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Abstract 
A basic question in mining data from an intelligent tutoring 
system is, “What happened when…?”  We identify 
requirements for a tool to help answer such questions by 
finding occurrences of specified phenomena and browsing 
them in human-understandable form.  We describe an 
implemented tool and how it meets the requirements.  The 
tool applies to MySQL databases whose representation of 
tutorial events includes student, computer, start time, and 
end time.  It automatically computes and displays the 
temporal hierarchy implicit in this representation.  We 
illustrate the use of this tool to mine data from Project 
LISTEN’s automated Reading Tutor. 

 

1. Introduction 

Intelligent tutoring systems’ ability to log their interactions 
with students poses both an opportunity and a challenge.  
Compared to human observation of live or videotaped 
tutoring, such logs can be more extensive in the number of 
students, more comprehensive in the number of sessions, 
and more exquisite in the level of detail.  They avoid 
observer effects, cost less to obtain, and are easier to 
analyze.  The resulting data is a potential gold mine (Beck, 
2004) – but mining it requires the right tools to locate 
promising areas, obtain samples, and analyze them. 
 Educational data mining is an iterative cycle of 
hypothesis formation, testing, and refinement that 
alternates between two complementary types of activities.  
One type of activity involves aggregate quantitative 
analysis of many tutorial events.  For example, knowledge 
tracing (Corbett & Anderson, 1995) analyzes growth 
curves by aggregating over successive opportunities to 
apply a skill.  Embedded experiments (Aist, 2001; 
Mostow & Aist, 2001; Mostow, Beck, Bey et al., 2004; 
Mostow, Beck, & Heiner, 2004) compare alternative 
tutorial actions by selecting randomly among them and 
aggregating outcomes of many trials. 
 In contrast, qualitative analysis  focuses in depth 
on understanding individual tutorial events.  The research 
question it addresses is descriptive (Shavelson & Towne, 

2002):  “What happened when …?”  Such case analyses 
serve any of several purposes, for example: 

• Spot-check tutoring sessions to discover 
undesirable tutor-student interactions. 

• Identify the most common types of cases in which 
a specified phenomenon occurs. 

• Formulate hypotheses by identifying features that 
examples suggest are relevant. 

• Sanity-check a hypothesis by checking that it 
covers the intended sorts of examples. 

 This paper describes an educational data mining 
tool to support such case analysis by exploiting three 
simple but powerful ideas.  First, a student, computer, and 
time interval suffice to specify an event.  Second, a 
containment relation between time intervals defines a 
hierarchical structure of tutorial interactions.  Third, the 
first two ideas make it possible to implement a generic but 
flexible tool for mining tutor data with minimal 
dependency on tutor-specific details. 

The paper is organized as follows.  Section 2 
discusses previous work and the requirements it suggests 
for such a tool. Section 3 describes an implemented tool 
and how it meets each requirement, using a real example 
based on interactions with Project LISTEN’s Reading 
Tutor.  Section 5 concludes by summarizing the papers’ 
contributions. 

2. Previous work 

Intelligent tutoring systems commonly record their 
interactions in the form of log files.  Log files are easy to 
record, flexible in what information they can capture, 
(sometimes) human-understandable to read, and useful in 
debugging.  However, they are unwieldy to aggregate 
across multiple sessions and computers, and difficult to 
parse and analyze in ways not anticipated when they were 
designed (Mostow & Aist, 2001).  Consequently, we have 
found that logging interactions directly to a database 
makes such analysis easier, more flexible, less bug-prone, 
and more powerful than analyzing conventional log files 
(Mostow, Beck, Chalasani, Cuneo, & Jia, 2002). 
   

http://www.cs.cmu.edu/~listen


SentenceEncounter List 

StartTime Duration Num 
Actions 

Num 
Utterances 

Total 
Action SentenceStr 

04-05-2001 12:24:25.693  00:00:01.412  3  0  0  OVEN  

04-05-2001 12:24:27.105  00:00:01.542  3  0  0  BATTER  

04-05-2001 12:24:28.677  00:00:44.23  47  4  51  First get the batter  

04-05-2001 12:25:12.700  00:00:24.886  20  4  24  Next put all the ingredients in  

