Table 2: The 25 attacks. Square brackets [] denote sec-
ondary [2] and tertiary [3] versions of attacks.

5.3 Gather sensor records of attack behavior
During each attack, the behavior of the vulnerable sys-

tem program, in terms of sequences of system calls gener-
ated by the program, was monitored and recorded via the
system-call sensors deployed on the testbed. Table 3 shows
an excerpt from a system-call log. The numbers indicate the
process IDs of the processes that made the system calls. In
this example, four different processes were executing (i.e.,
processes with IDs 5260 through 5263). The names of the
system calls being executed were brk, lstat, etc. The ac-
tual record specifies system-call numbers, rather than names
(e.g., brk corresponds to system call number 45); the call
names in the figure were transcribed for readability.

For each of the twenty-five attacks, sensors monitored
the vulnerable system program that was exploited in the at-
tack. In some cases, the attacker ran the system program
directly, in such a way as to exploit its vulnerability. In
other cases, the attacker modified the environment in which
a system program ran, and waited for the system administra-

5261 brk 5262 chdir 5262 fork
5261 brk 5262 lstat 5261 wait4
5261 brk 5262 open 5263 lstat
5261 lstat 5262 fstat 5263 chdir
5261 getdents 5262 fcntl 5263 lstat
5261 lstat 5262 brk 5263 open
5261 access 5262 lstat 5263 fstat
5261 fork 5262 getdents 5263 fcntl
5260 wait4 5262 lstat 5263 lstat
5262 lstat 5262 access 5263 getdents

Table 3: Excerpt of system-call stream (reading down the
columns), as monitored by the testbed; numbers are process
IDs, and names are system-call names.

tor (or a scheduling program that performs regular admin-
istrative tasks, e.g., the cron daemon) to run the vulnera-
ble system program. Whether the attacker ran the system
program directly, or it was run by other means, the sensors
detected when the system program was run, and monitored
the system calls it made.

The sensors were configured to monitor one system pro-
gram at a time – just the system program being exploited
in an attack. Sensors were enabled before the attack began,
and remained operational for the attack’s duration. When
the system program under attack exited, either naturally
(e.g., through an exit or execve system call) or prema-
turely (e.g., in an attempt to execute an illegal instruction,
or a memory segmentation violation), the sensors were dis-
abled, and the record of the system program’s behavior (i.e.,
series of system calls) during attack was recorded to perma-
nent storage. This record is the attack record. Twenty-five
attack records were collected, one for each attack.

5.4 Gather sensor records of normal behavior
The attacks used to exploit the system programs were

examined to identify the exact nature by which the misuse
took place. For example, an attack could supply an ex-
traordinarily long value for an environment variable, caus-
ing a buffer to overflow. In addition, the documentation
accompanying each vulnerable system program (e.g., its
“man page”) was reviewed to collect examples of intended
program usage. An intended-usage example was selected
which correctly used the features of the program misused by
the attacker. The vulnerable system program was invoked as
described in the selected example to produce a representa-
tive instance of the normal behavior of the program. 3 The
example was chosen so that this normal behavior would re-
flect the behavior during attack, excepting the presence of

3Space limitations preclude full exposition of the normal-behavior
methodology which is available elsewhere.

0-7695-2052-9/04 $20.00 2004 IEEE 106 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

the attack itself. As an example, if an attacker supplied
an exceptionally long value for an environment variable,
the selected example of intended usage would set the same
environment variable to an appropriate value, as discerned
from the documentation. The record of a system program’s
normal behavior (series of system calls) during intended us-
age was produced in much the same way as the record of
that system program’s behavior during attack. The result-
ing record is called the normal record. Twenty-five normal
records were collected, one for each attack.

5.5 Extract attack manifestations
An attack that can be detected in system-call sensor data

is said to manifest in system-call data. The manifestation
comprises those sequences of system calls which are due to
the presence or activity of the attack, and which would not
appear if there were no attack. Attack manifestations were
identified as follows.

