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Abstract.  Intelligent computer tutors can derive much of their power from having a 
student model that describes the learner’s competencies.  However, constructing a student 
model is challenging for computer tutors that use automated speech recognition (ASR) as 
input.  This paper reports using ASR output from a computer tutor for reading to compare 
two models of how students learn to read words:  a model that assumes students learn 
words as whole-unit chunks, and a model that assumes students learn the individual 
letter sound mappings that make up words.  We use the data collected by the ASR to 
show that a model of letter sound mappings better describes student performance.  We 
then compare using the student model and the ASR, both alone and in combination, to 
predict which words the student will read correctly, as scored by a human transcriber.  
Surprisingly, majority class has a higher classification accuracy than the ASR.  However, 
we demonstrate that the ASR output still has useful information, and that classification 
accuracy is not a good metric for this task, and the Area Under Curve (AUC) of ROC 
curves is a superior scoring method.  The AUC of the student model is statistically reliably 
better (0.670 vs. 0.550) than that of the ASR, which in turn is reliably better than majority 
class.  These results show that ASR can be used to compare theories of how students learn 
to read words, and modeling individual learner’s proficiencies may enable improved speech 
recognition. 

1 Motivation and Introduction 

Intelligent Tutoring Systems (ITS) derive much of their power from having a student model 
[1] that describes the learner’s proficiencies at various aspects of the domain to be learned.  
For example, the student model can be used to determine what feedback to give [2] or to 
have the students practice a particular skill until it is mastered [3] Unfortunately, language 
tutors have difficulty in developing strong models of the student.  Much of the difficulty 
comes from the inaccuracies inherent in automated speech recognition (ASR).  Providing 
explicit feedback based only on student performance on one attempt at reading a word is 
not viable since the accuracy at distinguishing correct from incorrect reading is not high 
enough [4].  Due to such problems, student modeling has not received as much attention in 
computer assisted language learning systems as in classic ITS [5], although there are 
exceptions such as [6].     
 A common approach to developing cognitive models for use in an ITS is to use think-
aloud protocols  [7, 8].  In a think-aloud study [7], participants verbalize their thinking 
while solving a problem.  Such verbalizations are then used to construct a cognitive model 
of how the participants were solving the task.  This approach has also been used to develop 
cognitive models for ITS [8].  Unfortunately, due to the speed of the reading process, think-
aloud methodology is not well suited to modeling reading. 
 There have been efforts to develop cognitive models that describe the reading process.  
For example, [9] developed a parallel distributed processing model that was able to 
simulate many aspects of human performance.   A major drawback of this approach is the 
models are designed for individual word reading and not for reading connected text.  
Furthermore, rather than observing the reader’s behavior with each word to model this 



particular reader, these studies use simulated input to try to mimic known human behavioral 
characteristics.    
 The goal of this paper is to first quickly compare two models of how children learn to 
read, and then to use the better model to improve the ability of the ASR to listen accurately 
to children.   
 We first describe our approach to collecting and representing our data, and describe two 
candidate models of children’s reading.  We then compare which model better fits student 
performance as scored by the ASR.  Finally to determine whether the student model can 
improve listening accuracy, we compare the effects of combining the student model and the 
ASR to better predict how a human transcriber judges words as read correctly or 
incorrectly.   

2 Approach to Constructing the Student Model 

In this Section we discuss the data used for experiments, our statistical framework for 
modeling, and the two models of reading we are investigating.   