04-05-2001 12:25:37.857  00:00:33.908  3  2  5  Then put it in the oven  

04-05-2001 12:26:11.765  00:00:40.539  3  3  6  Last eat them  

Figure 1:  Example from (Mostow et al., 2002a) 
 

Figure 1 shows an earlier program (Mostow et 
al., 2002) intended to support case analysis by browsing 
interactions logged by Project LISTEN’s Reading Tutor. 
The program displayed a table of tutorial interactions at a 
user-selected level of detail – computers, launches, 
students, sessions, stories, sentences, utterances, words, or 
clicks.  It computed each table on demand using multiple 
queries requiring database joins.  Hyperlinks in this table 
let the user drill down to a table at the next deeper level of 
detail.  

However, this program suffered from several 
limitations. It was specific to a particular version of the 
Reading Tutor. It displayed a list of records as a standard 
HTML table, which was not necessarily human-
understandable. Navigation was restricted to drilling 
down from the top-level list of students or tutors, with no 
convenient way to specify a particular type of interaction 
to explore, and no visible indication of context.  Although 
tables are useful for comparing events of the same type, 
they are ill-suited to conveying the heterogeneous set of 
events that transpired during a given interaction, or the 
context in which they occurred. 

2.1. Requirements for browsing tutorial 
interactions 

How should researchers explore logged interactions with 
an intelligent tutor?  Our previous experience suggests the 
following requirements for the content to display (1-2), 
the interface to display it (3-4), and the architecture to 
implement the tool (5): 

1. Specify which phenomenon to explore. 
2. Explore selected events and the context in which 

they occurred. 
3. Dynamically drill down and adjust which details to 

display. 
4. Summarize interactions in a human-understandable 

form. 

5. Require minimal effort to adapt the tool to new 
versions, to new users, or to other tutors. 

3. Approach, illustrated by running example 

Project LISTEN’s Reading Tutor listens to children read 
aloud, and helps them learn to read.  A Reading Tutor 
session consists of reading a number of stories.  The 
Reading Tutor displays a story one sentence at a time, and 
records the child’s utterances for each sentence. The 
Reading Tutor logs each event (session, story, sentence, 
utterance, …) into a database table for that event type.  
Data from tutors at different schools flows into an 
aggregated database on our server.  For example, our 
2003-2004 database includes 54,138 sessions, 162,031 
story readings, 1,634,660 sentences, 3,555,487 utterances, 
and 10,575,571 words. 

Screenshots of the Reading Tutor itself appear 
elsewhere (Mostow, Beck, Bey et al., 2004); here we 
focus on the tool – a Java™ program that queries a 
MySQL database server (MySQL, 2004), both running on 
ordinary PCs. We now explain how this tool achieves the 
requirements listed in Section 2.1. 

3.1. Specify which phenomenon to explore. 

First, how can we specify events to explore?  A deployed 
tutor collects too much data to look at, so the first step in 
mining it is to select a sample.  A database query 
language provides the power and flexibility to describe 
and efficiently locate phenomena of interest. For example, 
the query “select * from utterance order 
by rand() limit 10” selects a random sample of 
10 from the table of student utterances.  Whether the task 
is to spot-check for bugs, identify common cases, 
formulate hypotheses, or check their sanity, our mantra is 
“check (at least) ten random examples.”  Random 
selection assures variety and avoids the sample bias of, 
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for example, picking the first ten examples in the 
database. 

Although an arbitrary sample like this one is 
often informative, a query can focus on a particular 
phenomenon of interest, such as the set of questions that 
students took longest to answer, or steps where they got 
stuck long enough for the Reading Tutor to prompt them.  
Exploring examples of such phenomena can help the 
educational data miner spot common features and 
formulate causal hypotheses to test with statistical 
methods on aggregated data.  

