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Abstract. We describe an automated method to assess the expressiveness of 

children’s oral reading by measuring how well its prosodic contours correlate in 
pitch, intensity, pauses, and word reading times with adult narrations of the same 

sentences.  We evaluate the method directly against a common rubric used to 

assess fluency by hand.  We also compare it against manual and automated 
baselines by its ability to predict fluency and comprehension test scores and gains 

of 55 children ages 7-10 who used Project LISTEN’s Reading Tutor.  It 
outperforms the human-scored rubric, predicts gains, and could help teachers 

identify which students are making adequate progress. 
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1. Introduction 

Assessment of children’s oral reading is important for multiple reasons – to compare 

fluency against expected norms [1], provide motivational feedback on rereading to 

improve fluency [2], analyze the longitudinal development of fluency [3], compare the 

efficacy of different types of reading practice [4, 5], study the relation of fluency to 

comprehension [6], and even estimate the reader’s comprehension of a given text [7]. 

Oral reading fluency is the ability to “read text with speed, accuracy, and proper 

expression” [8, p. 3-1].  Educators measure oral reading fluency in two ways.  Oral 

reading rate is the number of words read correctly per minute.  This measure is quick 

and easy to administer, and correlates strongly with children’s comprehension test 

scores [9].  However, it ignores expressiveness. 

Fluency rubrics [e.g., 10] score reading more subjectively and qualitatively against 

specified criteria.  One such rubric [11] rates expression, phrasing, smoothness, and 

pace on separate 4-point scales.   

Previous work on automated assessment of oral reading has focused on oral 

reading rate [12] or closely related variants such as average inter-word latency [13, 14] 

or word reading time [5].  Some work [15] has assessed non-native speakers’ oral 

language.  That problem is related to oral reading fluency but very different, because it 

measures the ability to translate thoughts into language, rather than text into speech. 

In this paper we address the problem of assessing oral reading expressiveness 

automatically.  Solving this problem would make it possible to assess reading more 

                                                           
1
 The research reported here was supported by the Institute of Education Sciences, U.S. Department of 

Education, through Grant R305A0628.  The opinions expressed are those of the authors and do not 
necessarily represent the views of the Institute or the U.S. Department of Education.  We also thank Dr. Paula 

Schwanenflugel for her expertise, and the educators, students, and LISTENers who helped generate our data. 



richly and informatively than oral reading rate, and more precisely and consistently 

than human-scored rubrics.  It could more sensitively detect improvement in oral 

reading, whether across successive rereadings of the same practice text, or in the ability 

to read unpracticed text fluently.  It could serve as the basis for giving children 

feedback on their oral reading, describing how to read more expressively.  It might 

even enable a tutor to unobtrusively gauge a student’s comprehension of a given text 

without interrupting to test it by asking questions. 

The rest of this paper is organized as follows.  Section 2 describes our approach.  

Section 3 evaluates it against various baselines.  Section 4 concludes by summarizing 

contributions and relating them to prior and future work. 

2. Approach 

Our approach is inspired by previous analyses of children’s oral reading prosody, based 

on the insight that the more expressive a child’s reading of a text, the more its prosody 

tends to resemble fluent adult reading of the same text. Schwanenflugel et al. [6, 16, 

17] analyzed adults’ and children’ readings of the same short text.  They painstakingly 

hand-aligned the text to a spectrogram of each reading to compute the duration of 

pauses between sentences, at commas after phrases, and in mid-phrase, called “pausal 

intrusions;” the number of pausal intrusions; the drop in F0 (pitch) at the ends of 

sentences; and the intonation contours of the first three sentences, which they computed 

by measuring F0 at the vocalic nucleus of each word.  Averaging these values across 34 

adults yielded a profile of expressive reading.  Correlating this profile against the 

corresponding values for each child quantified the expressiveness of the child’s oral 

reading, and its changes from the end of grade 1 to the end of grade 2, so as to relate 

them to scores and gains on reading tests administered at those points.  F0 match and 

the number of pausal intrusions were the best indicators of prosodic change between 

first and second grades. 

