
An Educational Data Mining Tool to Browse Tutor-Student Interactions:
Time Will Tell!

Jack Mostow, Joseph Beck, Hao Cen, Andrew Cuneo, Evandro Gouvea, and Cecily Heiner

Project LISTEN (www.cs.cmu.edu/~listen), Carnegie Mellon University
RI-NSH 4213, 5000 Forbes Avenue, Pittsburgh, PA, USA 15213-3890

mostow, joseph.beck, hcen, acuneo, egouvea, cecily @cs.cmu.edu

Abstract
A basic question in mining data from an intelligent tutoring
system is, “What happened when…?” We identify
requirements for a tool to help answer such questions by
finding occurrences of specified phenomena and browsing
them in human-understandable form. We describe an
implemented tool and how it meets the requirements. The
tool applies to MySQL databases whose representation of
tutorial events includes student, computer, start time, and
end time. It automatically computes and displays the
temporal hierarchy implicit in this representation. We
illustrate the use of this tool to mine data from Project
LISTEN’s automated Reading Tutor.

1. Introduction

Intelligent tutoring systems’ ability to log their interactions
with students poses both an opportunity and a challenge.
Compared to human observation of live or videotaped
tutoring, such logs can be more extensive in the number of
students, more comprehensive in the number of sessions,
and more exquisite in the level of detail. They avoid
observer effects, cost less to obtain, and are easier to
analyze. The resulting data is a potential gold mine (Beck,
2004) – but mining it requires the right tools to locate
promising areas, obtain samples, and analyze them.
 Educational data mining is an iterative cycle of
hypothesis formation, testing, and refinement that
alternates between two complementary types of activities.
One type of activity involves aggregate quantitative
analysis of many tutorial events. For example, knowledge
tracing (Corbett & Anderson, 1995) analyzes growth
curves by aggregating over successive opportunities to
apply a skill. Embedded experiments (Aist, 2001;
Mostow & Aist, 2001; Mostow, Beck, Bey et al., 2004;
Mostow, Beck, & Heiner, 2004) compare alternative
tutorial actions by selecting randomly among them and
aggregating outcomes of many trials.
 In contrast, qualitative analysis focuses in depth
on understanding individual tutorial events. The research
question it addresses is descriptive (Shavelson & Towne,

2002): “What happened when …?” Such case analyses
serve any of several purposes, for example:

• Spot-check tutoring sessions to discover
undesirable tutor-student interactions.

• Identify the most common types of cases in which
a specified phenomenon occurs.

• Formulate hypotheses by identifying features that
examples suggest are relevant.

• Sanity-check a hypothesis by checking that it
covers the intended sorts of examples.

 This paper describes an educational data mining
tool to support such case analysis by exploiting three
simple but powerful ideas. First, a student, computer, and
time interval suffice to specify an event. Second, a
containment relation between time intervals defines a
hierarchical structure of tutorial interactions. Third, the
first two ideas make it possible to implement a generic but
flexible tool for mining tutor data with minimal
dependency on tutor-specific details.

The paper is organized as follows. Section 2
discusses previous work and the requirements it suggests
for such a tool. Section 3 describes an implemented tool
and how it meets each requirement, using a real example
based on interactions with Project LISTEN’s Reading
Tutor. Section 5 concludes by summarizing the papers’
contributions.

2. Previous work

Intelligent tutoring systems commonly record their
interactions in the form of log files. Log files are easy to
record, flexible in what information they can capture,
(sometimes) human-understandable to read, and useful in
debugging. However, they are unwieldy to aggregate
across multiple sessions and computers, and difficult to
parse and analyze in ways not anticipated when they were
designed (Mostow & Aist, 2001). Consequently, we have
found that logging interactions directly to a database
makes such analysis easier, more flexible, less bug-prone,
and more powerful than analyzing conventional log files
(Mostow, Beck, Chalasani, Cuneo, & Jia, 2002).

