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ABSTRACT

In this paper, we tackle the problem of pronunciation 
inference and Out-of-Vocabulary (OOV) enrollment in 
Automatic Speech Recognition (ASR) applications. We 
combine linguistic and acoustic information of the OOV 
word using its spelling and a single instance of its utterance 
to derive an appropriate phonetic baseform. The novelty of
the approach is in its employment of an orthography-driven
n-best hypothesis and rescoring strategy of the pronunciation 
alternatives. We make use of decision trees and heuristic 
tree search to construct and score the n-best hypotheses 
space. We use acoustic alignment likelihood and phone 
transition cost to leverage the empirical evidence and 
phonotactic priors to rescore the hypotheses and refine the
baseforms. 

Index Terms— n-best list, Out-of-Vocabulary, letter-to-
sound rules, pronunciation modeling, automatic 
pronunciation learning

1. INTRODUCTION

This work is motivated from and in part addresses our long 
term goal of incorporating adaptive learning in ASR 
applications. In the typical scenario of a dictation system, 
which can be considered a minimal component of most ASR 
applications, a user utterance is decoded into textual output. 
Being no exception from other ASR applications, dictation 
systems have a limitation of a closed vocabulary. It may be 
non-trivial for an end-user to manually include a new word. 
Hence, our attempts focus on building systems that can 
themselves adapt to the user, learning from the corrections to 
the system’s output. Of the many things that can be ‘learnt’ 
from the user feedback, the current work describes our 
efforts to deal with the following: If the corrected word 
(after the correction) is an OOV, we plan to enroll it, thereby 
making the system potentially capable of recognizing it in a 

future encounter. In other words, we aim to include it into 
the ASR lexicon with its pronunciation derived from the 
spelling and an instance of its utterance.  It is to be noted 
that the algorithm for retrieving the part of the whole 
utterance corresponding to a given OOV word is beyond the 
scope of this paper.

Several earlier approaches dealt with the problem of 
pronunciation inference- using either acoustics or spelling 
(letter-to-sound rules) or both to arrive at an appropriate 
baseform. Most acoustics driven methods [1] [2] [3] 
implement a viterbi decoding on the utterance using sub-
phone (arc) acoustic units and a phone transition model to 
derive one or more pronunciations for each word.
Orthography based methods widely use Finite State 
Transducers (FST) or decision trees to determine the 
pronunciation [9]. However, the quality of orthography 
based pronunciations is dependent on the grapheme-
phoneme correspondence of the language. Hence, they
cannot be directly used as baseforms in the ASR lexicon.

Of late, techniques combining both linguistic and acoustic 
information have gained focus owing to the wide range of 
application scenarios providing such a setting. To name a 
few are automatic lexicon generation [6] and systems 
supporting dynamic vocabularies [3] [4]. [4] and [5] for 
example, use syntactic and semantic information
respectively to incorporate dynamic classes allowing OOV
detection and enrollment. Also, [6] applies a letter-to-sound 
(FST) constrainer within the decoder to take advantage of 
the spelling of the OOV word. In this work, we exploit the 
linguistic information further by efficiently constructing the 
n-best list of pronunciation alternatives and scoring them 
using decision trees. The hypotheses are further rescored 
with costs in acoustic alignment and phone transition, 
achieved here using a smoothed phone bigram model. The 
remaining sections present our approach in detail followed 
by a thorough performance evaluation and analysis.



2. N-BEST LIST: GENERATION AND RESCORING 

Conventional approaches use the acoustics to generate the n-
best list of possible phone/sub-phone strings. The n-best 
alternatives are re-ranked using additional knowledge 
sources, like a language model, to improve the intelligibility 
of the first best alternative, typically the output of the 
decoder. This is sub-optimal in situations where the 
orthography is available but only one instance of acoustic 
evidence exists. The novelty of the method proposed here 
lies in inverting this relationship.  Our method uses the
spelling information to generate an n-best list of 
pronunciation hypotheses, which can be subsequently
rescored using available acoustic evidence and phone 
transition costs. The bias towards using the orthography for 
generating the n-best list is justified by the fact that, on an 
average, spelling can give more information about the 
pronunciation than a single acoustic exemplar, as borne out 
by our results (Section 4, below).

The following subsections present the decision-tree based 
approach in the generation of n-best pronunciation 
hypotheses and their subsequent rescoring using acoustic 
and phone transition costs.

