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Motion stitching via effort minimization
with James McCann, Nancy Pollard and

Christos Faloutsos
[Eurographics 2008]

Parallel learning of linear dynamical systems
with Wenjie Fu, Fan Guo, Todd Mowry and 

Christos Faloutsos
[KDD 2008]



Background

• Motion Capture

• Markers on human body, optical cameras to 
capture the marker positions, and translated 
into body local coordinates.

• Application:

– Movie/game/medical industry
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Motivation

• Given two human motion sequences, how to 
stitch them together in a natural way( = looks 
natural in human’s eyes)?

e.g. walking to running

• Given a human motion sequence, how to find 
the best natural stitchable motion in motion 
capture database?
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Intuition

• Intuition:

– Laziness is a virtue. Natural motion use minimum 
energy

• Laziness-score (L-score) = energy used during 
stitching

• Objective: 

– Minimize laziness-score
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Example
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Taking off

landing



Example, Natural stitching
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Taking off

landing



But, how about this way?
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Taking off

landing



Observations

• Naturalness depends on smoothness

• Naturalness also depends on motion speed
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Proposed Method

• Estimate stitching path using Linear Dynamical 
Systems
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Proposed Method (cont’)

• Estimate the velocity and acceleration during 
the stitching, compute energy (defined as L-
score)
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Proposed Method (cont’)

• Minimize L-score with respect to any stitching 
hops. (defined as elastic L-score)
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Example stitching

• Link to video
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Parallel Learning for LDS

• Challenge: 
– Learning Linear Dynamical System is slow for long 

sequences

• Traditional Method: 
– Maximum Likelihood Estimation via Expectation-

Maximization(EM) algorithm

• Objective:
– Parallelize the learning algorithm

• Assumption:
– shared memory architecture
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Linear Dynamical System
aka. Kalman Filter
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• Parameters:  =(u0, V0, A, Γ, C, Σ)

• Observation:     y1…yn

• Hidden variables:         z1… zn
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Example
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given positions, estimate dynamics (i.e. params)
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Traditional:
How to learn LDS?
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Sequential Learning (EM)
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Compute P(z1 | y1)

Time
*
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of left elbow



Sequential Learning (EM)

21

z1 z2

y1 y2

z3

y3

z4

y4

z5
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z6
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From P(z1 | y1)  Compute P(z2| y1 , y2)

Time*

Intuition: z2 may be close to z1

*
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of left elbow



Sequential Learning (EM)
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z1

y1 y2

z3

y3

z4
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From P(z2| y1 , y2)  Compute P(z3| y1 , y2  , y3)
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Time*
*

*

Measured
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of left elbow



Sequential Learning (EM)
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z1

y1 y2

z3

y3

z4

y4

z5

y5

z6

y6

From P(z3| y1 , y2  , y3)  Compute P(z4| y1 , y2 , y3 , y4)

z2
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Time*
*

*

*
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of left elbow



Sequential Learning (EM)
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z1

y1 y2

z3

y3

z4

y4

z5
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From P(z4| y1 , y2 , y3 , y4)  Compute P(z5| y1 , y2 , y3 , y4 , y5)
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Sequential Learning (EM)
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z1
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z4
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z5

y5

z6

y6
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From P(z5| y1 , y2 , y3 , y4 , y5)  Compute P(z6| y1 , y2 , y3 , y4 , y5 , y6)

Time*
*
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*
*
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*

Sequential Learning (EM)
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z1

y1 y2

z3

y3

z4

y4

z5

y5

z6

y6

z2

From P(z6| y1 , y2 , y3 , y4 , y5 , y6)  Compute P(z5| y1 , y2 , y3 , y4 , y5 , y6)
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Time*
*

*

*
Measured Estimated

*

*

Intuition: take the future backward

Position 
of left elbow



Sequential Learning (EM)
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z1

y1 y2

z3

y3

z4

y4

z5

y5

z6

y6

z2

From P(z6| y1 , y2 , y3 , y4 , y5 , y6)  Compute P(z4| y1 , y2 , y3 , y4 , y5 , y6)

*
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*

*
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*
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Position 
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Sequential Learning (EM)

z1

y1 y2

z3

y3
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y4

z5

y5

z6

y6
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From P(z4| y1 , y2 , y3 , y4 , y5 , y6)  Compute P(z3| y1 , y2 , y3 , y4 , y5 , y6)