http://www.cs.cmu.edu/~listen

SentenceEncounter List

StartTime Duration Num
Actions

Num
Utterances

Total
Action SentenceStr

04-05-2001 12:24:25.693 00:00:01.412 3 0 0 OVEN

04-05-2001 12:24:27.105 00:00:01.542 3 0 0 BATTER

04-05-2001 12:24:28.677 00:00:44.23 47 4 51 First get the batter

04-05-2001 12:25:12.700 00:00:24.886 20 4 24 Next put all the ingredients in

04-05-2001 12:25:37.857 00:00:33.908 3 2 5 Then put it in the oven

04-05-2001 12:26:11.765 00:00:40.539 3 3 6 Last eat them

Figure 1: Example from (Mostow et al., 2002a)

Figure 1 shows an earlier program (Mostow et
al., 2002) intended to support case analysis by browsing
interactions logged by Project LISTEN’s Reading Tutor.
The program displayed a table of tutorial interactions at a
user-selected level of detail – computers, launches,
students, sessions, stories, sentences, utterances, words, or
clicks. It computed each table on demand using multiple
queries requiring database joins. Hyperlinks in this table
let the user drill down to a table at the next deeper level of
detail.

However, this program suffered from several
limitations. It was specific to a particular version of the
Reading Tutor. It displayed a list of records as a standard
HTML table, which was not necessarily human-
understandable. Navigation was restricted to drilling
down from the top-level list of students or tutors, with no
convenient way to specify a particular type of interaction
to explore, and no visible indication of context. Although
tables are useful for comparing events of the same type,
they are ill-suited to conveying the heterogeneous set of
events that transpired during a given interaction, or the
context in which they occurred.

2.1. Requirements for browsing tutorial
interactions

How should researchers explore logged interactions with
an intelligent tutor? Our previous experience suggests the
following requirements for the content to display (1-2),
the interface to display it (3-4), and the architecture to
implement the tool (5):

1. Specify which phenomenon to explore.
2. Explore selected events and the context in which

they occurred.
3. Dynamically drill down and adjust which details to

display.
4. Summarize interactions in a human-understandable

form.

5. Require minimal effort to adapt the tool to new
versions, to new users, or to other tutors.

3. Approach, illustrated by running example

Project LISTEN’s Reading Tutor listens to children read
aloud, and helps them learn to read. A Reading Tutor
session consists of reading a number of stories. The
Reading Tutor displays a story one sentence at a time, and
records the child’s utterances for each sentence. The
Reading Tutor logs each event (session, story, sentence,
utterance, …) into a database table for that event type.
Data from tutors at different schools flows into an
aggregated database on our server. For example, our
2003-2004 database includes 54,138 sessions, 162,031
story readings, 1,634,660 sentences, 3,555,487 utterances,
and 10,575,571 words.

Screenshots of the Reading Tutor itself appear
elsewhere (Mostow, Beck, Bey et al., 2004); here we
focus on the tool – a Java™ program that queries a
MySQL database server (MySQL, 2004), both running on
ordinary PCs. We now explain how this tool achieves the
requirements listed in Section 2.1.

3.1. Specify which phenomenon to explore.

First, how can we specify events to explore? A deployed
tutor collects too much data to look at, so the first step in
mining it is to select a sample. A database query
language provides the power and flexibility to describe
and efficiently locate phenomena of interest. For example,
the query “select * from utterance order
by rand() limit 10” selects a random sample of
10 from the table of student utterances. Whether the task
is to spot-check for bugs, identify common cases,
formulate hypotheses, or check their sanity, our mantra is
“check (at least) ten random examples.” Random
selection assures variety and avoids the sample bias of,

http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195484
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195485
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195486
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/utteranceList.pl?sentence_encounter_id=195486
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/listAll.pl?sentence_encounter_id=195486&story_encounter_id=16786
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195487
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/utteranceList.pl?sentence_encounter_id=195487
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/listAll.pl?sentence_encounter_id=195487&story_encounter_id=16786
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195488
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/utteranceList.pl?sentence_encounter_id=195488
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/listAll.pl?sentence_encounter_id=195488&story_encounter_id=16786
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/actionList.pl?sentence_encounter_id=195489
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/utteranceList.pl?sentence_encounter_id=195489
http://rocky-j.speech.cs.cmu.edu:9999/cgi-bin/listAll.pl?sentence_encounter_id=195489&story_encounter_id=16786

for example, picking the first ten examples in the
database.