2.1 Data collected and representation 
We collected data from 541 students working with a computer tutor that helps children 
learn how to read.  Over the course of the school year, these students read approximately 
4.1 million words (as heard by the ASR).  The tutor presented one sentence (or fragment) at 
a time, and asked the student to read it aloud.  The student’s speech was segmented into 
utterances that ended when the student stopped speaking.  Each utterance was processed by 
the ASR and aligned against the sentence. This alignment scores each word of the sentence 
as either being accepted (heard by the ASR as read correctly), rejected (the ASR heard and 
aligned some other word), or skipped (not read by the student).  We use the terms 
“accepted” and “rejected” rather than “correct” and “incorrect” due to inaccuracies in the 
ASR.  The ASR only notices about 25% of student misreadings, and scores as incorrectly 
read about 4% of words that were read correctly.  Therefore “accept” and “reject” are more 
accurate terms.     
 One problem is determining how to score each word in the sentence text.  As an 
example, suppose the student is trying to read the sentence “They are formed over millions 
of years and once depleted will take millions of years to replenish,” and misreads 
“depleted,” and stops reading after “will.” Clearly the word “depleted” was read incorrectly, 
but what about the words “take” through “replenish?”  It is odd to score these words as 
incorrect, since the student did not try to read them.  However, the student stopped reading 
the sentence for some reason.  Since his true reason for stopping is unknown, we assume 
the student had difficulty with the next word in the sentence where he stopped reading.  So 
in the above example, the student would be considered to have misread “take.”   
 Our heuristic for scoring the sentence words was: 

1. For each utterance 
a. Start = position of first accepted word 
b. End = 1+position of last accepted word  
c. Use the ASR’s accept/reject decision to score all words from Start through 

End as correctly or incorrectly read. 
d. Even if the ASR accepted a word, if the student hesitated more than 300ms, 

score that word as incorrect. 
2. For each sentence word w 

a. Find the first utterance where w’s position is between Start and End 
b. Use the ASR’s score for w from that utterance.  If nothing is aligned against 

w, score it as incorrectly read. 



c. If a student requested help on w before it was accepted by the ASR, mark it 
as incorrectly read. 

d. If w is not contained within any utterance, then it is not scored since the 
student did not attempt to read the word. 

 To continue the above example, if the student’s second attempt at reading the sentence 
consisted of “take millions of years to replenish,” then all of the sentence words would be 
accepted as read correctly except for “depleted” (since it was misread) and “take” (since in 
the first utterance that contains this sentence word nothing was aligned against the sentence 
word).   
  After using this methodology to combine utterances, and removing students who 
were not part of the official study, we were left with 360 students and 1.95 million sentence 
words that students attempted to read.  On average, students used the tutor for 8.5 hours.  
Most students were between six and eight years old, and had reading skills appropriate for 
their age.     

2.2 Knowledge tracing 
Now that we have determined how to score student attempts at reading a word as correct or 
incorrect, we must map those overt actions to some internal representation of the student’s 
knowledge.  Prior work in this area [10] has shown that knowledge tracing [3] is an 
effective approach for using ASR output to model students.   
   The goal of knowledge tracing is to map observable student actions while performing a 
skill (whether the student’s response is correct or incorrect) to internal knowledge states 
(whether the student knows the skill or not).  As illustrated in Figure 1, knowledge tracing 
maintains four constant parameters for each skill.  Two parameters, L0 and t, are called 
learning parameters and refer to the students initial knowledge and to the probability of 
learning a skill given an opportunity to apply it, respectively.  Two parameters, slip and 
guess, are called performance parameters and used to account for student performance not 
being a perfect reflection of underlying knowledge.  The guess parameter is the probability 
that a student who has not mastered the skill can generate a correct response.  For example, 
on a multiple-choice test with four response choices, a student with no knowledge still has a 
25% chance of getting the question correct.  The slip parameter is used to account for even 
knowledgeable students making an occasional mistake.  For example, a student who when 
asked to multiply 4 and 3, could accidentally hit the keys in the wrong order and type “21.”   
 

 

 

 

 

 

 

 

 

 

Figure 1.  Overview of knowledge tracing 

  For each student and for each skill, knowledge tracing is maintains the probability 
that the student knows the skill.  Knowledge tracing updates its estimates of P(knows) 
based on student performance.  The approach is that whenever a student has an opportunity 
to apply a skill, observe whether the student performed the skill correctly or incorrectly.  
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The probability of P(knows) can then be computed via Bayes’s rule [3].  In addition, the 
transition probability accounts for the expected increase in student knowledge due to the 
opportunity to practice the skill.    
 Knowledge tracing distinguishes between a student knowing a skill and getting it 
correct.  P(knows skill) refers to the model’s estimate of the student’s internal knowledge.  
P(correct response) is derived from P(knows skill) and the performance parameters:  
P(correct response) = P(knows skill) * 1 – P(slip) + 1 – P(knows skill) * P(guess).  Prior 
work on applying knowledge tracing to ASR output [10] demonstrated that the slip and 
guess parameters, in addition to accounting for variability  in student performance, can also 
account for variability in the ASR scoring of student responses.  Therefore, knowledge 
tracing is an appropriate modeling framework for this task. 