28

*

2828

Time*
*

*
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*
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Sequential Learning (EM)

z1

y1 y2

z3

y3

z4

y4

z5

y5

z6

y6

z2

From P(z3| y1 , y2 , y3 , y4 , y5 , y6)  Compute P(z2| y1 , y2 , y3 , y4 , y5 , y6)
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*
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Sequential Learning (EM)
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z1

y1 y2

z3
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z4

y4
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z6

y6
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From P(z2| y1 , y2 , y3 , y4 , y5 , y6)  Compute P(z1| y1 , y2 , y3 , y4 , y5 , y6)
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*
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Sequential Learning (EM)

z1

y1 y2

z3

y3

z4

y4

z5

y5

z6

y6

z2

From all posterior z1 , z2 , z3 , z4 , z5 , z6

P(z1| y1 , y2 , y3 , y4 , y5 , y6), P(z2| y1 , y2 , y3 , y4 , y5 , y6)…
Compute sufficient statistics

E[zi]
E[zizi’]
E[zi-1zi’]



Sequential Learning (EM)
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*

*
Time*

*

*

*
Measured

*

*

*
*

*

with sufficient statistics, compute argmax ←likelihood(θ) 
θ

reconstructed signal

Position 
of left elbow



How to parallelize it?
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Speed Bottleneck: 
sequential computation of posterior

z1

y1 y2

z3

y3

z4

y4
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y5 y6

z2 z6



“Leap of faith”

start computation without feedback from 
previous node (cut), 

and reconcile later (stitch)
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Proposed Method: Cut-And-Stitch
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z1

y1 y2

z3

y3

z4

y4

z5

y5 y6

z2 z6

υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3

start computation without 
feedback from previous 
node (cut)

reconcile later (stitch)



Cut-And-Stitch
υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3

Cut step: 
Estimate posteriors (E)

Time

Measured

Estimated

Intuition: compute 
all three at once

*
*

*

P(z1| y1), P(z3| y3), P(z5| y5)Position 
of left elbow



Cut-And-Stitch
υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1
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y1 y2

z'2z2 z3
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z4

y4
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υ3,Φ3,η3,Ψ3

Cut step: 
Estimate posteriors (E)
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*
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*
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Cut-And-Stitch
υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3

Cut step: 
Estimate posteriors (E)

Time

Measured

*

*
*

*

*
*
*

*

* Intuition: backward 
adjust all at once

Position 
of left elbow



Cut-And-Stitch

Stitch step: 
Collect sufficient Statistics (C) Maximize parameters (M)

υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3
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Time
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*

*
*
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*

*

*
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Cut-And-Stitch
υ2,Φ2,η2,Ψ2υ1,Φ1,η1,Ψ1

z1

y1 y2

z'2z2 z3

y3

z4

y4

z'4 z5

y5 y6

z6

υ3,Φ3,η3,Ψ3

Stitch together: 
Re-estimate block parameters (R)

Time

Measured

*

*
*

*

*
*
*

*

*

*

*

*

Intuition: exchange 
messages cross block Iterate…

reconstructed signal

Position 
of left elbow
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Experiments

Q1: How much speed up can we get?

Q2: How good is the reconstruction accuracy?
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Experiments

• Dataset:
– 58 human motion sequences, 200 – 500 frames

– Each frame with 93 bone positions in body local 
coordinates

– http://mocap.cs.cmu.edu

• Setup:
– Supercomputer: SGI Altix system, distributed shared 

memory architecture 

– Multi-core desktop: 4 Intel Xeon cores, shared memory

• Task:
– Learn the dynamics, hidden variables and reconstruct 

motion
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Q1: How much speed up?
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Supercomputer Result
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Q1: How much speed up?
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Multi-core Result
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Q2: How good?

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

walking (#22) jumping (#1) running (#45)

Sequential alg

Cut-And-Stitch

Normalized Reconstruction Error
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Result: ~ IDENTICAL accuracy



Conclusion & Contributions

• A distance function for motion stitching
– Based on first principle: minimize effort

• General approximate parallel learning algorithm 
for LDS
– Near linear speed up

– Accuracy (NRE): ~ identical to sequential learning

– Easily extended to HMM and other chain Markovian
models

• Software (C++ w. openMP) and datasets: 
www.cs.cmu.edu/~leili/paralearn
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http://www.cs.cmu.edu/~leili/paralearn


Promising Extensions

• Extension

– HMM 

– other Markov models (similar graphical model)

• Open Problem:

– Can prove the error bound?
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Thank you
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• Questions