Although an arbitrary sample like this one is
often informative, a query can focus on a particular
phenomenon of interest, such as the set of questions that
students took longest to answer, or steps where they got
stuck long enough for the Reading Tutor to prompt them.
Exploring examples of such phenomena can help the
educational data miner spot common features and
formulate causal hypotheses to test with statistical
methods on aggregated data.

Our running example focuses on a particular
student behavior: clicking Back out of stories. The
Reading Tutor has Go and Back buttons to navigate to the
next or previous sentence in a story. We had previously
observed that students sometimes backed out of a story by
clicking Back repeatedly even after they had invested
considerable time in the story. We are interested in
understanding what might precipitate this undesirable
behavior.

Figure 2: Query and its resulting table of events

The query in Figure 2 finds a random sample of
10 stories that students backed out of after spending more
than a minute in the story. The columns of this table
correspond to the fields for “story_encounter” (a reading
of a story) in the database, including the start and end
times of the story, the name of the computer that recorded
it, when the session started, how the user exited the story
(by finishing it, backing out, etc.), the name of the story,
the user ID of the student, and so on.

Second, what information suffices to identify a
tutorial interaction so a tool can explore it? A key insight
here is that student, computer, and time interval are
enough, because together they uniquely specify the
student’s interaction with the tutor during that time
interval. (We include computer ID in case the student ID
is not unique.) This “lowest common denominator”
should apply universally to virtually any tutor, though the

end time of the interval might be problematic for a web-
based tutor that doesn't know when the student leaves a
page.
 Third, how can we translate the result of a query
into a set of tutorial events? The tool scans the labels
returned as part of the query, and finds the columns for
student, computer, start time, and end time. The code
assumes particular names for these columns, e.g.
“user_id” for student, “machine_name” for computer, and
“start_time” for start time. If necessary the user can
enforce this naming convention, e.g., by inserting “as
start_time” in the query to relabel the column. We
require that the fields for student, computer, start time,
and end time be keys in the database tables. Indexing
tables on these fields enable fast response by the tool even
for tables with millions of records.

3.2. Explore selected events and the context in
which they occurred.

The tool lists field names and values for a selected record
as shown in Figure 3. However, this information supports
only limited understanding of the event, because it lacks
context.

Figure 3: Attribute-value list for selected event

What is the context of an event? Our answer is:
“its chain of ancestors.” For example, the ancestors of the
selected story encounter summarized in Figure 3 are the
session in which it occurred, and the student in that
session. Figure 4 summarizes this context.

Figure 4: Hierarchical ontext of selected event

How can we discern the hierarchical structure of
student-tutor interaction? At first we computed this
hierarchy using its hardwired schema for the Reading
Tutor database to determine which events are part of
which others. But then we had a key insight: exploit the
natural hierarchical structure of nested time intervals.

If events A and B have the same student and
computer, when is A an ancestor of B? We initially
required that A contain all of B. But we relaxed the

criterion to better handle occasional overlapping intervals
in our data. We therefore define A as an ancestor of B if
B starts during A.

The tool computes the event tree shown in
Figure 4 (and in Figure 5 below) by partial-ordering the
events according to the transitive closure of this ancestor
relation. The parent of an event is defined as its minimal
ancestor. Siblings are defined as sharing the same parent,
and are ordered by their start times.