2.3 Lexical and graphophonemic models 
We considered two possible models for how students could learn to decode words.  The 
first is a lexical model, which assumes that students learn words as a whole-unit, and there 
is no transfer between words.  Although the assumed lack of transfer is somewhat naïve, it 
is likely that skilled readers recognize most words by sight.  It is less clear, however, 
whether children learning to read have a similar representation as skilled readers. 
 The second model is a graphophonemic model, and assumes that rather than learning 
whole-words, students instead learn subword units.  Specifically, it assumes that students 
learn the grapheme (letter) to phoneme (sound) mappings that make up words.  For 
example, the word “chemist” contains the following grapheme phoneme mappings:  
ch /K/, e /EH/, m /M/, i /IH/, s /S/, and t /T/.  The grapheme phoneme model is 
abbreviated as g p model. 
  Given these two possible models, the next task is to determine which model is better 
described by our data under the knowledge tracing framework.   

2.4 Evaluating the lexical and g p models 
 To determine which model of student reading, lexical or g p, better described student 
performance, we fit each of them to the student performance data as heard by the ASR 
(described above).  First we split the students into two groups (to create a testing set to be 
used later).  For students in the training set, we ordered each student’s performance data 
chronologically.  Then, for each model, we estimated the knowledge tracing parameters for 
each skill based on the student performance data. 
 For the lexical model, we simply treated words as skills.  So each student attempt at 
reading a word was evidence for knowing the whole word or not.  For the g p model, we 
considered all of the g p mappings in the word.  If the word was accepted as correct, then 
all of the mappings were credited; if it was rejected as incorrect then all of the mappings 
were debited.   
 The lexical model had considerably more skills than the g p model.  There were 3210 
lexical skill (i.e. words); in comparison there were only 295 g p mappings encountered by 
students.  As a result of this difference in number of skills, the g p model had substantially 
more students encountering each skill on average (106 vs. 45).  Table 1 describes the 
knowledge tracing parameter estimates for each of the models.  These parameters are the 
average across each skill in the model, weighted by the number of times the skill occurred.  
This weighting is to avoid biasing the model by several skills that occur rarely (e.g. the 
word “arose” or “bts /ts/” as in the word “debts”). 
 Note that the performance parameters (guess and slip) are similar for both models, 
while the learning parameters (L0 and T) are different.  These performance parameters are 
vastly different than in knowledge tracing done in other ITS (where typically “guess” is 
restricted to be less than 0.3).  The reason for this difference is the uncertainty introduced 



by the ASR scoring.  This uncertainty is the reason the performance parameters under both 
models are similar:  the parameters are (mostly) modeling the speech recognition rather 
than the student.  Thus, the agreement in parameter estimates between the two models is not 
surprising.  The column labeled R2 in the table refers to how well the knowledge tracing 
parameters fit each skill. 

Table 1.  Mean knowledge tracing parameters 

 L0 T Guess Slip R2 
Lexical 0.32 0.14 0.65 0.08 0.34

g p 0.49 0.01 0.57 0.10 0.48

 
  At least within the framework of knowledge tracing, student performance is better 
described by the g p model (R2 of 0.48) than by the lexical model (R2 of 0.34).  Thus, the 
g p model appears to be a better description of how children at this age acquire reading 
skills.   