(1) The corresponding attack record and normal record
were compared to expose sequences of system calls dif-
fering between the two records. Some sequences may ap-
pear only in the attack record, while others may be miss-
ing from the attack record. (2) Sequences of instructions
were extracted which, when executed, resulted in differ-
ences between sequences of system calls in normal and at-
tack records. The exploit code used in the attack, as well
as the source code of the vulnerable system program, were
consulted to help identify the sequences of instructions due
to the presence of the exploit code. If such instructions ap-
pear in the exploit code, the corresponding system calls in
the attack record are due to the attack. (3) Supplemental
tools were used to gather supporting evidence regarding the
effects of the attack on the system call record. For example,
the strace4 program can be used to provide a detailed
report of the interaction between a program and the oper-
ating system. The strace program was used to associate
the presence of an attack with specific sequences of sys-
tem calls in the attack record. To ensure that the strace
records showed an alternative view of the same behavior
as the corresponding attack or normal record, it was con-
firmed that the information included in both records (i.e.,
sequences of system calls) matched; they did.

5.6 Build a defense-centric taxonomy
A taxonomy is a classification aid, and any classifier

must do its job on the basis of features that can discrimi-
nate one object or event from another. Consequently, the
first step in building a taxonomy is to determine the fea-
tures upon which the classification will be based. In the
present case, the features need to exist in the attack manifes-
tations previously discussed, and they need to be accessible

4The strace program is used to intercept and record the system calls that
are made by a program and the signals that are received by the program. It
is a commonly used debugging tool [25].

to anomaly-based detection systems, because these are the
types of detection systems that will form the basis of future
defense-centric strategies [4, 5, 13].

Features of anomalous sequences were previously stud-
ied by Maxion and Tan [18]. In their discussion of cover-
age of anomaly detectors, they identified foreign symbols
and foreign sequences as specific types of anomalies that
can occur in any set of sequential, categorical data (like
the system-call data used here). In later work they identi-
fied, and discussed in detail, another fundamental anomaly
type, the minimal foreign sequence, which is a refinement
of the foreign-sequence concept [27, 28]. Foreign symbols
and minimal foreign sequences were used in the present
work as basic taxonomic features of attack manifestations
in system-call sensor data. Close examination of the at-
tack records revealed two additional manifestations that
were also used as features – dormant sequences and non-
anomalous sequences. The four features, observed in sensor
data as attack manifestations, are defined as follows, with
examples shown in Table 4:

1. Foreign symbol: the attack manifestation contains a
system call which never appears in the normal record.
2. Minimal foreign sequence: the attack manifestation
contains a system-call sequence which itself never appears
in the normal record, but all of whose proper subsequences
do appear in the normal record.
3. Dormant sequence: the attack manifestation contains a
sequence of system calls which matches a proper subse-
quence from the normal record but does not match the full
sequence, because it is, for example, truncated.
4. Non-anomalous sequence: the attack manifestation is
a sequence of system calls which exactly and entirely
matches a normal sequence; that is, the attack produced a
set of system calls that matched the system calls for a nor-
mal, attack-free program.

Sequence type Example

Normal Sequence A A A B B B
Foreign Symbol A A C B B B (the C is foreign)

Normal Sequence A A A B B B
Min. Foreign Seq. A A A A B B (4 As is min. foreign)

Normal Sequence A A A B B B
Dormant Sequence A A A B (missing 2 Bs)

Normal Sequence A A A B B B
No Anomaly A A A B B B (no difference)

Table 4: Sequence types and examples.

0-7695-2052-9/04 $20.00 2004 IEEE 107 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

The hypothesis of this study is that the class to which an
attack belongs ought to predict whether or not a particular
intrusion-detection system will detect a given attack. The
information upon which this prediction is based is the pres-
ence or absence of the features listed above. The features
themselves were used as taxonomic classes.