Figure 5: Hierarchical context and partially expanded details of a selected event

3.3. Dynamically drill down and adjust which
details to include.

How can we generate a dynamic, adjustable-detail view
of hierarchical structure in a human-understandable,
easily controllable form? We adapted a standard widget
for expandable trees. Given a target event, the tool at first
displays only its context, i.e., its direct ancestors, omitting
other students, sessions, and stories. To see the offspring
of the selected story “Earthworms Have An Important
Job” or any other event, the user expands it by clicking on
the “+” icon to its left. The folder icon marks events not
yet fully expanded. Collapsing and re-expanding a
partially expanded event reveals its other offspring.

Figure 5 shows the result of expanding some
details of the event, in particular the sentence encounters
preceding the end of the story encounter, back to where

the student started backing out of the story, as the
Student_Click “user_goes_back” events indicate.

Expanding these details revealed a surprise: the
Reading Tutor said to click Back. The student had
clicked above the sentence. This event might mean a
student wants to return to the previous sentence – or that
he is trying to click on a word for help but missed the
target. Due to this ambiguity, the Reading Tutor does not
respond to “user_clicks_above_sentence” by backing up,
but just by saying “If you want to go back, press the Back
button.” This example suggested the novel hypothesis
that the Reading Tutor itself might unintentionally be
prompting students to back out of stories!

What steps might subsequent data mining
pursue, with what support by the tool?

• Continue browsing this case to try to identify
other possible reasons for backing out.

• Check other instances of backing out (by
clicking on other events from the table in Figure
3) to see if the Reading Tutor suggested it.

• Retrieve cases of the same Reading Tutor prompt
by formulating a suitable query to enter in the
query box (see Figure 2) to see if the student
backed out then as well.

• Develop a query to count how often students
back out with vs. without such a prompt. This
step constitutes a return to the quantitative phase
of data mining, but the tool can help test whether
the query treats 10 randomly chosen cases
correctly.

The focus of this paper is not this particular example but
the tool, to which we now return.

Besides drilling down as above, we let the user
specify more globally which types of events to display.
Figure 6 shows the “Pick tables” tab. The left side shows
which database is currently selected. We assume the
database has a different table for each type of event. A
checkbox for each table in the current database specifies
whether to include that type of event in the event tree.
For example, turning on “audio_output” shows speech
output by the Reading Tutor, such as “if you want to go
back press the Back button.”

Figure 6: Select database and tables

 The checkboxes do not distinguish among events
of the same type. For instance, a user might want the
event tree to include the tutor’s spoken tutorial assistance
but not its backchannelling (e.g., “mmm”). User-
programmable filters would allow such finer-grained

distinctions, but be harder than using check boxes to
specify which event types to include.

3.4. Summarize events in human-
understandable form.

We have already described the event trees we use to
convey the hierarchical structure of tutorial interaction.
But how do we summarize individual events?

Temporal properties are common to all events,
so we treat them uniformly. An event’s absolute start and
end times seldom matter except for time of day or time of
year effects. Therefore we display them only in the
event’s attribute-value list, and for a session.

In contrast, the duration of an event is a simple
but informative universal measure. For example, the fact
that most of the sentence encounters before the student
started backing out of the story lasted 14-39 seconds
indicates a slow reader. The duration of an event is simply
its end time minus its start time.

The hiatus between two events is informative
because it reflects user effort, hesitation, confusion, or
inactivity. For example, the fact that the hiatuses before
Back clicks were less than 100 milliseconds long suggests
that the student may have been clicking repeatedly as fast
as possible. The hiatus between a parent event A and its
first offspring B is the start time of B minus the start time
of A. The hiatus between two successive sibling events B
and C is the start time of C minus the end time of B.
 Precise times seldom matter for a duration or
hiatus, so for readability and brevity, we display only the
largest non-zero units (days, hours, minutes, seconds,
milliseconds).
 The complete attribute-value list for an event
occupies considerable screen space, and is displayed only
for the currently selected event. In contrast, the tool
displays all the one-line summaries for an event tree at
once. What information should such summaries include?
How should it be displayed? How should it be computed?

