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Time Series (TS) 
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Temperature in datacenter

Marker positions in mocap

BGP updates in network

Need fast algorithms for time series mining

Chlorine level in water
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M1: Natural Motion Generation

• How to generate new realistic

motions from mocap database?

• e.g. “karate kick”  “boxing”

• Applications:

– Game ($57billion 2009)

– Movie animation

– Quality of Life (assistive devices)
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M2: Missing Values

• How to recover 

missing values?

– Occlusion in mocap

– In sensor data, due to 

low battery, RF error
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From mocap.cs.cmu.edu



M3: Data Summarization

• How to compress & manage large time 

series?

– A datacenter with 5000 servers: 1TB data 

per day, 55 million streams ([Reeves+ 2009])

• Goal: save energy in data center
– $4.5billion power for US dc’s 2006

6
CMU DCO

temperatures

Time



M4: Anomaly Detection

• How to detect anomalies?

• Applications:

– Intrusion computer network traffic (e.g. # of 

packets)

– Detect leakage or attack in drinking water system 

by monitoring chlorine levels

– Spam/robot in web clicks
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M5: Similarity Queries

• What is the most similar sequences from a 

large time series database?

• Applications:

– Environmental monitoring

– Datacenter monitoring

– Motion capture (mocap) database
8



M6: Trajectory Mining

• Mining moving objects, by Rajesh 

BALAN, Kyriakos MOURATIDIS, David LO 

@SMU
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Time Series Mining Tasks

• Pattern Discovery (e.g. cross-correlation, lag-

correlation)

– T1:Forecasting 

– T2:Summarization

– T3:Segmentation (detecting change points)

– T4:Anomaly detection

• Feature Extraction (e.g. wavelets coefficients)

– T5:Clustering

– T6:Indexing TS database

– T7:Visualization 11



Goals for Mining Algorithms

• G1:Effective:

– achieve low reconstruction error (mean 

square error) 

• G2:Scalable:

– to the size (e.g. length) of sequences

– on modern hardware (e.g. multi-core)
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Principal Component Analysis (PCA) / 

Singular Value Decomposition (SVD)
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PCA
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PCA: general data matrix
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Kalman Filters

• Example: tracking a car

• Given:

– current observation of position

– and  current estimate of velocity, acceleration

• Find:

– estimation of position, velocity, acceleration of 

next time tick

• Also known as Linear Dynamical 

Systems(LDS)
20



Kalman Filters
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v1

a1

p1

Current time tick
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v1

a1

p1

Calculate next time tick, w/ transition noise

v2

a2

Kalman Filters
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v1

a1

p1

Taking a picture, w/ camera noise

Kalman Filters
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v1

a1

p1

Now adjust our estimation of actual 

position, velocity, acceleration

Kalman Filters

v2

a2

p2



Graphical Model of LDS
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z1  = z0+ω0

zn+1  = F∙zn+ωn

xn = G∙zn+εn  

Z1 Z2 Z3 Z4

X1 X2 X3
X4

N(F∙z1, Λ)

N(z0, Γ)

N(G∙z3, Σ)

N(F∙z2, Λ)

N(G∙z1, Σ) N(G∙z2, Σ) N(G∙z4, Σ)

N(F∙z3, Λ) N(F∙z4, Λ

)

… 

Model parameters: 

θ={z0, Γ, F, Λ, G, Σ}

observed

(details)



26x1 x2 x3

× × ×

×× ×

G G G

z1 z2 z3

F F F

hidden variables

e.g. velocity, 

acceleration

projection 

matrix G

Transition

matrix

(details)



Outline

• Motivation

• Background

• P1:Mining w/ Missing Value [Li+ 2009]

– Problem Definition

– Proposed Method

– Results

• P2:Parallel Learning [Li+ 2008b]

• Conclusion

27

recovering

compression

segmentation



Missing Values in Time Series

• Motion Capture:

– Markers on human actors

– Cameras used to track the 
3D positions

– Duration: 100-500

– 93 dimensional body-local 
coordinates after 
preprocessing (31-bones)

• Sensor data missing due 
to:

– Low battery

– RF error
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From mocap.cs.cmu.edu

joint work w/ C. Faloutsos, J. McCann, N. Pollard. 

[Li et al, KDD 2009]



• Given

• Find algorithms for: 

– Recovering missing values

– Compression/summarization (T2)

– Segmentation (T3)

Time

sensor 1

sensor 2

…

sensorm

blackout

Problem Definition [Li+2009]
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Problem Definition (cont’)

• Want the algorithms to be:

– G1:Effective

– G2:Scalable: to duration of sequences
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Time

sensor 1

sensor 2

…

sensorm

blackout



Proposed Method: Intuition
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Proposed Method: 

DynaMMo Intuition
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Underlying Model
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z1  = z0+ω0

zn+1  = F∙zn+ωn

xn = G∙zn+εn  

Z1 Z2 Z3 Z4

X1 X2 X3
X4

N(F∙z1, Λ)

N(z0, Γ)

N(G∙z3, Σ)

N(F∙z2, Λ)

N(G∙z1, Σ) N(G∙z2, Σ) N(G∙z4, Σ)