Our goal was to analyze the expressiveness of children’s assisted oral reading in 

Project LISTEN’s Reading Tutor, which listens to children read aloud, and helps them 

learn to read [18].  The Reading Tutor and the child take turns choosing what to read 

from a collection of several hundred stories with recorded adult narrations.  The 

Reading Tutor displays text incrementally, adding a sentence at a time.  It uses an 

automatic speech recognizer (ASR) [19] to listen to the child read the sentence aloud, 

tracking the child’s position in the text to detect deviations from it and identify the start 

and end points of each word and silence in the recorded oral reading [20].  It responds 

with spoken and graphical feedback to hesitations and miscues detected by the ASR, as 

well as the child’s requests for help by clicking on hard words. 

To automate our analyses we adapted Schwanenflugel et al.’s approach, with 

several key differences in data, methods, and features.  Our data came from the 2005-

2006 version of the Reading Tutor: 

 We used the Reading Tutor’s single adult narration of each sentence, 

rather than multiple adult readings of it. 

 We used children’s oral reading recorded over a whole semester of using 

the Reading Tutor, rather than briefly by researchers for an experiment. 

 We administered tests at start and end of semester, rather than a year apart. 

 We computed prosodic contours on thousands of sentences, not just a few. 



 We used whatever a child happened to read, rather than one common text. 

We replaced manual methods with automated ones:  

 We used the Reading Tutor’s ASR-based time-alignments of text to oral 

reading, rather than identifying each word’s start and end time by hand. 

 We used F0 computed by a pitch tracker [21] and averaged over each 

entire ASR-aligned word, rather than hand-measured at its manually 

located vocalic nucleus in a spectrogram. 

We used a somewhat different set of features: 

 We computed contours for latency, duration, and intensity, not just pitch. 

 We computed pitch variability as standard deviation of F0 rather than as 

difference between high and low F0 values, which outliers can distort. 

 We computed the latency preceding each word, the production time to say 

the word, and their sum as the reading time, both absolute and normalized 

by word length as time per letter, not just the absolute duration of pauses 

between sentences, at phrase-final commas, and in mid-phrase intrusions. 

Thus we represent a prosodic contour of a read sentence as the sequence of values, 

one for each word in the sentence, of a prosodic feature such as the word’s latency, 

duration, mean pitch, or mean intensity.  To quantify the similarity of the child’s 

contour to the adult contour for the same sentence, we simply use its correlation, so we 

get separate similarity scores for each prosodic feature. 

Representing adult and child contours as sequences of word-level values lets us 

compare them despite differences between their time alignments.  Using correlations to 

score the similarity of adult and child contours serves to factor out differences between 

adults and children in baseline F0 (adults’ lower pitch), individual variations in 

intensity, and fluctuations in recording conditions from one sentence to another. 

Prosodic features may be undefined for some words.  For instance, inter-word 

latency is undefined for the first word of a sentence, because the Reading Tutor 

displays one sentence at a time.  Prosodic features are undefined for words the Reading 

Tutor gave help on or did not accept as read correctly. 

We adjust for such missing values as follows.  If a prosodic feature is undefined 

for one or more words in an adult or (more typically) child contour, we exclude them, 

correlate the rest, and penalize the resulting score by the proportion of undefined values.  

For each student we average each word- and sentence-level feature over all of that 

student’s reading.  In averaging similarity scores over multiple sentences, we weight 

the average by the number of words on which each score is based.  It is not enough 

simply to weight each sentence by the number of words with defined values, because 

undefined values in a child’s contour indicate mismatches with the adult contour.  Thus 

adult and child contours for a 10-word sentence with half its values missing earn half 

the similarity score as complete contours for a 5-word sentence, even if they have the 

same 5 defined values. To avoid outliers, we considered only the 55 students who had 

at least 20 sentences. 