The answers depend on the type of event. We
observed that although the Reading Tutor’s database
schema has evolved over time, the meaning of table
names is nevertheless consistent across successive
versions and between databases created by different
members of Project LISTEN. Therefore we wrote one
function for each table to translate a record from that table
into a one-line string that includes whatever we think is
most informative. Ideally these functions are simple
enough for users (educational data miners) to modify to
suit their own preferences. The default string for a table
without such a function is just the name of the table, e.g.,
“Session” or “Story_encounter.” Most functions just
display one or more fields of the record for the event. For
example, the function for a session just shows its start
time. Some functions incorporate information from other
tables. For example, the function for a story encounter

retrieves its title from a separate table. Special-purpose
code adds a node the user can click to play back a
recorded utterance, or displays “Audio not available” if its
audio file has not yet been archived (as in the case of the
December 2004 example shown here).

3.5. Require minimal effort to adapt the tool to
new versions, to new users, or to other tutors.

How can the tool obtain the information it needs about a
database of tutor interactions? Its generic architecture
enables it to make do with readily available meta-data, a
few assumed conventions, and a little code. MySQL
provides the required meta-data, namely the list of tables
in the database, the fields in each table and event list, and
their names and data types. We exploit the observation
(or assumption) that the meaning of field names is
consistent across database tables and over time. The code
assumes particular field names for student, machine, and
start and end times, but overrides this convention when
necessary, as in the case of a particular table with a
“Time” field instead of a “Start_time” field.
 The method to compute the context of a selected
target event is: First, extract its student, computer, and
start time. Then query every table of the database for
records for the same student and computer whose time
interval contains the start of the target event. Finally, sort
the retrieved records according to the ancestor relation,
and display them accordingly by inserting them in the
appropriate positions in the expandable tree widget.

The method to find the children of a given event
fires only when needed to expand the event node. It finds
descendants in much the same way as the method to find
ancestors, but then winnows them down to the children
(those that are not descendants of others).

A more knowledge-based method would know
which types of Reading Tutor events can be parents of
which others. However, this knowledge would be tutor-
and possibly version-specific. In contrast, our brute force
solution of querying all tables requires no such
knowledge. Moreover, its extra computation is not a
problem in practice. Our databases consist of a few dozen
tables, the largest of which have tens of millions of
records. Despite this table size, the tool typically
computes the context of an event with little or no delay.

4. Future Work

Future work includes integrating the session browser with
other educational data mining methods, and exploring its
value to more users.

4.1. Integration with other methods

The Data Shop team at the Pittsburgh Science of Learning
Center (www.learnlab.org) plans to incorporate the
session browser in the suite of educational data mining
tools it is developing to analyze data logged by tutors.
The contextual inquiries performed by this team identified
the need to understand context as an important aspect of
analyzing data from tutors. The session browser should
help researchers understand the context of data by
exploring specific examples.

For example, one Data Shop tool will compute a
learning curve for a given skill by aggregating over
students’ successive opportunities to apply that skill. A
spike in a learning curve suggests a bug in the underlying
cognitive model of skills. Integrating the session browser
into the tool suite will facilitate analyzing such spikes by
inspecting example steps for clues as to what made those
steps harder than the model predicted.

Integrating the session browser with tools for
analyzing and visualizing aggregated data will facilitate
exploiting the synergy between quantitative and
qualitative analysis. However, it is not clear that methods
for visualizing aggregated data apply in any useful way to
the individual cases explored by the session browser.

One reason is obvious: visualization methods
apply to large sets of data and exploit their regularity. In
contrast, the individual cases explored by the session
browser are limited in scope and heterogeneous in
structure (comprised of multiple event types).

Another reason is less obvious: visualization
methods apply to quantitative features of data. But aside
from temporal information, the features that provide
useful context for tutorial events are largely qualitative
rather than quantitative – what text the student was
reading, what the tutor said, what the student did, and so
forth. In order for visualization methods to apply usefully
to such data, they will presumably need to be translated
into quantitative form. Methods that map qualitative data
into quantitative form by aggregation, such as
histogramming, may have limited relevance to analyzing
individual cases.