2.1. Learning grapheme-to-phoneme rules

Decision trees offer flexibility in length of the modeling 
context and hence are chosen as the statistical paradigm for 
capturing letter-to-phone rules from a large training lexicon. 
Separate decision trees are trained for each letter of the 
alphabet. The leaves of the tree are discrete probability 
distributions of the phones and the internal nodes are 
questions about the neighboring context (e.g., next 
letter=‘a’? etc.). Training and testing set features for each 
letter were extracted from CMUDICT [12] of 130K words.
The trees were built using the letter-to-sound module within 
the FESTVOX [9] framework. Various context lengths of 1, 
2, 3 and 4 letters on either side of the target letter were tried 
and the performance of the resulting trees in predicting the 
phone produced by a letter in an untrained word was studied.  
(However, we subsequently discarded 1-letter context as 
being overly general, and 4-letter context for overtraining 
the decision trees.)  Fig. 2.1 shows the relative performance
of the 2-letter and 3-letter context trees on a held-out set, 
consisting of 10% of the lexicon. As would be expected,
three letter context trees outperform two letter context trees. 
Also, it is interesting to note that irrespective of the context 
length, relative performance within the letters remains the 
same in both cases.  Furthermore, letters that produce vowel 
sounds (a, e, i, o, u etc.) perform significantly worse than the 
other consonant letters, which also agrees with intuition.

Fig2.1: Performance of the 2-letter and 3-letter context trees 
on the held-out data.

2.2. Orthography based n-best pronunciation generation

Given the G->P decision trees, we generate multiple (n-best) 
hypotheses of pronunciations for a given OOV word, as 
follows.  From the spelling of the given OOV word, features 
are drawn for each letter using the same context length (2 or 
3 letters) as that of a chosen set of trees. When queried with 
these features, the corresponding G->P trees return a list of 
phones, with their probabilities, for each letter in the OOV 
word. A variant of best first search algorithm traverses 
through all of the phones predicted for each letter, thus 
generating several pronunciation alternatives.  Each 
pronunciation also receives a score which is the product of 
probabilities of the constituent phones, as determined by the 
decision trees. This product, which we refer as the n-best
likelihood, is also used in the n-best list rescoring process 
described further below.

2.3. Acoustic alignment

Each hypothesis in the n-best list of pronunciations is 
aligned (using Viterbi alignment) against the single speech 
sample of the word, producing an acoustic likelihood for the 
hypothesis. The acoustic likelihood is used in re-ranking the 
n-best list, as described in Section 4.1.  For the alignment, 
we used acoustic models consisting of three state context 
independent phone models with left-to-right topology, and 8 
gaussian mixture components per state. The models were 
trained on the officially designated training set of the TIMIT 
data [7]. The sphinx3_align tool from the Sphinx suite [8]  
was used for the viterbi alignment.

2.4 Phone transition model

The function of the phone transition model is similar to that 
of a language model in continuous speech recognition. It
provides a prior probability to each hypothesis in the n-best 
list. Word beginning and ending markers are also considered 
while computing the transitions. For our purpose, we trained 
a phone bigram model from CMUDICT [12]. The model 
was then smoothed with a uniform distribution, to avoid 
over-fitting to the training data. The smoothing was done as 



follows: If N is the number of phones, and P(α|β) the 
unsmoothed probability of transitioning from phone β to
phone α, the smoothed transition probability is given by:

PInterpolated (α|β) = ω*P(α|β) + (1-ω)/N

The scaling factor 0< ω ≤ 1 can be chosen according to the 
reliability and comprehensiveness of the dictionary. The 
cleaner and larger the dictionary, the higher ω can be.  An 
optimal value for ω can be determined empirically using
deleted interpolation. ω= 0.5 in our experiments reported 
here.

2.5 N-best rescoring criteria

The n-best list of pronunciations generated according to 
Section 2.2 is rescored by combining the three scores: n-best 
likelihood, acoustic likelihood, and phone transition costs. 
Since the three have widely differing ranges, we propose a 
combination function as follows. For each alternative Ф in
the n-best list, the function ξ(Ф) is computed, where:

ξ(Ф) = (Acoustic likelihood) * (n-best likelihood)η * (Phone 
transition penalty)γ

The exponentiation weights ‘η’ and ‘γ’ are determined 
empirically (similar to the “language weight” in most speech 
recognition systems). The highest ranking pronunciation, 
according to ξ, is chosen for the OOV word.