Our running example focuses on a particular 
student behavior:  clicking Back out of stories.  The 
Reading Tutor has Go and Back buttons to navigate to the 
next or previous sentence in a story.  We had previously 
observed that students sometimes backed out of a story by 
clicking Back repeatedly even after they had invested 
considerable time in the story.  We are interested in 
understanding what might precipitate this undesirable 
behavior. 

 
Figure 2:  Query and its resulting table of events 

The query in Figure 2 finds a random sample of 
10 stories that students backed out of after spending more 
than a minute in the story.  The columns of this table 
correspond to the fields for “story_encounter” (a reading 
of a story) in the database, including the start and end 
times of the story, the name of the computer that recorded 
it, when the session started, how the user exited the story 
(by finishing it, backing out, etc.), the name of the story, 
the user ID of the student, and so on. 

Second, what information suffices to identify a 
tutorial interaction so a tool can explore it?  A key insight 
here is that student, computer, and time interval are 
enough, because together they uniquely specify the 
student’s interaction with the tutor during that time 
interval.  (We include computer ID in case the student ID 
is not unique.)  This “lowest common denominator” 
should apply universally to virtually any tutor, though the 

end time of the interval might be problematic for a web-
based tutor that doesn't know when the student leaves a 
page. 
 Third, how can we translate the result of a query 
into a set of tutorial events?  The tool scans the labels 
returned as part of the query, and finds the columns for 
student, computer, start time, and end time.  The code 
assumes particular names for these columns, e.g. 
“user_id” for student, “machine_name” for computer, and 
“start_time” for start time.  If necessary the user can 
enforce this naming convention, e.g., by inserting “as 
start_time” in the query to relabel the column.  We 
require that the fields for student, computer, start time, 
and end time be keys in the database tables.  Indexing 
tables on these fields enable fast response by the tool even 
for tables with millions of records. 

3.2. Explore selected events and the context in 
which they occurred. 

The tool lists field names and values for a selected record 
as shown in Figure 3.  However, this information supports 
only limited understanding of the event, because it lacks 
context. 

 
Figure 3:  Attribute-value list for selected event 

What is the context of an event?  Our answer is:  
“its chain of ancestors.”  For example, the ancestors of the 
selected story encounter summarized in Figure 3 are the 
session in which it occurred, and the student in that 
session.  Figure 4 summarizes this context. 

 

 
Figure 4:  Hierarchical ontext of selected event 



How can we discern the hierarchical structure of 
student-tutor interaction?  At first we computed this 
hierarchy using its hardwired schema for the Reading 
Tutor database to determine which events are part of 
which others.  But then we had a key insight:  exploit the 
natural hierarchical structure of nested time intervals. 

If events A and B have the same student and 
computer, when is A an ancestor of B?  We initially 
required that A contain all of B.  But we relaxed the 

criterion to better handle occasional overlapping intervals 
in our data.  We therefore define A as an ancestor of B if 
B starts during A. 

The tool computes the event tree shown in 
Figure 4 (and in Figure 5 below) by partial-ordering the 
events according to the transitive closure of this ancestor 
relation.  The parent of an event is defined as its minimal 
ancestor.  Siblings are defined as sharing the same parent, 
and are ordered by their start times. 

 
Figure 5:  Hierarchical context and partially expanded details of a selected event 

3.3. Dynamically drill down and adjust which 
details to include. 

How can we generate a dynamic, adjustable-detail view 
of hierarchical structure in a human-understandable, 
easily controllable form?  We adapted a standard widget 
for expandable trees.  Given a target event, the tool at first 
displays only its context, i.e., its direct ancestors, omitting 
other students, sessions, and stories.  To see the offspring 
of the selected story “Earthworms Have An Important 
Job” or any other event, the user expands it by clicking on 
the “+” icon to its left.  The folder icon marks events not 
yet fully expanded. Collapsing and re-expanding a 
partially expanded event reveals its other offspring. 

Figure 5 shows the result of expanding some 
details of the event, in particular the sentence encounters 
preceding the end of the story encounter, back to where 

the student started backing out of the story, as the 
Student_Click “user_goes_back” events indicate. 