4.2. Expansion to other users

Who will find the session browser useful?
 The first candidates are the researchers
developing and evaluating Project LISTEN’s Reading
Tutor. It is not a foregone conclusion that we will find
the session browser useful. After all, our previous
attempt turned out to be too constraining, as Section 2
explained, motivating the requirements in Section 2.1.
 The next candidates are researchers interested in
analyzing data from other tutors. Incorporating the
session browser into the Data Shop will test its utility for
this purpose.

Will teachers find the session browser useful?
Probably not – unless three challenges are overcome.

First, teachers are too busy to spend much if any
time poring over detailed traces of their students’
behavior. Data and analyses can be useless to them
without prescriptions for what to do about it (Fuchs,
Fuchs, Hamlett, & Ferguson, 1992). To warrant teachers
spending time using the session browser, it would have to
quickly deliver information they found useful.

Second, understanding data logged by a tutor
tends to require intimate familiarity with how the tutor
works. The Data Shop team’s interviews with other
researchers confirmed that this issue is not specific to our
data. Unless this problem is solved, tools for mining data
from a tutor may be useful only to its developers, or to a
few intrepid researchers willing to invest the effort
required to gain such familiarity. The session browser
may help ameliorate this difficulty to the extent that it
makes it easy to write tutor-specific methods to generate
self-explanatory event summaries, but it is unrealistic to
expect them to solve the whole problem.

Third, the session browser is designed more for
power and flexibility than for simplicity. For instance,
the mechanism to specify which events to explore is very
general, but requires the ability to write a MySQL query.
Accommodating less skilled users would require
providing useful “pre-canned” queries or scaffolding the
query formulation process.

5. Conclusion

This paper reports an implemented, efficient, generic
solution to a major emerging problem in educational data
mining: efficient exploration of vast student-tutor
interaction logs. We identify several useful requirements
for a tool to support such exploration. Our key
conceptual contribution uses temporal relations to expose
natural hierarchical structure. This is the sense in which
“time will tell” many basic relationships among tutorial
events.

The success of this approach suggests specific
recommendations in designing databases of tutorial
interactions: Log each distinct type of tutorial event in its
own table. Include student ID, computer, start time, and
end time as fields of each such table so as to identify its
records as events. Name these fields consistently within
and across databases created by successive versions of the
tutor so as to make them easier to extract. Adding new
tables and fields is fine, but keep the names of the old
ones to reuse their display code.

Relevant criteria for evaluating this work include
implementation cost, efficiency, generality, usability, and
utility. Implementation cost was only several person-
weeks for the tutor-specific prototype and about the same
for its generalized interval-based successor.

Using ordinary PCs for the database server and
the session browser to explore databases for hundreds of
students, thousands of hours of interaction, and millions
of words, the operations reported here usually update the
display with no perceptible lag, though a complex query
to find a specified set of events may take several seconds
or more.

Structural evidence of generality includes the
tool’s predominantly tutor-independent design, reflected
in the code’s brevity and its scarcity of references to
specific tables or fields of the database. Empirical
evidence of generality includes successful use of the tool
with databases from different years’ versions of the
Reading Tutor. We have not as yet tested it on databases
from other groups; most tutors still log to files, not
databases.

It is early to evaluate usability because the tool is
still so new. We have not conducted formal usability tests
on its initial target users, namely Project LISTEN
researchers engaged in educational data mining. However,
we can claim a ten- or hundred-fold reduction in
keystrokes compared to obtaining the same information
by querying the database directly. For example, clicking
on an item in the event list displays its context as a chain
of ancestor events. Identifying these ancestors by
querying the database directly would require querying a
separate table for each ancestor.

As for utility, the ultimate test of this tool is
whether it leads to useful discoveries, or at least
sufficiently facilitates the process of educational data
mining that the miners find it helpful and keep using it.
To repeat our subtitle in its more usual sense, “time will
tell!”