The features are not mutually exclusive; for example, it
is possible for a manifestation to contain both foreign sym-
bols and minimal foreign sequences. There is a precedence,
however, among the taxonomic classes which reflects the
difficulty of detection. A foreign symbol takes precedence
over a minimal foreign sequence, which is harder to de-
tect. Likewise, a minimal foreign sequence takes prece-
dence over a dormant sequence; and a dormant sequence
takes precedence over a sequence containing no anomalies.
To remove any ambiguity in the class to which an attack
belongs, a decision procedure, shown in Table 5 , was con-
structed for uniquely identifying the class of any attack.

Class 1 (FS): If an attack’s manifestation contains
one or more foreign symbols, classify the manifes-
tation as foreign symbol.
Class 2 (MFS): If an attack’s manifestation con-
tains no foreign symbols, but does contain one or
more minimal foreign sequences, classify the man-
ifestation as a minimal foreign sequence.
Class 3 (DS): If an attack’s manifestation contains
no foreign symbols or sequences but does contain
a dormant sequence, classify the manifestation as a
dormant sequence.
Class 4 (MNA): If an attack’s manifestation con-
tains no foreign symbols or sequences, and no dor-
mant sequences, the manifestation is indistinguish-
able from the normal record; classify the manifes-
tation as not anomalous.

Table 5: Procedure for determining class of attack.

For each of the twenty-five attacks in this study, the fea-
tures of each attack were identified. In Table 6, each of the
twenty-five attacks is listed, one per row. The four features
are listed in the first four columns of the table. The presence
or absence of each of the four features is denoted by a mark
in the appropriate column. Using the decision procedure,
the class to which each of the twenty-five attacks belongs is
determined. It is listed in the fifth column of Table 6.

5.7 Check that taxonomic rules are obeyed

The new defense-centric taxonomy should meet the cri-
teria established in Section 4 for acceptable taxonomies.

Briefly, these criteria are (1) mutual exclusivity, (2) exhaus-
tivity, and (3) replicability. Both theoretical and empirical
evidence were collected to confirm that the taxonomy meets
each of these criteria.

Theoretical evidence that each of these criteria is satis-
fied was obtained by reviewing the decision procedure de-
scribed in Table 5. For mutual exclusivity, the decision pro-
cedure was reviewed to determine that it was not possible
for an arbitrary attack manifestation to be identified with
more than one class. For exhaustivity, the decision proce-
dure was reviewed to determine that it was not possible for
an attack to “fall through the cracks” and belong to none
of the classes. For replicability, the language of the deci-
sion procedure was reviewed to ensure that there was no
ambiguity which would cause different taxonomists to de-
cide that an arbitrary attack’s manifestation might belong to
different classes.

Empirical evidence was gathered by determining
whether or not the collected attacks and the classifications
of these attacks violated any of the taxonomic properties.
For mutual exclusivity, it was confirmed that none of the at-
tacks belonged to multiple classes. For exhaustivity, it was
confirmed that all the attacks belonged to one of the four
classes. For replicability, it was confirmed that diverse clas-
sifications of each of the attacks (e.g., different tools, differ-
ent evaluators, etc.) produced the same results, i.e., that the
same attacks were always assigned to the same categories.

5.8 Validate taxonomy using IDS evidence

For the purposes of this study, the taxonomy’s utility to
a defender lies in its ability to predict whether or not an in-
trusion detection system (IDS) will detect an attack based
on the attack’s taxonomic classification. The taxonomy’s
utility is determined by running all 25 attacks through an
intrusion detection system to verify that the detector “sees”
all the attacks in a class in the same way; i.e., if the de-
tector scores attack detections on a scale from 1–3, then
all attacks in a class should get the same score. The Stide
anomaly-based IDS was used, because it operates on the
same kind of sequential system-call data as used here, and
because the taxonomy was designed around attack manifes-
tation features significant to the performance of sequence-
based detectors in general, of which Stide happens to be
one. Stide is described elsewhere in great detail [7].