3. EVALUATION

We used phone error rates (PER) of the inferred baseforms
as the performance measure in our experiments. The 
baseline for our comparison is the PER of the top hypothesis 
in the original n-best list (before rescoring). For the test 
data1, we chose them to be exclusively proper names, which 
are a good representative of OOV words in many 
applications. Furthermore, the peculiarities of the spoken 
form of proper names as opposed to their written form, 
makes them an appropriate tough test for the current 
problem.  We use 100 randomly selected first and last names 
from the OGI names corpus [10].  This test set was excluded 
from the training data for acoustic, G->P trees, and phone 
transition probability models. We chose to use 3-letter 
context decision trees in the n-best list generation step.

4. RESULTS AND DISCUSSION

In Table 4.1, we present baseline PERs of the top hypothesis 
of the original n-best list, re-ranked by each of the three 
scores individually (i.e., not in combination with any of the 
others). The table shows the average error rates obtained on 
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The authors may be contacted to get a copy of the actual test set used.

the test data. The table suggests that orthography determines 
the pronunciation more reliably than a single instance of the 
speech. This may change when more than just a single 
instance is provided.  (Furthermore, relying solely on phone 
transition probability to rank the n-best list is clearly useless, 
and is only included here for the sake of completeness.)

Baseline PER
Orthography based n-best 22.9%
Acoustic alignment 37.8%
Phone transition 68.6%

Table 4.1: Baseline phone error rates of the factors 
contributing to rescoring criterion

We use the orthography-based performance of 22.9% PER 
as the baseline in the following sections, which deal with 
combining the three sources of information effectively in re-
ranking the n-best list of pronunciations.

4.1 Effect of n-best likelihood + acoustic match

We first examine the effectiveness of combining acoustic 
likelihood with n-best likelihood in n-best selection, 
ignoring phone transition costs.  To study this combination, 
we tried a wide range of values for η, measuring the PER 
from the best re-ranked n-best hypothesis in each case.  Fig
4.1 shows the performance with varying η.  The dotted line 
represents the baseline performance of 22.9% PER using n-
best likelihood alone.  We observe that as η increases, the 
PER drops rapidly from the acoustic-likelihood baseline of 
37.8% (η=0), and reaches a minimum of approximately 
19.5%.  The combined information from orthography and 
acoustics is able to provide a 3.4% absolute improvement 
(14.8% relative improvement) over our n-best likelihood 
baseline performance of 22.9% PER.

Fig 4.1: PER for varying n-best likelihood weights η



4.2 Effect of n-best likelihood + Acoustic match +  Phone 
transition penalty 

The performance can be further improved by bringing in 
phonotactic constraints via the phone transition penalty. To 
study the effect of this factor, the n-best likelihood weight η 
is kept constant around the middle of the steady-state region 
in Fig 4.1 (we chose η=28). The phone transition penalty 
weight γ is varied in computing ξ(Ф) and the error rates 
from the re-ranked n-best list are recorded. Fig 4.2 
summarizes the behavior. As shown, we are able to achieve 
a further reduction in PER, reaching a minimum of around 
18%, which is a 21.4% relative improvement over the 
orthography baseline of 22.9% PER.

Fig 4.2: PER for varying phone transition penalty weights γ

5. CONCLUSION

We have presented a new technique for pronunciation 
inference for OOV words, employing an orthography-driven 
n-best list generation and rescoring using acoustic and other 
evidence.  We have shown that orthographic information is 
more accurate than a single spoken exemplar.  Accordingly, 
we have based our n-best list generation on the richest 
information available, and used the other information to re-
rank the list. A comprehensive evaluation and analysis of the 
approach is made. We have shown that the n-best list 
likelihoods, combined with acoustic match likelihoods and 
phone transition priors can be used to reduce phone error 
rates of the inferred pronunciation significantly.  On our test 
set, the PER is reduced from the orthographic baseline of 
22.9% to about 18%, a 21.4% relative reduction. It remains 
to be seen to what extent the improvement in PER translates 
into improvement in word error rates in various applications.  
Obviously, this is highly application dependent, and we have 
not attempted this characterization in this paper.  It also 
remains to be seen how far this approach can be extended 
when more than a single spoken exemplar is available for 
pronunciation inference.
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