N(F∙z3, Λ) N(F∙z4, Λ)

… 

Model parameters: 

θ={z0, Γ, F, Λ, G, Σ}

Use Linear Dynamical Systems to model whole sequence. 

observed partially 

observed

(details)



DynaMMo learning:

estimate all colored elements

35x1 x2 x3

× × ×

×× ×

G G G

Details in [Li+2009]

z1 z2 z3

F F F



DynaMMo learning

• Finding the best model parameters (θ) and 

missing values for X to minimize the 

expected loglikelihood:

• Proposed optimization method: 

– Expectation-Recover-Maximization
36

Q(θ) = EXm ,Z|Xg ;θ[−  z1 − z0 
TΓ−1(z1 − z0)

−   zn − F ⋅ zn−1 
TΛ−1 zn − F ⋅ zn−1 

N

n=2

−   xn − G ⋅ zn 
TΣ−1 xn − G ⋅ zn 

N

n=1

 ] 

(details)



DynaMMo learning:

estimate all colored elements
• Step1: Expectation

– forward-backward 

estimate hidden variables

• Step 2: Recover

– missing values

• Step 3: Maximization

– update model parameters 

(transition 

matrix, projection 

matrix, …)

Details next
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DynaMMo Illustration: step 1

estimate hidden variables

38x1 x2 x3

× × ×

×× ×

G G G

Details in [Li+2009]

z1 z2 z3

F F F



DynaMMo Illustration: step 2

recover missing values

39x1 x2 x3

× × ×

×× ×

G G G

Details in [Li+2009]

z1 z2 z3

F F F



DynaMMo Illustration: step 3

update model parameters

40x1 x2 x3

× × ×

×× ×

G G G

Details in [Li+2009]

z1 z2 z3

F F F



DynaMMo Learning
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Guess 
Initial

Expect
ation

Recover

Maximi
zation

Fix X, 

Estimate P(Z|X;):
E(zn|X;), 
E(znz’n|X;)
E(znz’n+1|X;)

fix Z, 

estimate 

E(X_missing|Z;)
Using E(zn|X;), 

Fix both X and Z, 

estimate new model

parameters 

argmax E[log(X,Z;)]

Random 

Guess model 

parameters 

1

2

3

0

(details)
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How to Compress

• Competitor #1: use PCA/SVD

• Competitor #2: store parameters of LDS

• Proposed Methods: DynaMMo 

compression and variants

– Carefully choosing what to store

50



Recap: PCA/SVD
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Why Not PCA/SVD? (competitor 

#1)

• No dynamics

• Need more 

to compress 

w/ same 

accuracy
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Why Not LDS? (competitor #2)

• Store 

parameters of 

LDS

– bad 

reconstruction

53

G

F



Why Not LDS?

• Idea  #2: store 

parameters of 

LDS

– bad 

reconstruction

54

projection G

transition F



Why Not LDS? (competitor #2)

• Store 

parameters of 

LDS

– bad 

reconstruction

55

projection G

transition F



DynaMMo Compression: 

Intuition, like LDS but sync
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Original data w/ missing values

hidden variables

keep only a portion 

(fixed sample rate)

G

DynaMMo

F



Q: Can we do better?
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Original data w/ missing values

hidden variables

keep only a portion 

(fixed sample rate)

G

DynaMMo

F



A: Yes, samples adaptively

DynaMMod Compression
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Original data w/ missing values

hidden variables

keep only a portion 

(optimal samples)

G

DynaMMo

F
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How to Segment

• Segment by threshold on reconstruction error 

60

original data

reconstruction 

error



How to Segment

• Segment by threshold on reconstruction error 
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original data

reconstruction 

error
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Results – Better Missing Value Recovery

63

Reconstruction 

error

Average missing length

Ideal

Proposed 

DynaMMo

MSVD 

[Srebro’03]Linear 

Interpolation

Spline

Dataset:

CMU Mocap #16

mocap.cs.cmu.edu
more results in [Li+2009]



Results – Better Compression
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Compression ratio

error

DynaMMo

w/ optimal 

compression

Ideal
Dataset:

Chlorine levels

more results in [Li+2009]



Results – Segmentation

• Find the transition during “running” to 

“stop”.

65

left hip

left femur

reconstruction 

error



Results – Segmentation

• Find the transition during “running” to 

“stop”.
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left hip

left femur

reconstruction 

error

run stopslow

down
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Goals for Mining Algorithms
• G1:Effective:

– achieve low reconstruction error 
(mean square error)

• G2:Scalable:
– to the size (e.g. length) of 

sequences

– on modern hardware (e.g.
multicore)



Recap Model for DynaMMo
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z1  = z0+ω0

zn+1  = F∙zn+ωn

xn = G∙zn+εn  

Z1 Z2 Z3 Z4

X1 X2 X3
X4

N(F∙z1, Λ)

N(z0, Γ)

N(G∙z3, Σ)

N(F∙z2, Λ)

N(G∙z1, Σ) N(G∙z2, Σ) N(G∙z4, Σ)

N(F∙z3, Λ) N(F∙z4, Λ

)