For each of the 25 attacks, the normal record for the at-
tack was run through Stide’s training mode to establish a
model of normal behavior. The attack record was then run
through Stide’s detection mode, and a score was assigned
on the basis of the extent to which Stide detected the attack.
Stide was configured with a locality frame of 1, so that all of
the anomalies visible in the current detector window would
be reported, regardless of whether or not there was a recent

0-7695-2052-9/04 $20.00 2004 IEEE 108 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

history of anomalies (this is the most stringent configura-
tion of Stide). The detector window size was varied broadly,
from 1 to 15, inclusive. If one or more anomalies were re-
ported at every window-size setting, the attack was judged
to be always detectable, and a score of 3 was assigned for
the attack. If one or more anomalies were reported at some
window settings, but none were reported at others, the at-
tack was ruled to be sometimes detectable, and a score of 2
was assigned for the attack. If no anomalies were reported
at any window setting, the attack was judged to be never de-
tectable, and a score of 1 was assigned for the attack. The
attack scores are given in the last column of Table 6.

To verify that the performance of the intrusion detection
system was predicted by the defense-centric taxonomy, the
defense-centric taxonomic class of each of the twenty-five
attacks was compared to the detector score for the attack.
If the taxonomic class is a good indicator of the score, then
the taxonomy is said to predict detector performance. Table
6 shows that the predictions are perfect.

5.9 Choose contrasting attack-centric taxonomy
This paper asserts that a defense-centric taxonomy is

a better predictor of detector performance than an attack-
centric taxonomy. To validate this claim requires a com-
parison to be made between the two taxonomy types.
The attack-centric taxonomy from Lincoln Laboratory [16]
(hereafter denoted Lincoln taxonomy; also see Figure 1)
was selected for side-by-side comparison, because it is well
known and familiar to the computer security community,
and because it is attack centric (i.e., attacks are classified
according to the attacker’s goal). With respect to the 25 at-
tacks used in this study, the Lincoln taxonomy obeyed taxo-
nomic requirements of mutual exclusivity and replicability,
but not exhaustivity.

Four of the 25 attacks did not fit the Lincoln taxonomy.
Two attacks (slocateheap and xmanprivs) would be
used by an attacker to elevate privileges to those of a
system-level (not root) user, e.g., users granted special priv-
ileges to manage online documentation or filesystem-wide
indexes of files. Two other attacks (crontabrace and
diskcheckrace) would be used by an attacker to create
files in unauthorized locations. None of these four attacks
can be assigned to any of the Lincoln classes.

To accommodate this shortcoming, the origins of the
Lincoln taxonomy were examined. The Lincoln taxonomy
was derived from a more elaborate taxonomy by Weber
[30], apparently by grouping together classes from the We-
ber taxonomy into more general classes in the Lincoln tax-
onomy. The four attacks which could not be classified by
the Lincoln taxonomy were found to belong to classes in the
Weber taxonomy. By creating a fifth class and supplement-
ing the Lincoln taxonomy with this fifth class, called “Sys-
tem access / Alter data,” an attack-centric taxonomy was

Features
︷ ︸︸ ︷

C
on

ta
in

s
a

Fo
re

ig
n

Sy
m

bo
l

C
on

ta
in

s
a

M
in

im
al

Fo
re

ig
n

Se
qu

en
ce

C
on

ta
in

s
a

D
or

m
an

tS
eq

ue
nc

e

Is
N

ot
A

no
m

al
ou

s

Ta
xo

no
m

ic
C

la
ss

ID
S

Sc
or

e

1. kernelexecptrace x FS 3
2. imwheelbuff x FS 3
3. slocateheap x FS 3
4. sudomem x x FS 3
5. dipbuff x x FS 3
6. traceroutefree x x FS 3
7. crontabrace x MFS 2
8. dumpbx x MFS 2
9. kernelexecptrace[2] x MFS 2
10. killxfs x MFS 2
11. kon2buff x MFS 2
12. ntopspy x MFS 2
13. restorecool x MFS 2
14. sulocalefmt x MFS 2
15. traceroutefree[2] x MFS 2
16. xlockfmtstring x MFS 2
17. xmanprivs x MFS 2
18. xtermdos x MFS 2
19. imwheelbuff[2] x DS 1
20. kernelexecptrace[3] x DS 1
21. diskcheckrace x MNA 1
22. diskcheckrace[2] x MNA 1
23. restorecool[2] x MNA 1
24. tmpwatchexec x MNA 1
25. traceroutefree[3] x MNA 1