Besides averaging each feature per student, we want to characterize how it evolved 

over the course of the semester in which the student used the Reading Tutor.  We plot 

each individual observed feature value against the point in time when it was observed, 

and regress feature values against time.  We use the linear regression coefficient for 

each feature, weighted by its correlation coefficient with time to estimate its rate of 

change, and use these rates as additional features. 



Given a set of features, we predict a dependent variable by using stepwise linear 

regression to fit statistical models, and selecting the model with maximum adjusted R
2
.  

We use cross-validation to estimate this model’s predictive accuracy on unseen data. 

3. Evaluation 

We evaluated our approach directly against a human-scored fluency rubric, and 

indirectly by its ability to predict test scores and gains. 

3.1. Estimate rubric scores 

To analyze the feasibility of automating a conventional multi-dimensional fluency 

rubric, we took a sample of 10 students in our data set, stratified by oral reading rate.  

We took the first 10 sentences each from the first and last stories each student read, so 

as to include variation caused by change in fluency over time.  Two independent 

annotators hand-rated students’ expression, phrasing, smoothness, and pace for each 

sentence on a 4-point scale specified by the fluency rubric [11].  For example, the scale 

for pace ranges from 1 for “slow and laborious” to 4 for “consistently conversational.”  

We averaged the two judges’ ratings over the 20 sentences for each student.  To 

quantify the inter-rater reliability of these two continuous-valued average ratings, Table 

1 shows the intraclass correlation coefficient [22] and mean absolute difference for 

each dimension of the rubric.  Agreement was good for every dimension except 

smoothness, whose scoring was impeded by two factors.  First, the Reading Tutor 

presented text one sentence at a time, which prevented observation of pauses before 

sentences. Second, the annotators used a tool [23] that played back oral reading one 

utterance at a time rather than entire sentences, making some aspects harder to score. 

It is important to note that inter-rater reliability was considerably lower for scoring 

individual sentences on a discrete 4-point scale, with Kappa only 0.087 for smoothness 

and ranging from 0.225 to 0.297 for the other dimensions.  Possibly, reading 

professionals would agree better, or the rubric is simply too subjective. However, the 

simplest explanation is that a single sentence is insufficient to rate reliably. 

Table 1:  Inter-rater agreement for the fluency rubric at the student level 

Rubric dimension Consistency (ICC) Mean absolute difference 

Expression and Volume 0.798 0.287 
Phrasing 0.681 0.408 

Smoothness 0.283 0.674 

Pace 0.721 0.387 

 

 We predicted the average of the two annotators’ ratings from static features of 

each student’s oral reading (excluding rate-of-change features), using SPSS stepwise 

linear regression on the rest of the students.  As Table 2 shows, predicted values 

correlated significantly (p<.05) with these ratings for expression and smoothness. 

Table 2:  Predicting rubric scores using automated features 

Rubric dimension Cross-validated correlation 

Expression and Volume 0.902 

Phrasing 0.281 
Smoothness 0.768 

Pace 0.448 



3.2. Predict test scores 

We also wanted to test the feasibility of predicting students’ scores and gains on 

standard measures of fluency and comprehension.  We measured gains as posttest (end-

of-semester) minus pretest (before using the Reading Tutor).  The fluency test 

measured oral reading rate as the number of words read correctly in one minute on a 

passage at the student’s grade level (2, 3, or 4) [9].  Word reading time correlates 

strongly with word length, and the test passages for the different grades differed in 

average word length (3.8, 4.1, and 4.4, respectively).  To control for this difference, we 

normalized fluency test scores as letters per second instead of words per minute.  The 

comprehension test was the Passage Comprehension component of the Woodcock 

Reading Mastery Test, consisting of short passages with multiple choice questions. 

Beck et al. [14] introduced a model using features based on inter-word latency. 