Acknowledgements: This paper is an extended version
of an AIED2005 poster and demonstration (Mostow,
Beck, Cen, Gouvea, & Heiner, 2005; Mostow, Beck,
Cuneo, Gouvea, & Heiner, 2005). This work was
supported in part by the National Science Foundation
under ITR/IERI Grant No. REC-0326153. Any opinions,
findings, conclusions, or recommendations expressed in
this publication are those of the authors and do not
necessarily reflect the views of the National Science
Foundation or the official policies, either expressed or
implied, of the sponsors or of the United States
Government. We thank the educators and students who
generated our data.

References (see www.cs.cmu.edu/~listen)

Aist, G. (2001). Towards automatic glossarization:
Automatically constructing and administering
vocabulary assistance factoids and multiple-
choice assessment. International Journal of
Artificial Intelligence in Education, 12, 212-231.

http://www.cs.cmu.edu/~listen

Beck, J. (Ed.). (2004). Proceedings of the ITS2004
Workshop on Analyzing Student-Tutor
Interaction Logs to Improve Educational
Outcomes. Maceio, Brazil.

Corbett, A., & Anderson, J. (1995). Knowledge tracing:
Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction, 4, 253-278.

Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Ferguson, C.
(1992). Effects of expert system consultation
within curriculum-based measurement using a
reading maze task. Exceptional Children, 58(5),
436-450.

Mostow, J., & Aist, G. (2001). Evaluating tutors that
listen: An overview of Project LISTEN. In K.
Forbus & P. Feltovich (Eds.), Smart Machines in
Education (pp. 169-234). Menlo Park, CA:
MIT/AAAI Press.

Mostow, J., Beck, J., Bey, J., Cuneo, A., Sison, J., Tobin,
B., & Valeri, J. (2004). Using automated
questions to assess reading comprehension,
vocabulary, and effects of tutorial interventions.
Technology, Instruction, Cognition and
Learning, 2, 97-134.

Mostow, J., Beck, J., Cen, H., Gouvea, E., & Heiner, C.
(2005, July). Interactive Demonstration of a
Generic Tool to Browse Tutor-Student
Interactions. Supplemental Proceedings of the
12th International Conference on Artificial
Intelligence in Education (AIED 2005),
Amsterdam

Mostow, J., Beck, J., Chalasani, R., Cuneo, A., & Jia, P.
(2002, June 4). Viewing and Analyzing
Multimodal Human-computer Tutorial
Dialogue: A Database Approach. Proceedings
of the ITS 2002 Workshop on Empirical
Methods for Tutorial Dialogue Systems, San
Sebastian, Spain, 75-84.

Mostow, J., Beck, J., Cuneo, A., Gouvea, E., & Heiner, C.
(2005, July). A Generic Tool to Browse Tutor-
Student Interactions: Time Will Tell!
Proceedings of the 12th International Conference
on Artificial Intelligence in Education (AIED
2005), Amsterdam

Mostow, J., Beck, J. E., & Heiner, C. (2004, June 27-30).
Which Help Helps? Effects of Various Types of
Help on Word Learning in an Automated
Reading Tutor that Listens. Eleventh Annual
Meeting of the Society for the Scientific Study of
Reading, Amsterdam, The Netherlands

MySQL. (2004). Online MySQL Documentation.
Retrieved, from the World Wide Web:
http://dev.mysql.com/doc/mysql

Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific
Research in Education. National Research

Council, Washington, D.C.: National Academy
Press.

http://dev.mysql.com/doc/mysql

	Introduction
	Previous work
	Requirements for browsing tutorial interactions

	Approach, illustrated by running example
	Specify which phenomenon to explore.
	Explore selected events and the context in which they occurr
	Dynamically drill down and adjust which details to include.
	Summarize events in human-understandable form.
	Require minimal effort to adapt the tool to new versions, to

	Future Work
	Integration with other methods
	Expansion to other users

	Conclusion