Table 6: Attacks, detected features, taxonomic classifica-
tion, and IDS performance scores. Taxonomic classes: FS
(class 1, foreign sequence), MFS (class 2, minimal foreign
sequence), DS (class 3, dormant sequence), MNA (class 4,
manifestation not anomalous). IDS scores: 1 (never de-
tectable), 2 (sometimes detectable), 3 (always detectable).
Classes 3 and 4 are assigned the same score of 1, because
neither is detectable by the IDS. See discussion, Section 5.8.

created which met all the requirements such that a compar-
ison between the attack-centric Lincoln taxonomy and the
present defense-centric taxonomy could proceed.

5.10 Compare attack/defense-centric taxonomies

Each of the 25 attacks was classified according to both
the Lincoln attack-centric taxonomy and the new defense-
centric taxonomy. Each attack belongs to a pair of classes,
one attack-centric and one defense-centric. If the two tax-
onomies are equivalent, from a defender’s perspective, then
a single attack-centric class should always be paired with a
single defense-centric class, with no overlap. This was not
found to be the case

0-7695-2052-9/04 $20.00 2004 IEEE 109 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

Attacks in three of the Lincoln classes mapped to mul-
tiple defense-centric classes (the surveillance/probe class
contained no attacks, because there is such controversy over
whether or not a probe constitutes an attack). Four at-
tacks in the Lincoln user-to-root class mapped to four dif-
ferent defense-centric classes. Attacks spanning three Lin-
coln classes mapped to just one defense-centric class. The
mappings are shown in Figure 2; unfortunately, space limi-
tations preclude a more detailed illustration.

Defense−centric Taxonomic Classes

Manifests as Foreign Symbol

Manifests as Minimal Foreign Sequence

Manifests as Dormant Sequence

Manifestation Not Anomalous

System access / Alter data

Surveillance / Probe

Denial of Service

Remote to Local

User to Root

Attack−centric Taxonomic Classes

Figure 2: Mapping of 25 attacks between the five Lincoln
Laboratory attack-centric classes (see Section 5.9) and the
four new defense-centric classes.

6 Results and discussion

Twenty-five attacks were categorized in accordance with
each of two taxonomies – an existing attack-centric taxon-
omy (from Lincoln Lab) and a new defense-centric taxon-
omy. Two major outcomes were: (1) a validation of the
claim that a defense-centric taxonomy can predict whether
or not an intrusion detection system is capable of detecting
all attacks in particular classes of attacks; and (2) a compar-
ison of the predictive power of an attack-centric taxonomy
vs. a defense-centric taxonomy.

In every case, the classification of an attack according to
the defense-centric taxonomy perfectly predicts the detec-
tor’s ability to detect the attack. This outcome demonstrates
that a defense-centric taxonomy is a capable predictor of
whether or not an intrusion detection system can detect a
given attack and all attacks in a class. Demonstrating this
was a major goal of the research. The results are depicted
in Table 6.

In terms of comparing the predictive capabilities of
attack-centric vs. defense-centric taxonomies, from the per-
spective of a defender who needs to know whether or not
his/her detector will detect a particular attack, the defense-
centric taxonomy was an accurate predictor, whereas the
attack-centric taxonomy was not. The primary reason for
the inaccuracy of the attack-centric taxonomy is exempli-
fied by there having been four different user-to-root (attack-

centric) attacks that mapped to four different defense-
centric classes. This suggests that knowing an attacker’s
goals, e.g., privilege elevation from user to root, tells a
defender little about what evidence would be left behind
in sensor data, should the attacker’s objective be accom-
plished. Conversely, that many attack-centric classes map
to a single defense-centric class suggests that it would be
difficult for a defender, looking at the manifestation of an
attack in the sensor data available, to discern what the at-
tacker was attempting to accomplish with the attack. The
results are illustrated in Figure 2.