3 Leveraging the Student Model to Improve Speech Recognition 

Although the g p model is a useful way of viewing student performance and it provides a 
reasonable description of how students learn how to read, we would like to use the g p 
student model to make predictions about how students will behave in order to improve the 
speech recognition system.  For example, if the student model believes that the student has 
mastered the g p mappings of the word “cat,” but the ASR believes the student misread 
the word, perhaps we should ignore the ASR output and instead credit the student with 
reading the word correctly. 
 To evaluate possible improvements to the ASR, we had a skilled human transcribe a 
sample of the student utterances throughout the year.  We followed the same protocol for 
aligning the sentence text against the transcription as we did for the ASR output, and 
similarly computed regions of the sentence we thought the student was attempting to read 
and counted the student’s first attempt at reading the word.  There were two differences 
from the prior procedure.   
 First, we excluded cases where the student requested help on the sentence word before 
reading it.  Since the goal of this experiment was to evaluate whether a student model could 
improve ASR performance, help was a confound since it could be detected by neither the 
ASR nor the transcriber.  Therefore, we simply excluded such trials. 
 Second, we insisted that the ASR and transcriber agree about which word the student 
was trying to read.  Sometimes the ASR would be confused by background noise and get 
off-track.  We were not trying to improve performance in these cases, so simply excluded 
them from the data. 
  Our approach was to treat the problem as classification.  We used the second, testing, 
half of our data, so these data are not the ones used to perform the knowledge tracing 
parameter estimates of L0, t, slip, or guess.  For the students in the testing set, we ran their 
data for the year through the knowledge tracing equations to determine skill estimates for 
each student for each g p mapping.  While tracing through a student’s performance for the 
year, if a particular word had been transcribed, we recorded:  1) the student’s knowledge at 
that point in time (before updating the knowledge tracing estimates of the student’s 
knowledge for this attempt), 2) the ASR’s accept/reject decision, and 3) whether the 
transcriber thought the student said the word correctly.  The transcriber’s scoring was the 
outcome variable for the classifier.  We considered several types of features for the 
classifier: 



1. The relative difficulty of the word for the student.  We pretested students at the 
beginning of year on a variety of tests, including the Woodcock Reading Mastery’s 
[11] Word Identification subtest, which gives a student’s proficiency at reading 
words in grade equivalent terms (e.g. 3.2 means second month of the 3rd grade).  We 
also had a heuristic that estimates the difficulty of the word on the same grade 
equivalent scale.  The difference between these scores is the relative difficulty of the 
word for this student.   

2. The student’s proficiencies at the g p mappings in the word.  Since words have a 
variable number of mappings, we needed some way to get a constant number of 
features per word.  We settled on extracting the student’s proficiency on the 
following g p mappings in the word:   the first, the last, the one with the lowest 
proficiency, and the one with the highest proficiency.  We also computed the 
student’s mean proficiency across all the g p mappings in the word, and product of 
P(knows) for a all the mappings in the word.  In addition to computing those six 
features for P(knows), we also computed them for P(correct) (according to the guess 
and slip parameter estimates for the skill).   

3. The ASR’s accept/reject decision for this word. 
 
 The testing set contained nearly 1 million sentence words heard by the ASR.  However, 
only 8,818 of those words were transcribed.  Furthermore, these data were highly 
imbalanced, with 369 (4.2%) instances of students misreading a word and 8449 (95.8%) 
instances of correct reading.  Although it may seem unusual for students to read 95.8% of 
words correctly (not counting those words on which they requested help), this level of 
performance is appropriate for material to help children learn to read.   
 For input to the classifier, we used several combinations of the above three groups of 
features:  relative word difficulty, knowledge tracing features, the ASR, ASR + relative 
word difficulty, and ASR + relative word difficulty + knowledge tracing features.   
 The relative word difficulty is in essence a simple student model:  how hard is this 
word for a student of this general reading proficiency; the knowledge tracing model is a 
more nuanced view since it accounts for variations in the student’s knowledge.  Thus, we 
can compare the relative benefit of using different levels of knowledge about the student.   
 Table 2 shows the results of the classification procedure.  All results were generated 
using Weka’s [12] REPTree fast decision tree learner’s default settings, with bagging (10 
bags) and a 20-fold cross validation.   
 The five most salient items from Table 2 are: 

1. No approach did noticeably better than baseline (maximum difference 1.85%). 
2. Majority class outperformed the ASR. 
3. The only classifiers that beat majority class used the knowledge tracing features as 

inputs. 
4. The student model was not able to improve classification accuracy by much.  In 

fact, the best performer only classified 6 more cases correctly than the majority 
classifier. 