Expanding these details revealed a surprise:  the 
Reading Tutor said to click Back.  The student had 
clicked above the sentence.  This event might mean a 
student wants to return to the previous sentence – or that 
he is trying to click on a word for help but missed the 
target.  Due to this ambiguity, the Reading Tutor does not 
respond to “user_clicks_above_sentence” by backing up, 
but just by saying “If you want to go back, press the Back 
button.”  This example suggested the novel hypothesis 
that the Reading Tutor itself might unintentionally be 
prompting students to back out of stories! 

What steps might subsequent data mining 
pursue, with what support by the tool? 

• Continue browsing this case to try to identify 
other possible reasons for backing out. 



• Check other instances of backing out (by 
clicking on other events from the table in Figure 
3) to see if the Reading Tutor suggested it. 

• Retrieve cases of the same Reading Tutor prompt 
by formulating a suitable query to enter in the 
query box (see Figure 2) to see if the student 
backed out then as well. 

• Develop a query to count how often students 
back out with vs. without such a prompt.  This 
step constitutes a return to the quantitative phase 
of data mining, but the tool can help test whether 
the query treats 10 randomly chosen cases 
correctly. 

The focus of this paper is not this particular example but 
the tool, to which we now return. 

Besides drilling down as above, we let the user 
specify more globally which types of events to display. 
Figure 6 shows the “Pick tables” tab.  The left side shows 
which database is currently selected.  We assume the 
database has a different table for each type of event.  A 
checkbox for each table in the current database specifies 
whether to include that type of event in the event tree.  
For example, turning on “audio_output” shows speech 
output by the Reading Tutor, such as “if you want to go 
back press the Back button.”   

 
Figure 6:  Select database and tables 

 The checkboxes do not distinguish among events 
of the same type.  For instance, a user might want the 
event tree to include the tutor’s spoken tutorial assistance 
but not its backchannelling (e.g., “mmm”).  User-
programmable filters would allow such finer-grained 

distinctions, but be harder than using check boxes to 
specify which event types to include. 

3.4. Summarize events in human-
understandable form. 

We have already described the event trees we use to 
convey the hierarchical structure of tutorial interaction.  
But how do we summarize individual events? 

Temporal properties are common to all events, 
so we treat them uniformly.  An event’s absolute start and 
end times seldom matter except for time of day or time of 
year effects.  Therefore we display them only in the 
event’s attribute-value list, and for a session. 

In contrast, the duration of an event is a simple 
but informative universal measure. For example, the fact 
that most of the sentence encounters before the student 
started backing out of the story lasted 14-39 seconds 
indicates a slow reader. The duration of an event is simply 
its end time minus its start time. 

The hiatus between two events is informative 
because it reflects user effort, hesitation, confusion, or 
inactivity.  For example, the fact that the hiatuses before 
Back clicks were less than 100 milliseconds long suggests 
that the student may have been clicking repeatedly as fast 
as possible.  The hiatus between a parent event A and its 
first offspring B is the start time of B minus the start time 
of A.  The hiatus between two successive sibling events B 
and C is the start time of C minus the end time of B. 
 Precise times seldom matter for a duration or 
hiatus, so for readability and brevity, we display only the 
largest non-zero units (days, hours, minutes, seconds, 
milliseconds). 
 The complete attribute-value list for an event 
occupies considerable screen space, and is displayed only 
for the currently selected event.  In contrast, the tool 
displays all the one-line summaries for an event tree at 
once.  What information should such summaries include?  
How should it be displayed?  How should it be computed? 

The answers depend on the type of event.  We 
observed that although the Reading Tutor’s database 
schema has evolved over time, the meaning of table 
names is nevertheless consistent across successive 
versions and between databases created by different 
members of Project LISTEN.  Therefore we wrote one 
function for each table to translate a record from that table 
into a one-line string that includes whatever we think is 
most informative.  Ideally these functions are simple 
enough for users (educational data miners) to modify to 
suit their own preferences.  The default string for a table 
without such a function is just the name of the table, e.g., 
“Session” or “Story_encounter.” Most functions just 
display one or more fields of the record for the event.  For 
example, the function for a session just shows its start 
time.  Some functions incorporate information from other 
tables.  For example, the function for a story encounter 



retrieves its title from a separate table.  Special-purpose 
code adds a node the user can click to play back a 
recorded utterance, or displays “Audio not available” if its 
audio file has not yet been archived (as in the case of the 
December 2004 example shown here). 