It is not the purpose of this work to disparage any attack-
centric taxonomy. Attack-centric taxonomies have their
place, but not necessarily in the service of intrusion detec-
tion. For example, a defender could use the attack-centric
class of an attack to estimate the severity of the attack and
its likely effect on the defender’s organization. If a novel
remote-to-local attack were discovered on a weekend, the
system administrator might be called into work to take im-
mediate action to guard against the attack, whereas if the
attack were denial-of-service, the defensive action could be
postponed until Monday. The two taxonomy types could
complement one another, with the attack-centric taxonomy
being used to estimate the severity of an attack, and the
defense-centric taxonomy being used to determine the suit-
ability of defenses.

7 Conclusion

This work has demonstrated that the classes of an attack-
centric taxonomy are not equivalent to those of a defense-
centric taxonomy. While a defense-centric taxonomy can
be used successfully to predict whether or not a set of de-
fenses is capable of detecting a particular attack based on
its classification in a taxonomy, an attack-centric taxonomy
cannot be used in this way. This is more alarming than it is
surprising, because defenders presently have no alternatives
to various extant attack-centric taxonomies, many of which
were noted in Section 1. This work has produced the first
known, validated defense-centric taxonomy5. It is hoped
that others will follow.

8 Acknowledgements

The authors thank Michael Drew for his contributions
to the attack programs and validations. Three anonymous
referees provided helpful reviews, one of which was quite
extraordinary in its thoroughness, which we deeply appreci-
ated. We thank Dr. Robert Stroud for thoughtful comments
over the course of several conversations.

5Section 3 acknowledges Kumar’s contribution, as well as its limita-
tions, in terms of defense-centricity.

0-7695-2052-9/04 $20.00 2004 IEEE 110 DSN 2004: Killourhy, Maxion & Tan



International Conference on Dependable Systems & Networks: Florence, Italy, 28 June - 01 July 2004

References

[1] G. Alvarez and S. Petrovic. A new taxonomy of web at-
tacks suitable for efficient encoding. Computers and Secu-
rity, 22(5):435–449, July 2003.

[2] T. Aslam. A taxonomy of security faults in the Unix operat-
ing system. Master’s thesis, Purdue University, 1995.

[3] M. Bishop. A taxonomy of Unix and network security vul-
nerabilities. Technical report, Department of Computer Sci-
ence, University of California at Davis, May 1995.

[4] H. Debar, M. Dacier, and A. Wespi. A revised taxonomy for
intrusion-detection systems. Annals of Telecommunications,
55(7–6):361–378, July–August 2000.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for Unix processes. In IEEE Symposium on
Security and Privacy, pages 120–128, Los Alamitos, CA,
1996. IEEE Computer Society Press. 6–8 May, Oakland,
California.

[6] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-
nonself discrimination in a computer. In IEEE Symposium
on Security and Privacy, pages 202–212, Los Alamitos, Cal-
ifornia, 1994. IEEE Computer Society Press. 16–18 May,
Oakland, California.

[7] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[8] J. D. Howard. An analysis of security incidents on the In-
ternet, 1989-1995. PhD thesis, Carnegie Mellon University,
Department of Engineering and Public Policy, April 1997.

[9] J. D. Howard and T. A. Longstaff. A common language for
computer security incidents. Technical Report SAND98-
8667, Sandia National Laboratories, Albuquerque, New
Mexico and Livermore, California, October 1998.

[10] I. V. Krsul. Software Vulnerability Analysis. PhD thesis,
Comp. Sci. Dept., Purdue University, May 1998.

[11] S. Kumar. Classification and Detection of Computer Intru-
sions. PhD thesis, Purdue University, August 1995.

[12] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S.
Choi. A taxonomy of computer program security flaws,
with examples. ACM Computing Surveys, 26(3):211–254,
September 1994.

[13] W. Lee and D. Xiang. Information-theoretic measures for
anomaly detection. In IEEE Symposium on Security and Pri-
vacy, pages 130–143, Los Alamitos, California, 2001. IEEE
Computer Society Press. 14–16 May, Oakland, California.