This latency-based model predicted posttest fluency well, with cross-validated mean 

within-grade correlation of 0.83. We extended it into a correlation+latency model by 

adding our correlation-based features of oral reading, including rate-of-change features 

as well as static features.  We trained models on all the data from the 55 students. 

In general, pretest scores are strong predictors of posttest scores, so we compared 

correlation+latency models against pretest scores as predictors of students’ posttest 

scores and pre- to posttest gains.  We also trained hybrid correlation+latency+pretest 

models to predict posttest scores and gains by augmenting pretest scores with the 

automated features, so as to measure the additional predictive power the features added. 

We evaluated models by their cross-validated mean within-grade correlations 

between predicted and actual values.  We correlated predicted with actual values for 

each grade, and computed the arithmetic mean of these within-grade correlations.  As 

Table 3 shows, the correlation+latency models outperformed pretest scores and 

latency-based models across the board in predicting fluency and comprehension scores 

and gains – in two cases even better than after adding pretest scores. 

Table 3:  Cross-validated mean within-grade correlations between predicted and actual values 

Model   Posttest fluency Comp. posttest Fluency gain Comp. gain 

Pretest scores 0.809 0.738 -0.741 0.202 

Latency-based 0.859 0.724 0.524 0.453 

Correlation+latency 0.872 0.763 0.934 0.504 
Correl.+latency+pretest 0.965 0.690 0.867 0.643 

In our correlation+latency model, the features that explained the most variance in 

posttest fluency were, in order, percentage of words read without hesitation, normalized 

production time, word reading time, normalized production change rate, and latency 

correlation with adult narrations.  Latency strongly influences 3 of our 5 top features 

(including word reading time, which is the sum of latency and production).  The top 

predictors in our correlation+latency model of posttest comprehension scores were the 

percentage of words with defined latency (i.e., read correctly and without omitting the 

previous word [14]), latency correlation, pitch correlation, percentage of Dolch (high-

frequency) words with minimal latency, and change rate of normalized production 

correlation. 

In comparison, Miller and Schwanenflugel [17] found pitch correlation to be the 

best prosodic predictor of grade 3 fluency, and reduction in pausal intrusions from 

grade 1 to grade 2 to be the best at predicting grade 3 comprehension.  Latency and 

pitch correlation were likewise among our most predictive features – but latency 



predicted fluency, and pitch correlation predicted comprehension, rather than vice versa.  

Disfluency hinders comprehension, but one expects intonation to reflect understanding. 

3.3. Compare to rubric-based prediction 

How did our correlation-based features compare to the fluency rubric in predicting 

the same students’ test scores?  To find out, we used the 10 students with rubric scores 

as a held-out set.  We fit correlation-based, pretest-based, and correlation+pretest 

models to the 45 remaining students’ posttest scores, and tested on the held-out data for 

the 10-student sample.  We compared them to models trained on the hand-scored rubric 

ratings for the 10 students using Weka’s linear regression with the M5 feature selection 

method, and evaluated models using leave-1-out cross-validation to avoid overfitting. 

Table 4 compares correlations for the four types of model.  All models predicted 

posttest fluency with correlation 0.93 or better, thanks to the heterogeneity of a small 

sample of students stratified by fluency.  In predicting posttest comprehension, the 

correlation-based model performed better than the rubric-based model.  But was it 

because its features were actually more predictive, or just that it used more data? 

Table 4:  Correlation between predicted and actual posttest scores of 10 rubric-scored students 

Model Posttest fluency  Posttest comprehension 

Pretest-based 0.95 0.79 

Correlation-based 0.95 0.45 

Correlation+pretest 0.97 0.66 
Rubric-based 0.93 0.30 

3.4. Vary the amount of training data 

To distinguish whether the inferior performance of the rubric-based models was 

due to worse features or to less data, we compared them against correlation-based 

models trained on the same 10 students.  One training condition used all their data.  