… 

Model parameters: 

θ={z0, Γ, F, Λ, G, Σ}

Use Linear Dynamical Systems to model whole sequence. 

observed partially 

observed

(details)



Consider a simpler problem
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z1  = z0+ω0

zn+1  = F∙zn+ωn

xn = G∙zn+εn  

Z1 Z2 Z3 Z4

X1 X2 X3
X4

N(F∙z1, Λ)

N(z0, Γ)

N(G∙z3, Σ)

N(F∙z2, Λ)

N(G∙z1, Σ) N(G∙z2, Σ) N(G∙z4, Σ)

N(F∙z3, Λ) N(F∙z4, Λ

)

… 

Model parameters: 

θ={z0, Γ, F, Λ, G, Σ}

Linear Dynamical Systems (w/o missing values). 

observed

(details)



Challenge of Learning LDS:

Expectation-Maximization Alg.
• Not easy to parallelize on multi-processors 

due to non-trivial data dependency (details 

in writeup)

• Q: How to parallelize the learning to 

achieve scalability? 
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Z1 Z2 Z3 Z4

X1 X2 X3
X4

N(F∙z1, Λ)
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N(G∙z1, Σ) N(G∙z2, Σ) N(G∙z4, Σ)

N(F∙z3, Λ) N(F∙z4, Λ)

… 
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Learning LDS: EM alg.
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M-step: find best model parameters



Learning LDS: EM alg.
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E-step: remove noise, identify true (hidden) trajectory

M-step: find best model parameters



Challenge for Learning LDS 

on SMP
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Challenge for Learning LDS 

on SMP
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Time
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Position 
of left elbow

step 2

*
Intuition: #2 may 

be close to #1 



Challenge for Learning LDS 

on SMP
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Challenge for Learning LDS 

on SMP
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Challenge for Learning LDS 

on SMP
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Challenge for Learning LDS 

on SMP
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Challenge illustration

Expectation-Maximization Alg.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Timeline for E-step (forward-backward) in learning LDS

1 2 3 4 5

81

EM can

only uses 

Single CPU

Due to data 

dependencies



Problem Definition
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• Problem: 

– Given a sequence of numbers, design a 

parallel learning algorithm to find the best 

model parameters for Linear Dynamical 

Systems

• Goal:

– Achieve ~ linear speed up on multi-core

• Assumption:

– Shared memory architecture (e.g. multi-core)

joint work w/ W. Fu, F. Guo, T. Mowry, C. Faloutsos. 

[Li et al, KDD 2008]



Proposed Method [Li 2008b]

Step 1

Step 2

Step 3

Step 4

Expected:
1 2 3 4 5
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Goal:

with 2 CPUs

Desirable, but …

data dependencies!
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Cut-And-Stitch Intuition
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z1

y1 y2

z3

y3

z4

y4

z5

y5 y6

z2 z6

υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3

reconcile later

Cut

start computation 

without feedback 

from previous node 

Stitch

CPU1 CPU2 CPU3

Implemented using OpenMP, details in [Li 2008b]



Cut-And-Stitch: illustration
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Details in [Li 2008b]



Cut-And-Stitch: illustration
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Details in [Li 2008b]



Cut-And-Stitch: illustration
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Details in [Li 2008b]



Cut-And-Stitch: illustration
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Details in [Li 2008b]
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Near Linear Speedup
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EM algorithm

Dataset:

58 motion sequences

CMU Mocap #16

mocap.cs.cmu.edu,

more results in [Li+2008b]

tested on NCSA 

SGI Altix, 512 

1.6GHz Itanium2 

processors, 3TB of 

total memory 

(ccNUMA), OS: 

SGI ProPack 6 

with kernel 2.6.16

Compiler: Intel 

10.1 for C++



No loss of accuracy
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more results in [Li+2008b]
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Goals for Mining Algorithms
• G1:Effective:

– achieve low reconstruction error 
(mean square error)

• G2:Scalable:
– to the size (e.g. length) of 

sequences

– on modern hardware (e.g.
multicore)



Conclusion

• Pattern discovery w/ missing values 

(DynaMMo)

– Recovering missing values

– Compression

– Segmentation

• Scale up learning on multicore

– Parallel learning algorithm for LDS (Cut-And-

Stitch)

100



Additional Projects

• Natural motion stitching [Li et al, Eurographics 2008]

– Given two motion-capture sequences that are 

to be stitched together, how can we assess the 

goodness of the stitching?

101

1
2

3

Which stitching looks best?



Additional Projects

• CDEM [Guo, Li, Foutsos, Xing. VLDB08]:

– mining and answering multi-modal queries on 

drosophila embryo image databases

– online demo:

http://www.db.cs.cmu.edu:8080/cdem/

– System spec:

Linux kernel: 2.6.23.1

Tomcat 5.5

JSP+RMI+mysql

multi-tier framework
102

embryonic hindgut

http://www.db.cs.cmu.edu:8080/cdem/


Question

• Thanks!

• contact: Lei Li (leili@cs.cmu.edu)

• paper, software, dataset on 

http://www.cs.cmu.edu/~leili
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