[14] U. Lindqvist and E. Jonsson. How to systematically classify
computer security intrusions. In IEEE Symposium on Secu-
rity and Privacy, pages 154–163, Los Alamitos, CA, 1997.
IEEE Computer Society Press. 4–7 May, Oakland, Califor-
nia.

[15] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das.
Analysis and results of the 1999 DARPA off-line intrusion
detection evaluation. In Proceedings of the Third Interna-
tional Workshop on Recent Advances in Intrusion Detection,
pages 162–182, 2–4 October 2000, Toulouse, France, 2000.
Springer-Verlag, Heidelberg, Germany.

[16] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R.
Kendall, D. J. McClung, D. J. Webber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, and M. A. Zissman.

Evaluating intrusion detection systems: The 1998 DARPA
off-line intrusion detection evaluation. In First International
Workshop on Recent Advances in Intrusion Detection, 14–16
September 1998, Louvain-la-Neuve, Belgium, 2000.

[17] D. L. Lough. A Taxonomy of Computer Attacks with Ap-
plications to Wireless Networks. PhD thesis, Virginia Poly-
technic Institute and State University, Blacksburg, Virginia,
April 2001.

[18] R. A. Maxion and K. M. C. Tan. Anomaly detection
in embedded systems. IEEE Transactions on Computers,
51(2):108–120, February 2002.

[19] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and
R. A. Olsson. A methodology for testing intrusion detec-
tion systems. IEEE Transactions on Software Engineering,
22(10):719–729, October 1996.

[20] M. J. Ranum. A taxonomy of Internet attacks.
Slide Presentation, available on the Internet at
http://pubweb.nfr.net/˜mjr/pubs/pdf/
internet-attacks.pdf, 1997.

[21] SecurityFocus vulnerability archive. http://www.
securityfocus.com/bid, May 2003.

[22] G. G. Simpson. Principles of Animal Taxonomy. Columbia
University Press, New York, 1961, Fourth printing 1969.

[23] P. H. A. Sneath and R. A. Sokal. Numerical Taxonomy. W.
H. Freeman and Company, San Francisco, 1973.

[24] A. Somayaji and G. Hunsicker. IMMSEC kernel-level
system call tracing for Linux 2.2, version 991117. Ob-
tained through private communication. Previous version
available on the Internet: http://www.cs.unm.edu/
˜immsec/software, March 2002.

[25] Strace(1) general command manual. Included in the
strace version 4.2 software package, distributed on the
RedHat 6.2 Linux installation CD (disc 1), 1999.

[26] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion. Undermin-
ing an anomaly-based intrusion detection system using com-
mon exploits. In A. Wespi, G. Vigna, and L. Deri, editors,
Fifth International Symposium on Recent Advances in In-
trusion Detection (RAID-2002), pages 54–73, 16–18 Octo-
ber 2002, Zurich, Switzerland, 2002. Lecture Notes in Com-
puter Science #2516, Springer-Verlag, Berlin, 2002.

[27] K. M. C. Tan and R. A. Maxion. “Why 6?” Defining the
operational limits of stide, an anomaly-based intrusion de-
tector. In IEEE Symposium on Security and Privacy, pages
188–201, Los Alamitos, CA, 2002. IEEE Computer Society
Press. 12–15 May, Berkeley, California.

[28] K. M. C. Tan and R. A. Maxion. Determining the operational
limits of an anomaly-based intrusion detector. IEEE Journal
on Selected Areas in Communications, 21(1):96–110, Jan-
uary 2003.

[29] K. M. C. Tan, J. McHugh, and K. Killourhy. Hiding in-
trusions: From the abnormal to the normal and beyond. In
Information Hiding: 5th International Workshop, IH 2002,
pages 1–17, Heidelberg, Germany, 2003. Springer-Verlag.
7-9 October 2002, Noordwijkerhout, The Netherlands.

[30] D. J. Weber. A taxonomy of computer intrusions. Master’s
thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 1998.

0-7695-2052-9/04 $20.00 2004 IEEE 111 DSN 2004: Killourhy, Maxion & Tan