3.5. Require minimal effort to adapt the tool to 
new versions, to new users, or to other tutors.  

How can the tool obtain the information it needs about a 
database of tutor interactions?  Its generic architecture 
enables it to make do with readily available meta-data, a 
few assumed conventions, and a little code. MySQL 
provides the required meta-data, namely the list of tables 
in the database, the fields in each table and event list, and 
their names and data types.  We exploit the observation 
(or assumption) that the meaning of field names is 
consistent across database tables and over time.  The code 
assumes particular field names for student, machine, and 
start and end times, but overrides this convention when 
necessary, as in the case of a particular table with a 
“Time” field instead of a “Start_time” field. 
 The method to compute the context of a selected 
target event is:  First, extract its student, computer, and 
start time.  Then query every table of the database for 
records for the same student and computer whose time 
interval contains the start of the target event.  Finally, sort 
the retrieved records according to the ancestor relation, 
and display them accordingly by inserting them in the 
appropriate positions in the expandable tree widget.   

The method to find the children of a given event 
fires only when needed to expand the event node.  It finds 
descendants in much the same way as the method to find 
ancestors, but then winnows them down to the children 
(those that are not descendants of others).   

A more knowledge-based method would know 
which types of Reading Tutor events can be parents of 
which others.  However, this knowledge would be tutor- 
and possibly version-specific.  In contrast, our brute force 
solution of querying all tables requires no such 
knowledge.  Moreover, its extra computation is not a 
problem in practice.  Our databases consist of a few dozen 
tables, the largest of which have tens of millions of 
records.  Despite this table size, the tool typically 
computes the context of an event with little or no delay. 

4. Future Work 

Future work includes integrating the session browser with 
other educational data mining methods, and exploring its 
value to more users. 

4.1. Integration with other methods 

The Data Shop team at the Pittsburgh Science of Learning 
Center (www.learnlab.org) plans to incorporate the 
session browser in the suite of educational data mining 
tools it is developing to analyze data logged by tutors.  
The contextual inquiries performed by this team identified 
the need to understand context as an important aspect of 
analyzing data from tutors.  The session browser should 
help researchers understand the context of data by 
exploring specific examples. 

For example, one Data Shop tool will compute a 
learning curve for a given skill by aggregating over 
students’ successive opportunities to apply that skill.  A 
spike in a learning curve suggests a bug in the underlying 
cognitive model of skills.  Integrating the session browser 
into the tool suite will facilitate analyzing such spikes by 
inspecting example steps for clues as to what made those 
steps harder than the model predicted. 

Integrating the session browser with tools for 
analyzing and visualizing aggregated data will facilitate 
exploiting the synergy between quantitative and 
qualitative analysis.  However, it is not clear that methods 
for visualizing aggregated data apply in any useful way to 
the individual cases explored by the session browser. 

One reason is obvious:  visualization methods 
apply to large sets of data and exploit their regularity.  In 
contrast, the individual cases explored by the session 
browser are limited in scope and heterogeneous in 
structure (comprised of multiple event types).  

Another reason is less obvious:  visualization 
methods apply to quantitative features of data.  But aside 
from temporal information, the features that provide 
useful context for tutorial events are largely qualitative 
rather than quantitative – what text the student was 
reading, what the tutor said, what the student did, and so 
forth.  In order for visualization methods to apply usefully 
to such data, they will presumably need to be translated 
into quantitative form.  Methods that map qualitative data 
into quantitative form by aggregation, such as 
histogramming, may have limited relevance to analyzing 
individual cases. 