5. Having the ASR as a feature hurt performance.   
However, perhaps classification accuracy is not the best metric to use.  Even though 
majority class outperforms the ASR, would it really be a superior scoring system to always 
assume the student read the word correctly?  As a thought experiment, pretend that we had 
simply scored all student reading as being correct rather than using the ASR at all.  It would 
have been impossible to apply knowledge tracing (or other student modeling approaches).  
Therefore, we would never have been able to get the small improvement in classification 
accuracy over majority class that we obtained by adding the knowledge tracing estimates.  
Although the improvement is very slight, it does exist.  Given that the student model was 



built from the ASR output, it must contain some signal that is being overlooked by a simple 
majority classifier.   

Table 2.  Classifier accuracy for predicting transcription 

 
 
 
 
 
 
 
 
 
 
 
 
 
  Furthermore, the primary goal of the ASR in a computer tutor is not to get high 
classification accuracy, it is to serve as a means to construct a student model to enable the 
tutor to select appropriate feedback and customize instruction for the student.  It is unclear 
how assuming that the student is always correct can accomplish these modeling or teaching 
goals.   
 Perhaps lower classification accuracy is better if it enables the tutor to better model the 
student?  One method of accomplishing this goal is to give different penalties to different 
types of classification mistakes.  Unfortunately, it is difficult to specify a priori a good 
evaluation function that would lead to a good student model.  For example, we could try 
different penalties for different types of classification mistakes, then compute how well we 
can model the student, and iterate.  However, this approach is not computationally efficient.  
Furthermore, our ability to model the student depends on the domain being taught, known 
models for how students acquire the skills, etc.  Therefore, it would be difficult to transfer 
research results tuned for one system to others.   

 One approach that sidesteps the problems of non-generalizable results  and inventing 
penalties for various classification mistakes is to examine the Receiver Operator 
Characteristic (ROC) curves of the classifiers [13, p. 361].  Specifically, we investigate the 
Area Under Curve (AUC) of the ROC curves.  AUC is a measure of the classifier 
sensitivity: how well does the classifier do at distinguishing instances of each target class.
 Classifiers with a higher AUC are better than those with a lower AUC.  A random (or 
majority) classifier will have an AUC of 0.5.   

Table 3 shows the AUC for the classifiers shown in Table 2.  The lower and upper 
bounds for the AUC were computed via SPSS’s 95% confidence intervals making no 
parametric assumptions.   
 All of the AUCs are reliably superior to 0.5 (i.e. better than majority class).  Therefore 
each set of features is able to distinguish the difference in likelihoods of the student making 
a mistake under different circumstances.  Interestingly, all of the student models, even the 
simple model of relative word difficulty, were reliably superior to just using the ASR.  The 
more complicated knowledge tracing model did not outperform the simpler model that just 
used word difficulty.  However, there may be some slight gain from combining them with 
ASR (0.686 vs. 0.678).  Therefore, it seems likely that both the simple and more 
complicated student model contain some independent information about the student’s 
chances of reading a word correctly.    

Features Classifier accuracy 
Knowledge tracing 95.88% 
ASR + relative difficulty + knowledge tracing 95.84% 
ASR + knowledge tracing 95.84% 
Majority class 95.82% 
Relative difficulty 95.79% 
ASR + relative difficulty 95.78% 
ASR (baseline) 94.03% 



4 Contributions 

This work extends prior work on testing models of reading in several ways.  First, it applies 
the models to individual’s data rather than to aggregate performance (as in [9]).  Second, it 
examines students learning to read in vivo in the classroom rather than using simulated data 
(as in [9, 14]).   
 This work extends prior work on using ASR output to build student models (e.g. [10]).  
First, it considers using the student model to aid speech recognition.  Also, rather than 
simply assuming a model of how children acquire reading skills, this paper examines the 
ability of the ASR to help select competing cognitive models reading (lexical and g p 
models).  
 