Another condition used only the 200 sentences scored by the rubric annotator. Table 5 

compares the leave-out-one cross-validated correlation of both models to the feature-

based models described earlier.  As expected, using less data from the same 10 students 

resulted in less competitive models, for both fluency and comprehension. The models 

trained on all sentences from the 10 students also performed better than the models 

trained on the rest of the students, which suggests that they still benefitted from 

information about the test set, even though they were cross-validated. 

Table 5:  Predictive accuracy of correlation-based models trained on different amounts of data 

Training data for  correlation-based model Posttest fluency Posttest comprehension 

Trained on all 53 other students 0.95 0.45 

Trained on all sentences from 10 students 0.98 0.71 

Trained on only 200 sentences from 10 students 0.90 0.34 

4. Contributions, Relation to Prior Work, and Future Work 

In this paper we have presented a method to assess oral reading prosody automatically, 

and evaluated it on a large corpus of real data recorded by Project LISTEN’s Reading 

Tutor in real schools by real students.  We evaluated both directly against a human-



scored rubric, and indirectly by predicting scores and gains on standard tests of oral 

reading fluency and comprehension. 

The resulting estimates compared favorably to alternatives.  Although the method 

did poorly at estimating fluency rubric scores for individual sentences, where inter-rater 

reliability was low, it did better at estimating scores at the student level, and out-

performed rubric scores in predicting students’ fluency posttest scores.  It predicted 

gains in fluency and comprehension much better than standard pretest scores did. 

Our work differs from previous automated assessments of oral reading fluency in 

what and how they estimate.  Balogh et al. [12] used a proprietary system to score the 

speed and accuracy of adults’ oral reading.  They validated against human judges 

counting the number of words read correctly in the same recorded readings.  The 

human judges correlated strongly (0.96-1.00) with the automated assessment – as 

strongly as they did with each other.  It is important to note that individuals’ reading 

rates fluctuate for many reasons, so their rates on different passages or even the same 

passage at different times correlate less than perfectly with each other.  Thus predicting 

posttest fluency is inherently harder than measuring reading rate on the same recording. 

Beck et al. [14] used various aggregate features of word latencies and help requests 

by 87 children in grades 1-4 over a two-month window in Project LISTEN’s Reading 

Tutor to predict their fluency test scores.  They did not predict comprehension or gains, 

but we did so by replicating their model, and improved on its predictive accuracy by 

incorporating additional features inspired by the work of Schwanenflugel et al. 

Zhang et al. [7] attempted to detect moment-to-moment fluctuations in children’s 

comprehension of the text they were reading aloud in the Reading Tutor.  They trained 

a model to predict performance on multiple-choice comprehension questions inserted 

during the reading.   Oral reading behavior improved model fit only marginally after 

controlling for student identity and question attributes affecting difficulty.  Only oral 

reading features related to oral reading rate and accuracy achieved significance – but 

none of their prosodic features compared prosodic contours to fluent narrations. 

This paper advances over previous analyses of oral reading prosody [6, 16, 17] in 

multiple directions.  We replaced manual with automated analysis.  We scaled up from 

three sentences to thousands of sentences.  We extended the set of features to include 

intensity and word reading time as well as pitch and pauses.  We eliminated the 

requirement for many adults to read each sentence in order to average their prosodic 

contours; we need only one adult narration per sentence.  We eliminated the 

requirement for all children to read the same text in order to compare them; we 

evaluate prosody on whatever a child read.  We eliminated the requirement to take time 

out for testing, by instead using data already captured during routine use of the Reading 

Tutor.  Not only is there more such data per student, it is longitudinal, allowing us to 

measure features’ change over time, and predict scores and gains better.  Raising ASR 

accuracy, adding features of the text (e.g. syntax and punctuation) and student (e.g. 

previous encounters of each word), or refining aspects of the data analysis (e.g. outlier 

filtering and model form) may further enhance the valuable ability to monitor 

children’s reading growth continually as a byproduct of improving it in a tutor. 
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