4.2. Expansion to other users 

Who will find the session browser useful? 
 The first candidates are the researchers 
developing and evaluating Project LISTEN’s Reading 
Tutor.  It is not a foregone conclusion that we will find 
the session browser useful.  After all, our previous 
attempt turned out to be too constraining, as Section 2 
explained, motivating the requirements in Section 2.1. 
 The next candidates are researchers interested in 
analyzing data from other tutors.  Incorporating the 
session browser into the Data Shop will test its utility for 
this purpose. 



Will teachers find the session browser useful?  
Probably not – unless three challenges are overcome.   

First, teachers are too busy to spend much if any 
time poring over detailed traces of their students’ 
behavior.  Data and analyses can be useless to them 
without prescriptions for what to do about it (Fuchs, 
Fuchs, Hamlett, & Ferguson, 1992).  To warrant teachers 
spending time using the session browser, it would have to 
quickly deliver information they found useful. 

Second, understanding data logged by a tutor 
tends to require intimate familiarity with how the tutor 
works.  The Data Shop team’s interviews with other 
researchers confirmed that this issue is not specific to our 
data.  Unless this problem is solved, tools for mining data 
from a tutor may be useful only to its developers, or to a 
few intrepid researchers willing to invest the effort 
required to gain such familiarity.  The session browser 
may help ameliorate this difficulty to the extent that it 
makes it easy to write tutor-specific methods to generate 
self-explanatory event summaries, but it is unrealistic to 
expect them to solve the whole problem. 

Third, the session browser is designed more for 
power and flexibility than for simplicity.  For instance, 
the mechanism to specify which events to explore is very 
general, but requires the ability to write a MySQL query.  
Accommodating less skilled users would require 
providing useful “pre-canned” queries or scaffolding the 
query formulation process. 

5. Conclusion 

This paper reports an implemented, efficient, generic 
solution to a major emerging problem in educational data 
mining:  efficient exploration of vast student-tutor 
interaction logs.  We identify several useful requirements 
for a tool to support such exploration.  Our key 
conceptual contribution uses temporal relations to expose 
natural hierarchical structure.  This is the sense in which 
“time will tell” many basic relationships among tutorial 
events. 

The success of this approach suggests specific 
recommendations in designing databases of tutorial 
interactions:  Log each distinct type of tutorial event in its 
own table.  Include student ID, computer, start time, and 
end time as fields of each such table so as to identify its 
records as events.  Name these fields consistently within 
and across databases created by successive versions of the 
tutor so as to make them easier to extract.  Adding new 
tables and fields is fine, but keep the names of the old 
ones to reuse their display code. 

Relevant criteria for evaluating this work include 
implementation cost, efficiency, generality, usability, and 
utility.  Implementation cost was only several person-
weeks for the tutor-specific prototype and about the same 
for its generalized interval-based successor. 

Using ordinary PCs for the database server and 
the session browser to explore databases for hundreds of 
students, thousands of hours of interaction, and millions 
of words, the operations reported here usually update the 
display with no perceptible lag, though a complex query 
to find a specified set of events may take several seconds 
or more. 

Structural evidence of generality includes the 
tool’s predominantly tutor-independent design, reflected 
in the code’s brevity and its scarcity of references to 
specific tables or fields of the database.  Empirical 
evidence of generality includes successful use of the tool 
with databases from different years’ versions of the 
Reading Tutor.  We have not as yet tested it on databases 
from other groups; most tutors still log to files, not 
databases. 

It is early to evaluate usability because the tool is 
still so new.  We have not conducted formal usability tests 
on its initial target users, namely Project LISTEN 
researchers engaged in educational data mining. However, 
we can claim a ten- or hundred-fold reduction in 
keystrokes compared to obtaining the same information 
by querying the database directly.  For example, clicking 
on an item in the event list displays its context as a chain 
of ancestor events.  Identifying these ancestors by 
querying the database directly would require querying a 
separate table for each ancestor. 

As for utility, the ultimate test of this tool is 
whether it leads to useful discoveries, or at least 
sufficiently facilitates the process of educational data 
mining that the miners find it helpful and keep using it.  
To repeat our subtitle in its more usual sense, “time will 
tell!” 
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