Table 3.  ROC for various feature combinations 

 
 
 
 
 

 

 

 

 

 

 
 
 Compared to existing work on user modeling for (generally dialog) systems that use 
ASR (e.g. [15] and [16]) this work describes a richer model of the user.  Two advantage of 
an ITS over many other systems that use ASR as input are that users work with the system 
for an extended length of time (8.5 hours in our study), and the system has a better idea of 
what the user is trying to do.  Both of these features make for stronger user models.   

5 Conclusions and Future Work 

The ASR of a computer tutor for reading provides information about an individual student’s 
reading development.  The content of this information is sufficient to choose which of two 
possible models of reading development better describes the students using the tutor.  
Specifically, children learning to read are better modeled using subword properties 
(grapheme phoneme mappings) than by treating words as atomic units.   
 The ASR is also powerful enough to construct a student model based on the student’s 
past actions that can predict how the student will perform next—even when judged by a 
human transcriber. 
 Determining what constitutes good ASR performance in an ITS is complex, and 
classification accuracy can be misleading.  Instead, AUC is a better metric for the actual 
task of the ASR:  to provide a signal to customize instruction to the student.  Using AUC as 
an outcome measure, the student model was able to improve the ability to hear the student’s 
reading.   
 The method for constructing a student model from the ASR output is somewhat crude.  
Two areas of improvement are a better credit model and using cues other than 
acceptance/rejection of a word.  Currently, all of the g p mappings in a word are blamed 

Features AUC Lower 
bound 

Upper 
bound 

ASR + knowledge tracing + difficulty 0.686 0.656 0.716 

ASR + knowledge tracing 0.678 0.649 0.708 

ASR + difficulty 0.678 0.648 0.707 

Just difficulty 0.670 0.641 0.699 

Just knowledge tracing 0.670 0.640 0.700 

Just ASR 0.550 0.518 0.583 



or credited.  However, if a student misreads a word it is probable that not all of the 
mappings are responsible.  A Bayesian credit assignment approach (e.g. [2]) would 
overcome this weakness.  Similarly, the student’s pattern of hesitation before a word 
contains a useful signal for modeling the student [17].  One possible avenue is to use the 
amount of hesitation before reading a word as a clue to the strategy the student is using: a 
short pause suggests a lexical strategy while a longer pause suggests the student is using his 
knowledge of g p mappings. 
 One open question is rather than using the ASR to compare two competing models of 
reading, is to instead ask whether the ASR be used to determine for which words and for 
which students a particular model is appropriate.  For example, it is likely as students 
become more familiar with a word they will treat it as an atomic unit (as in the lexical 
model), and rely on their knowledge of grapheme phoneme mappings for less familiar 
words.  In the future, we would like to study the ASR’s capacity to detect such transitions. 
 Finally, this paper does not resolve the best method for combining the information 
contained in the student model (historical, averaged, data) and the ASR (current, noisy, 
data).  For example, we demonstrated that for a new utterance, the ASR does not do as good 
a job at determining which words the student read correctly than the student model—even 
though the student model does not use any information from the current attempt!  An 
obvious conclusion is to use the student model to second guess the ASR for the current 
interaction.  Less obvious is how the student model should be updated.  Should the 
student’s estimates be decreased (according to the ASR’s scoring) or increased (according 
to the student model’s scoring)?  If the latter option is chosen, there is a positive feedback 
mechanism built into the student model which could lead to instability:  once the student 
begins to demonstrate knowledge (or lack of knowledge), his scores will have a built-in 
tendency to further increase (decrease).  Intuitively, this mechanism does not sound like a 
good one.  Perhaps it is necessary to decouple the scoring of the student’s responses with 
one set of rules for determining feedback (student model + ASR), but just using the ASR to 
update the student model?   
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